首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
Nijmegen breakage syndrome (NBS) is a rare autosomal recessive disorder. Originally thought to be a variant of ataxia telangiectasia (AT), the cellular phenotype of NBS has been described as almost indistinguishable from that of AT. Since the gene involved in NBS has been cloned and its functions studied, we sought to further characterize its cellular phenotype by examining the response of density-inhibited, confluent cultures of human diploid fibroblasts to irradiation in the G(0)/G(1) phase of the cell cycle. Both NBS and AT cells were markedly sensitive to the cytotoxic effects of radiation. NBS cells, however, were proficient in recovery from potentially lethal damage and exhibited a pronounced radiation-induced G(1)-phase arrest. Irradiated AT cells showed no potentially lethal damage and no G(1)-phase arrest. Both cell types were hypersensitive to the induction of chromosomal aberrations, whereas the distribution of aberrations in irradiated NBS cells was similar to that of normal controls, AT cells showed a high frequency of chromatid-type aberrations. TP53 and CDKN1A (also known as p21(Waf1)) expression was attenuated in irradiated NBS cells, but maximal induction occurred 2 h postirradiation, as was observed in normal controls. The similarities and differences in cellular phenotype between irradiated NBS and AT cells are discussed in terms of the functional properties of the signaling pathways downstream of AT involving the NBS1 and TP53 proteins.  相似文献   

3.
4.
5.
Cell cycle checkpoints can enhance cell survival and limit mutagenic events following DNA damage. Primary murine fibroblasts became deficient in a G1 checkpoint activated by ionizing radiation (IR) when both wild-type p53 alleles were disrupted. In addition, cells from patients with the radiosensitive, cancer-prone disease ataxia-telangiectasia (AT) lacked the IR-induced increase in p53 protein levels seen in normal cells. Finally, IR induction of the human GADD45 gene, an induction that is also defective in AT cells, was dependent on wild-type p53 function. Wild-type but not mutant p53 bound strongly to a conserved element in the GADD45 gene, and a p53-containing nuclear factor, which bound this element, was detected in extracts from irradiated cells. Thus, we identified three participants (AT gene(s), p53, and GADD45) in a signal transduction pathway that controls cell cycle arrest following DNA damage; abnormalities in this pathway probably contribute to tumor development.  相似文献   

6.
7.
Chk2 Activation Dependence on Nbs1 after DNA Damage   总被引:16,自引:0,他引:16       下载免费PDF全文
The checkpoint kinase Chk2 has a key role in delaying cell cycle progression in response to DNA damage. Upon activation by low-dose ionizing radiation (IR), which occurs in an ataxia telangiectasia mutated (ATM)-dependent manner, Chk2 can phosphorylate the mitosis-inducing phosphatase Cdc25C on an inhibitory site, blocking entry into mitosis, and p53 on a regulatory site, causing G(1) arrest. Here we show that the ATM-dependent activation of Chk2 by gamma- radiation requires Nbs1, the gene product involved in the Nijmegen breakage syndrome (NBS), a disorder that shares with AT a variety of phenotypic defects including chromosome fragility, radiosensitivity, and radioresistant DNA synthesis. Thus, whereas in normal cells Chk2 undergoes a time-dependent increased phosphorylation and induction of catalytic activity against Cdc25C, in NBS cells null for Nbs1 protein, Chk2 phosphorylation and activation are both defective. Importantly, these defects in NBS cells can be complemented by reintroduction of wild-type Nbs1, but neither by a carboxy-terminal deletion mutant of Nbs1 at amino acid 590, unable to form a complex with and to transport Mre11 and Rad50 in the nucleus, nor by an Nbs1 mutated at Ser343 (S343A), the ATM phosphorylation site. Chk2 nuclear expression is unaffected in NBS cells, hence excluding a mislocalization as the cause of failed Chk2 activation in Nbs1-null cells. Interestingly, the impaired Chk2 function in NBS cells correlates with the inability, unlike normal cells, to stop entry into mitosis immediately after irradiation, a checkpoint abnormality that can be corrected by introduction of the wild-type but not the S343A mutant form of Nbs1. Altogether, these findings underscore the crucial role of a functional Nbs1 complex in Chk2 activation and suggest that checkpoint defects in NBS cells may result from the inability to activate Chk2.  相似文献   

8.
9.
To examine whether protein kinase C (PKC) contributes to p53-dependent WAF1 induction after heat treatment, the effects of calphostin C (CAL), a specific inhibitor of PKC, on WAF1 induction were analyzed by PKC activity and gel mobility-shift assays and Western blot analysis in human glioblastoma cell lines. Heat-induced accumulation of WAF1 in A-172 cells carrying wild-typep53(wtp53) was suppressed by CAL in a dose-dependent manner. In T98G cells carrying mutantp53(mp53), no significant accumulation of WAF1 was observed after heat treatment and CAL exerted no significant effects on this response of T98G cells. In accordance with the accumulation of WAF1, heat-induced activation of the binding ability of p53 to p53 consensus sequence (p53 CON) was suppressed by CAL in A-172 cells but no DNA-binding activity was observed in the mp53 in T98G cells. PKC in A-172 cells was activated rapidly (within 5 min) after heat treatment in the membrane fraction but not in the cytosolic fraction. When the cell lines were treated with the PKC activator, 12-O-tetradecanoyl-phorbol-13-acetate (TPA), WAF1 was accumulated in A-172 cells in a dose-dependent manner but not in T98G cells. In addition, the cellular contents of WAF1 after heating did not increase in A-172 cells transformed with mp53.These results suggest that PKC contributes to heat-induced signal transduction leading to p53-dependent WAF1 induction in a way that PKC is involved in the specific DNA-binding activation of p53.  相似文献   

10.
Nijmegen breakage syndrome (NBS) and ataxia telangiectasia (AT) are rare autosomal recessive hereditary disorders characterized by radiosensitivity, chromosomal instability, immunodeficiency and proneness to cancer. Although the clinical features of both syndromes are quite distinct, the cellular characteristics are very similar. Cells from both NBS and AT patients are hypersensitive to ionizing radiation (IR), show elevated levels of chromosomal aberrations and display radioresistant DNA synthesis (RDS). The proteins defective in NBS and AT, NBS1 and ATM, respectively, are involved in the same pathway, but their exact relationship is not yet fully understood. Stumm et al. (Am. J. Hum. Genet. 60 (1997) 1246) have reported that hybrids of AT and NBS lymphoblasts were not complemented for chromosomal aberrations. In contrast, we found that X-ray-induced cell killing as well as chromosomal aberrations were complemented in proliferating NBS-1LBI/AT5BIVA hybrids, comparable to that in NBS-1LBI cells after transfer of a single human chromosome 8 providing the NBS1 gene. RDS observed in AT5BIVA cells was reduced in these hybrids to the level of that seen in immortal NBS-1LBI cells. However, the level of DNA synthesis, following ionizing radiation, in SV40 transformed wild-type cell lines was the same as in NBS-1LBI cells. Only primary wild-type cells showed stronger inhibition of DNA synthesis. In summary, these results clearly indicate that RDS cannot be used as an endpoint in functional complementation studies with immortal NBS-1LBI cells, whereas the cytogenetic assay is suitable for complementation studies with immortal AT and NBS cells.  相似文献   

11.
Exposure of a lung epithelial cell line to ionizing radiation (IR) arrests cell cycle progression through 48 h post-exposure. Coincidentally, IR differentially activates expression of the cell cycle inhibitor, p21/WAF1, and the DNA replication protein, proliferating cell nuclear antigen (PCNA). p21/WAF1 mRNA levels remain elevated through 48 h post-exposure to IR, while PCNA mRNA levels increase transiently at early times. Since p21/WAF1 inhibits DNA replication by directly binding PCNA, the relative levels of the two proteins can determine cell cycle progression. The PCNA p53-binding site displayed reduced p53 binding affinity in vitro relative to the distal p21/WAF1 p53-binding site. Substitution of the p21/WAF1 site for the resident p53-binding site in the PCNA promoter altered the responses to increasing amounts of p53 or IR in transient expression assays. The p21/WAF1 p53-binding site sustained activation of the chimeric PCNA promoter under conditions (high p53 levels or high dose IR) that the PCNA p53-binding site did not. Binding site-specific regulation by wild-type p53 was not observed with mutant p53 harboring a serine to alanine change at amino acid 46. Limited activation of the PCNA promoter by p53 and its modified forms would restrict the amount of PCNA made available for DNA repair.  相似文献   

12.
The effects of various doses of X radiation on the kinetics of accumulation of TP53 protein (formerly known as p53) were examined in normal human embryo cells. We found that the rate of accumulation of TP53 protein was biphasic at X-ray doses between 1 and 4 Gy, while monophasic accumulation was observed after X irradiation with doses higher than 6 Gy. The first phase of accumulation was detected within 1 h after irradiation, and a second phase of accumulation was detected between 6 and 12 h after irradiation. The induction of CDKN1A (formerly known as p21(WAF1/CIP1)) and MDM2 proteins was also biphasic after doses of 4 Gy or less, while monophasic accumulation was observed after 6 Gy or higher. We found that the proteasome inhibitor ALLN increased the constitutive level of TP53 protein, and no change was observed in the TP53 level after X irradiation when cells were treated with ALLN. These results indicate that the dose-dependent accumulation of TP53 is due to an inhibition of TP53 degradation, and that the induction of MDM2 might be responsible in part for the different kinetics of accumulation of TP53.  相似文献   

13.
The repair of DNA double-strand breaks is critical for genome integrity and tumor suppression. Here we show that following treatment with the DNA-intercalating agent actinomycin D (ActD), normal quiescent T cells accumulate double-strand breaks and die, whereas T cells from ataxia telangiectasia (AT) and Nijmegen breakage syndrome (NBS) patients are resistant to this death pathway despite a comparable amount of DNA damage. We demonstrate that the ActD-induced death pathway in quiescent T lymphocytes follows DNA damage and H2AX phosphorylation, is ATM- and NBS1-dependent and due to p53-mediated cellular apoptosis. In response to genotoxic 2-Gy gamma-irradiation, on the other hand, quiescent T cells from normal donors survive following complete resolution of the damage thus induced. T cells from AT and NBS patients also survive, but retain foci of phosphorylated H2AX due to a subtle double-strand break (DSB) repair defect. A common consequence of these two genetic defects in the DSB response is the apparent tolerance of cells containing DNA breaks. We suggest that this tolerance makes a major contribution to the oncogenic risk of patients with chromosome instability syndromes.  相似文献   

14.
15.
16.
Cells deficient in ATM (product of the gene that is mutated in ataxia telangiectasia patients) or NBS (product of the gene mutated in the Nijmegen breakage syndrome) show increased yields of both simple and complex chromosomal aberrations after high doses (>0.5Gy) of ionizing radiation (X-rays or γ-rays), however less is known on how these cells respond at low dose. Previously we had shown that the increased chromosome aberrations in ATM and NBS defective lines was due to a significantly larger quadratic dose-response term compared to normal fibroblasts for both simple and complex exchanges. The linear dose-response term for simple exchanges was significantly higher in NBS cells compared to wild type cells, but not for AT cells. However, AT cells have a high background level of exchanges compared to wild type or NBS cells that confounds the understanding of low dose responses. To understand the sensitivity differences for high to low doses, chromosomal aberration analysis was first performed at low dose-rates (0.5Gy/d), and results provided further evidence for the lack of sensitivity for exchanges in AT cells below doses of 1Gy. Normal lung fibroblast cells treated with KU-55933, a specific ATM kinase inhibitor, showed increased numbers of exchanges at a dose of 1Gy and higher, but were similar to wild type cells at 0.5Gy or below. These results were confirmed using siRNA knockdown of ATM. The present study provides evidence that the increased radiation sensitivity of AT cells for chromosomal exchanges found at high dose does not occur at low dose.  相似文献   

17.
Iron deprivation induces apoptosis in some sensitive cultured tumour cells, while other cells are resistant. In order to elucidate the mechanisms involved in apoptosis induction by iron deprivation, we studied the expression of p53 and the expression of selected p53-regulated genes. To discriminate between changes coupled only with iron deprivation and changes involved in apoptosis induction by iron deprivation, we compared the expression of the genes in sensitive (human Raji, mouse 38C13) versus resistant (human HeLa, mouse EL4) cells under iron deprivation. Iron deprivation was achieved by incubation in a defined iron-free medium. The level of p53 mRNA decreased significantly under iron deprivation in sensitive cells, but it did not change in resistant cells. On the contrary, the level of the p53 protein under iron deprivation was slightly increased in sensitive cells while it was not changed in resistant cells. The activity of p53 was assessed by the expression of selected p53-regulated targets, i.e. p21(WAF1/CIP1) gene, mdm2, bcl-2 and bax. We did not detect any relevant change in mRNA levels as well as in protein levels of these genes under iron deprivation with the exception of p21(WAF1/CIP1). We detected a significant increase in the level of p21 mRNA in both (sensitive and resistant) mouse cell lines tested, however, we did not find any change in both (sensitive and resistant) human cell lines. Moreover, the p21(WAF1/CIP1) protein was accumulated in mouse-sensitive 38C13 cells under iron deprivation while all other cell lines tested, including human-sensitive cell line Raji, did not show any accumulation of p21(WAF1/CIP1) protein. It seems that the p21(WAF1/CIP1) mRNA, as well as protein accumulation, is not specifically coupled with apoptosis induction by iron deprivation and that it is rather cell-line specific. Taken together, we suggest that iron deprivation induces apoptosis at least in some cell types independently of the p53 pathway.  相似文献   

18.
19.
ATMIN defines an NBS1-independent pathway of ATM signalling   总被引:3,自引:0,他引:3  
Kanu N  Behrens A 《The EMBO journal》2007,26(12):2933-2941
The checkpoint kinase ATM (ataxia telangiectasia mutated) transduces genomic stress signals to halt cell cycle progression and promote DNA repair in response to DNA damage. Here, we report the characterisation of an essential cofactor for ATM, ATMIN (ATM INteracting protein). ATMIN interacts with ATM through a C-terminal motif, which is also present in Nijmegen breakage syndrome (NBS)1. ATMIN and ATM co-localised in response to ATM activation by chloroquine and hypotonic stress, but not after induction of double-strand breaks by ionising radiation (IR). ATM/ATMIN complex disruption by IR was attenuated in cells with impaired NBS1 function, suggesting competition of NBS1 and ATMIN for ATM binding. ATMIN protein levels were reduced in ataxia telangiectasia cells and ATM protein levels were low in primary murine fibroblasts lacking ATMIN, indicating reciprocal stabilisation. Whereas phosphorylation of Smc1, Chk2 and p53 was normal after IR in ATMIN-deficient cells, basal ATM activity and ATM activation by hypotonic stress and inhibition of DNA replication was impaired. Thus, ATMIN defines a novel NBS1-independent pathway of ATM signalling.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号