首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
In Arabidopsis thaliana, the stem cell population of the shoot system is controlled by regulatory circuitry involving the WUSCHEL (WUS) and CLAVATA (CLV1-3) genes. WUS signals from the organizing center (OC) to promote stem cell fate at the meristem apex. Stem cells express the secreted peptide CLV3 that activates a signal transduction cascade to restrict WUS expression, thus providing a feedback mechanism. Stem cell homeostasis is proposed to be achieved by balancing these signals. We tested the dynamics of CLV3 signaling using an inducible gene expression system. We show here that increasing the CLV3 signal can very rapidly repress WUS expression during development, which in turn causes a fast reduction of CLV3 expression. We demonstrate that increased CLV3 signaling restricts meristem growth and promotes allocation of peripheral meristem cells into organ primordia. In addition, we extend the current model for stem cell control by showing that meristem homeostasis tolerates variation in CLV3 levels over a 10-fold range and that high-level CLV3 signaling can be partially compensated with time, indicating that the level of CLV3 expression communicates only limited information on stem cell number to the underlying OC cells.  相似文献   

3.
4.
5.
6.
Organogenesis at the shoot meristem requires a delicate balance between stem cell specification and differentiation. In Arabidopsis thaliana, WUSCHEL (WUS) is a key factor promoting stem cell identity, whereas the CLAVATA (CLV1, CLV2, and CLV3) loci appear to promote differentiation by repressing WUS expression. In a screen for mutations modifying clv1 mutants, we have identified a novel regulator of meristem development we term CORONA (CNA). Whereas cna single mutant plants exhibit subtle defects in meristem development, clv cna double mutants develop massively enlarged apices that display early loss of organogenesis, misexpression of WUS and CLV3, and eventual differentiation of the entire apex. The CNA gene was isolated by positional cloning and found to encode a class III homeodomain Leu zipper protein. A missense mutation resulting in the dominant-negative cna-1 allele was identified in a conserved domain of unknown function, and a likely null allele was shown to display a similar but weaker phenotype. CNA is expressed in developing vascular tissue, diffusely through shoot and flower meristems, and within developing stamens and carpels. Our analysis of WUS expression in wild-type, clv, and clv cna plants revealed that, contrary to current models, WUS is neither necessary nor sufficient for stem cell specification and that neither WUS nor CLV3 is a marker for stem cell identity. We propose that CNA functions in parallel to the CLV loci to promote organ formation.  相似文献   

7.
8.
Somatic embryogenesis requires auxin and establishment of the shoot apical meristem (SAM). WUSCHEL ( WUS ) is critical for stem cell fate determination in the SAM of higher plants. However, regulation of WUS expression by auxin during somatic embryogenesis is poorly understood. Here, we show that expression of several regulatory genes important in zygotic embryogenesis were up-regulated during somatic embryogenesis of Arabidopsis. Interestingly, WUS expression was induced within the embryonic callus at a time when somatic embryos could not be identified morphologically or molecularly. Correct WUS expression, regulated by a defined critical level of exogenous auxin, is essential for somatic embryo induction. Furthermore, it was found that auxin gradients were established in specific regions that could then give rise to somatic embryos. The establishment of auxin gradients was correlated with the induced WUS expression. Moreover, the auxin gradients appear to activate PIN1 polar localization within the embryonic callus. Polarized PIN1 is probably responsible for the observed polar auxin transport and auxin accumulation in the SAM and somatic embryo. Suppression of WUS and PIN1 indicated that both genes are necessary for embryo induction through their regulation of downstream gene expression. Our results reveal that establishment of auxin gradients and PIN1-mediated polar auxin transport are essential for WUS induction and somatic embryogenesis. This study sheds new light on how auxin regulates stem cell formation during somatic embryogenesis.  相似文献   

9.
The breast cancer regulatory protein-1 (BRCA1)-associated RING domain 1 (BARD1) gene is mutated in a subset of breast/ovarian cancers. BARD1 functions as a heterodimer with BRCA1 in nuclear DNA repair. BARD1 also has a BRCA1-independent apoptotic activity. Here we investigated the link between cytoplasmic localization and apoptotic function of BARD1. We used immunofluorescence microscopy and deconvolution analysis to resolve BARD1 cytoplasmic staining patterns and detected endogenous BARD1 at mitochondria. BARD1 was also detected in mitochondrial cell fractions by immunoblotting. The targeting of BARD1 to mitochondria was modestly stimulated by DNA damage and did not require BRCA1 as indicated by RNA interference and peptide-competition experiments. Transiently expressed yellow fluorescence protein-BARD1 localized to mitochondria, and the targeting sequences were mapped to both the N and C terminus of BARD1. Ectopic yellow fluorescence protein-BARD1 induced apoptosis and loss of mitochondrial membrane potential in MCF-7 breast tumor cells. BARD1 apoptotic function was associated with stimulation of Bax oligomerization at mitochondria. This distinguishes it from BRCA1, which is pro-apoptotic but did not induce Bax oligomerization. The cancer-associated BARD1 splice-variant DeltaRIN (lacks the BRCA1 binding domain and ankyrin repeats) was recruited to mitochondria but did not stimulate apoptosis or alter membrane permeability. We propose that BARD1 has two main sites of action in its cellular response to DNA damage, the nucleus, where it promotes cell survival through DNA repair, and the mitochondria, where BARD1 regulates apoptosis.  相似文献   

10.
A fundamental question in developmental biology is how spatial patterns are self-organized from homogeneous structures. In 1952, Turing proposed the reaction-diffusion model in order to explain this issue. Experimental evidence of reaction-diffusion patterns in living organisms was first provided by the pigmentation pattern on the skin of fishes in 1995. However, whether or not this mechanism plays an essential role in developmental events of living organisms remains elusive. Here we show that a reaction-diffusion model can successfully explain the shoot apical meristem (SAM) development of plants. SAM of plants resides in the top of each shoot and consists of a central zone (CZ) and a surrounding peripheral zone (PZ). SAM contains stem cells and continuously produces new organs throughout the lifespan. Molecular genetic studies using Arabidopsis thaliana revealed that the formation and maintenance of the SAM are essentially regulated by the feedback interaction between WUSHCEL (WUS) and CLAVATA (CLV). We developed a mathematical model of the SAM based on a reaction-diffusion dynamics of the WUS-CLV interaction, incorporating cell division and the spatial restriction of the dynamics. Our model explains the various SAM patterns observed in plants, for example, homeostatic control of SAM size in the wild type, enlarged or fasciated SAM in clv mutants, and initiation of ectopic secondary meristems from an initial flattened SAM in wus mutant. In addition, the model is supported by comparing its prediction with the expression pattern of WUS in the wus mutant. Furthermore, the model can account for many experimental results including reorganization processes caused by the CZ ablation and by incision through the meristem center. We thus conclude that the reaction-diffusion dynamics is probably indispensable for the SAM development of plants.  相似文献   

11.
Hsu V  Zobel CL  Lambie EJ  Schedl T  Kornfeld K 《Genetics》2002,160(2):481-492
The protein kinase Raf is an important signaling protein. Raf activation is initiated by an interaction with GTP-bound Ras, and Raf functions in signal transmission by phosphorylating and activating a mitogen-activated protein (MAP) kinase kinase named MEK. We identified 13 mutations in the Caenorhabditis elegans lin-45 raf gene by screening for hermaphrodites with abnormal vulval formation or germline function. Weak, intermediate, and strong loss-of-function or null mutations were isolated. The phenotype caused by the most severe mutations demonstrates that lin-45 is essential for larval viability, fertility, and the induction of vulval cell fates. The lin-45(null) phenotype is similar to the mek-2(null) and mpk-1(null) phenotypes, indicating that LIN-45, MEK-2, and MPK-1 ERK MAP kinase function in a predominantly linear signaling pathway. The lin-45 alleles include three missense mutations that affect the Ras-binding domain, three missense mutations that affect the protein kinase domain, two missense mutations that affect the C-terminal 14-3-3 binding domain, three nonsense mutations, and one small deletion. The analysis of the missense mutations indicates that Ras binding, 14-3-3-binding, and protein kinase activity are necessary for full Raf function and suggests that a 14-3-3 protein positively regulates Raf-mediated signaling during C. elegans development.  相似文献   

12.
The Arabidopsis shepherd (shd) mutant shows expanded shoot apical meristems (SAM) and floral meristems (FM), disorganized root apical meristems, and defects in pollen tube elongation. We have discovered that SHD encodes an ortholog of GRP94, an ER-resident HSP90-like protein. Since the shd phenotypes in SAM and FM are similar to those of the clavata (clv) mutants, we have explored the possibility that CLV complex members could be SHD targets. The SAM and FM morphology of shd clv double mutants are indistinguishable from those of clv single mutants, and the wuschel (wus) mutation is completely epistatic to the shd mutation, indicating that SHD and CLV act in the same genetic pathway to suppress WUS function. Moreover, the effects of CLV3 overexpression that result in the elimination of SAM activity were abolished in the shd mutant, indicating that CLV function is dependent on SHD function. Therefore, we conclude that the SHD protein is required for the correct folding and/or complex formation of CLV proteins.  相似文献   

13.
Almost all aerial parts of plants are continuously generated at the shoot apical meristem (SAM). To maintain a steady pool of undifferentiated cells in the SAM while continuously generating new organs, it is necessary to balance the rate of cell division with the rate of entrance into differentiation pathways. In the Arabidopsis meristem, SHOOT MERISTEMLESS (STM) and WUSCHEL (WUS) are necessary to keep cells undifferentiated and dividing. Here, we tested whether ectopic STM and WUS functions are sufficient to revert differentiation and activate cell division in differentiating tissues. Ectopic STM and WUS functions interacted non-additively and activated a subset of meristem functions, including cell division, CLAVATA1 expression and organogenesis, but not correct phyllotaxy or meristem self-maintenance. Our results suggest that WUS produces a non-cell autonomous signal that activates cell division in combination with STM and that combined WUS/STM functions can initiate the progression from stem cells to organ initiation.  相似文献   

14.
The mitochondrial inner membrane contains a large protein complex crucial for membrane architecture, the mitochondrial inner membrane organizing system (MINOS). MINOS is required for keeping cristae membranes attached to the inner boundary membrane via crista junctions and interacts with protein complexes of the mitochondrial outer membrane. To study if outer membrane interactions and maintenance of cristae morphology are directly coupled, we generated mutant forms of mitofilin/Fcj1 (formation of crista junction protein 1), a core component of MINOS. Mitofilin consists of a transmembrane anchor in the inner membrane and intermembrane space domains, including a coiled-coil domain and a conserved C-terminal domain. Deletion of the C-terminal domain disrupted the MINOS complex and led to release of cristae membranes from the inner boundary membrane, whereas the interaction of mitofilin with the translocase of the outer membrane (TOM) and the sorting and assembly machinery (SAM) were enhanced. Deletion of the coiled-coil domain also disturbed the MINOS complex and cristae morphology; however, the interactions of mitofilin with TOM and SAM were differentially affected. Finally, deletion of both intermembrane space domains disturbed MINOS integrity as well as interactions with TOM and SAM. Thus, the intermembrane space domains of mitofilin play distinct roles in interactions with outer membrane complexes and maintenance of MINOS and cristae morphology, demonstrating that MINOS contacts to TOM and SAM are not sufficient for the maintenance of inner membrane architecture.  相似文献   

15.
16.
Aerial architecture in higher plants is dependent on the activity of the shoot apical meristem (SAM) and axillary meristems (AMs). The SAM produces a main shoot and leaf primordia, while AMs are generated at the axils of leaf primordia and give rise to branches and flowers. Therefore, the formation of AMs is a critical step in the construction of plant architecture. Here, we characterized the rice (Oryza sativa) lax panicle2 (lax2) mutant, which has altered AM formation. LAX2 regulates the branching of the aboveground parts of a rice plant throughout plant development, except for the primary branch in the panicle. The lax2 mutant is similar to lax panicle1 (lax1) in that it lacks an AM in most of the lateral branching of the panicle and has a reduced number of AMs at the vegetative stage. The lax1 lax2 double mutant synergistically enhances the reduced-branching phenotype, indicating the presence of multiple pathways for branching. LAX2 encodes a nuclear protein that contains a plant-specific conserved domain and physically interacts with LAX1. We propose that LAX2 is a novel factor that acts together with LAX1 in rice to regulate the process of AM formation.  相似文献   

17.
The shoot and root apical meristems (SAM and RAM) formed during embryogenesis are crucial for postembryonic plant development. We report the identification of POPCORN (PCN), a gene required for embryo development and meristem organization in Arabidopsis thaliana. Map-based cloning revealed that PCN encodes a WD-40 protein expressed both during embryo development and postembryonically in the SAM and RAM. The two pcn alleles identified in this study are temperature sensitive, showing defective embryo development when grown at 22°C that is rescued when grown at 29°C. In pcn mutants, meristem-specific expression of WUSCHEL (WUS), CLAVATA3, and WUSCHEL-RELATED HOMEOBOX5 is not maintained; SHOOTMERISTEMLESS, BODENLOS (BDL) and MONOPTEROS (MP) are misexpressed. Several findings link PCN to auxin signaling and meristem function: ectopic expression of DR5(rev):green fluorescent protein (GFP), pBDL:BDL-GFP, and pMP:MP-β-glucuronidase in the meristem; altered polarity and expression of pPIN1:PIN1-GFP in the apical domain of the developing embryo; and resistance to auxin in the pcn mutants. The bdl mutation rescued embryo lethality of pcn, suggesting that improper auxin response is involved in pcn defects. Furthermore, WUS, PINFORMED1, PINOID, and TOPLESS are dosage sensitive in pcn, suggesting functional interaction. Together, our results suggest that PCN functions in the auxin pathway, integrating auxin signaling in the organization and maintenance of the SAM and RAM.  相似文献   

18.
19.
The BARD1 N-terminal RING domain binds BRCA1 while the BARD1 C-terminal ankyrin and tandem BRCT repeat domains bind CstF-50 to modulate mRNA processing and RNAP II stability in response to DNA damage. Here we characterize the BARD1 structural biochemistry responsible for CstF-50 binding. The crystal structure of the BARD1 BRCT domain uncovers a degenerate phosphopeptide binding pocket lacking the key arginine required for phosphopeptide interactions in other BRCT proteins. Small angle X-ray scattering together with limited proteolysis results indicates that ankyrin and BRCT domains are linked by a flexible tether and do not adopt a fixed orientation relative to one another. Protein pull-down experiments utilizing a series of purified BARD1 deletion mutants indicate that interactions between the CstF-50 WD-40 domain and BARD1 involve the ankyrin-BRCT linker but do not require ankyrin or BRCT domains. The structural plasticity imparted by the ANK-BRCT linker helps to explain the regulated assembly of different protein BARD1 complexes with distinct functions in DNA damage signaling including BARD1-dependent induction of apoptosis plus p53 stabilization and interactions. BARD1 architecture and plasticity imparted by the ANK-BRCT linker are suitable to allow the BARD1 C-terminus to act as a hub with multiple binding sites to integrate diverse DNA damage signals directly to RNA polymerase.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号