首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 890 毫秒
1.
Three peptides were synthesized corresponding to potential autophosphorylation sites of the beta subunit of the human insulin receptor. These were peptide 1150 corresponding to amino acids 1142-1153 of the pro-receptor, peptide 960 corresponding to amino acids 952-961 of the proreceptor, and peptide 1316 corresponding to amino acids 1313-1329 of the proreceptor. Peptide 1150 served as a better substrate for the insulin receptor tyrosine protein kinase than either of the other peptides or than the Src peptide (corresponding to the sequence surrounding the autophosphorylation site at Tyr-416). Microsequencing of the phosphorylated peptide 1150 indicated that Tyr-1150 rather than Tyr-1146 or Tyr-1151 was phosphorylated in the in vitro reaction. The insulin receptor was then isolated from 32P-labeled IM-9 cells that had been exposed to insulin. Tryptic digestion of the beta subunit revealed one peptide whose phosphorylation was dependent upon insulin and occurred exclusively on Tyr. This peptide was selectively immunoprecipitated by an antipeptide antibody directed to the Tyr-1150-containing sequence. We conclude that Tyr-1150 is preferentially phosphorylated by the purified receptor kinase and that one of the autophosphorylation reactions elicited by insulin in intact cells occurs in a sequence that contains this residue.  相似文献   

2.
The ability of insulin to activate the insulin receptor protein kinase is shown to be completely dependent on prior beta subunit tyrosine autophosphorylation. Autophosphorylation in the presence of insulin is a highly concerted reaction; tryptic digestion of insulin receptor beta subunits derived from preparations whose kinase activation ranges from under 5% to 100% of maximal yields the same array of [32P]Tyr(P)-containing peptides over the entire range. Of special note is the significant contribution of multiply phosphorylated forms of tryptic peptides corresponding to proreceptor residues 1144-1152 (from the "tyrosine kinase" domain) and 1314-1329 (near the carboxyl terminus) to overall beta subunit phosphorylation at kinase activations of 5% and under. Thus, partially activated/autophosphorylated receptor preparations consist of mixtures of unactivated unphosphorylated receptors and activated fully (or nearly fully) phosphorylated receptors. The latter can be selectively removed by adsorption to antiphosphotyrosine antibodies. This abrupt multiple phosphorylation of individual receptor molecules explains why, in the presence of insulin, overall beta subunit tyrosine phosphorylation tracks closely with kinase, up to approximately 90% activation. Insulin stimulates phosphorylation into all domains (involving at least 6 of the 13 tyrosines on the intracellular portion of the beta subunit) but does not cause the appearance of "new" 32P-labeled species. Rather, insulin directs 32P incorporation preferentially into those domains most productive of kinase activation. Phosphorylation of the tyrosine residues at 1146, 1150, and 1151 correlates most closely with kinase activation. These residues show the largest 32P incorporation during rapid kinase activation; moreover, in comparisons of receptors with similar overall autophosphorylation but very different activations (or similar activations but different extents of autophosphorylation), achieved by omitting insulin or varying [ATP], the phosphorylation of peptide 1144-1152 tracks closely with kinase activation, and phosphorylation of sites and Mr 4000-5000 tryptic peptide (presumably Tyr 953 and/or 960) tract nearly as well. By contrast the extent of phosphorylation of the carboxy-terminal peptide is frequently dissociated from the extent of kinase activation. Phosphorylation of this latter domain probably underlies a beta subunit function other than tyrosine kinase activity.  相似文献   

3.
The insulin-binding and protein tyrosine kinase subunits of the Drosophila melanogaster insulin receptor homolog have been identified and characterized by using antipeptide antibodies elicited to the deduced amino acid sequence of the alpha and beta subunits of the human insulin receptor. In D. melanogaster embryos and cell lines, the insulin receptor contains insulin-binding alpha subunits of 110 or 120 kilodaltons (kDa), a 95-kDa beta subunit that is phosphorylated on tyrosine in response to insulin in intact cells and in vitro, and a 170-kDa protein that may be an incompletely processed receptor. All of the components are synthesized from a proreceptor, joined by disulfide bonds, and exposed on the cell surface. The beta subunit is recognized by an antipeptide antibody elicited to amino acids 1142 to 1162 of the human insulin proreceptor, and the alpha subunit is recognized by an antipeptide antibody elicited to amino acids 702 to 723 of the human proreceptor. Of the polypeptide ligands tested, only insulin reacts with the D. melanogaster receptor. Insulinlike growth factors type I and II, epidermal growth factor, and the silkworm insulinlike prothoracicotropic hormone are unable to stimulate autophosphorylation. Thus despite the evolutionary divergence of vertebrates and invertebrates, the essential features of the structure and intrinsic functions of the insulin receptor have been remarkably conserved.  相似文献   

4.
To identify the autophosphorylation sites on the human insulin receptor (IR), partially purified human IR was incubated in vitro in the presence of insulin and manganese [gamma-32P]ATP so as to achieve near-maximal activation of the histone 2b kinase activity. Approximately 70% of all beta subunit [32P]phosphotyrosine resides on two tryptic peptide segments identified by microsequencing as IR precursor (Ullrich, A., Bell, J. R., Chen, E.-Y., Herrera, R., Petruzelli, L. M., Dull, T. J., Gray, A., Coussens, L., Liao, Y.-C., Tsubokawa, M., Mason, A., Seeburg, P. H., Grunfeld, C., Rosen, O. M., and Ramachandran, J. (1985) Nature 313, 756-761) 1144-1152 (tyrosine at 1146, 1150, 1151, designated peptide 5) and 1315-1329 (tyrosine at 1316, 1322, designated peptide 8), which were recovered in approximately equal amounts. Half of the remaining unidentified [32P]phosphotyrosine residues reside on another tryptic peptide of Mr 4000-5000. Assignment of [32P]phosphotyrosine to specific residues required subdigestion and Edman degradation of 32P peptides covalently coupled to solid supports. Peptide 5 was recovered in triple and double phosphorylated forms in a molar ratio of about 2:1. Tyr-1146 contained 32P in both forms of peptide 5; in the double phosphorylated form, phenylthiohydantoin-[32P]phosphotyrosine was recovered at both Tyr-1150 and Tyr-1151, in a ratio of about 1:2. Thus, the double phosphorylated peptide 5 is presumably a mixture of Tyr-P-1146/1150 and Tyr-P-1146/1151, predominantly the latter. Peptide 8 was recovered only as the double phosphorylated form. We conclude that autophosphorylation of human IR in vitro leads to the phosphorylation of at least 6 of the 13 tyrosine residues on the beta subunit intracellular extension. Five of these tyrosines are clustered in two domains; one domain is in the structurally unique C-terminal tail and contains Tyr-1316 and -1322 which are both phosphorylated. The second domain is located in the segment of the tyrosine kinase region homologous to the major in vitro autophosphorylation site of pp60 v-src and contains Tyr-1146, which is fully phosphorylated, and Tyr-1150 and -1151; although the majority of IR beta subunits exhibit phosphorylation of both tyrosine 1150 and 1151, up to 20-25% of Tyr-1150 remains unphosphorylated at complete kinase activation.  相似文献   

5.
Tyr(P)-containing proteins were purified from extracts of insulin-treated rat hepatoma cells (H4-II-E-C3) by antiphosphotyrosine immunoaffinity chromatography. Two major insulin-stimulated, Tyr(P) proteins were recovered: an Mr 95,000 protein (identified as the insulin receptor beta subunit by its immunoprecipitation by a patient-derived anti-insulin receptor serum and several anti-insulin receptor (peptide) antisera) and an Mr 180,000 protein (which was unreactive with all anti-insulin receptor antibodies). After purification and tryptic digestion of the Mr 95,000 protein, tryptic peptides containing Tyr(P) were purified by sequential antiphosphotyrosine immunoaffinity, reversed-phase, anion-exchange chromatography. The partial amino acid sequence obtained by gas- and solid-phase Edman degradation was compared to the amino acid sequence of the intracellular extension of the rat insulin receptor deduced from the genomic sequence. Approximately 80% of all beta subunit [32P]Tyr(P) resides on two tryptic peptides: 50-60% of [32P]Tyr(P) is found on the tryptic peptide Asp-Ile-Tyr-Glu-Thr-Asp-Tyr-Tyr-Arg from the tyrosine kinase domain, which is recovered mainly as the double phosphorylated species (predominantly in the form with Tyr(P) at residues 3 and 7 from the amino terminus; the remainder with Tyr(P) at residues 3 and 8), with 10-15% as the triple phosphorylated species. A second tryptic peptide is located near the carboxyl terminus, contains 2 tyrosines, and has the sequence, Thr-Tyr-Asp-Glu-His-Ile-Pro-Tyr-Thr-; this contains 20-30% of beta subunit [32P]Tyr(P) and is identified primarily in a double phosphorylated form. Approximately 10% of beta subunit [32P]Tyr(P) resides on an unidentified tryptic peptide of Mr 4,000-5,000. The insulin-stimulated tyrosine phosphorylation of the insulin receptor in intact rat hepatoma cells thus involves at least 6 of the 13 tyrosine residues located on the beta subunit intracellular extension. These tyrosines are clustered in several domains in a distribution virtually identical to that previously found for partially purified human insulin receptor autophosphorylated in vitro in the presence of insulin. This multisite regulatory tyrosine phosphorylation is the initial intracellular event in insulin action.  相似文献   

6.
The cytoplasmic domain of the beta subunit of the human insulin receptor has been overexpressed in insect cells using the baculovirus expression system. A recombinant baculovirus (BIR-2) was constructed by inserting the human insulin proreceptor cDNA fragment that encodes the cytoplasmic domain of the receptor into the genome of Autographa californica nuclear polyhedrosis virus adjacent to the strong polyhedrin promoter. Synthesis of the protein (baculovirus insulin receptor kinase (BIRK), Mr 48,000) in BIR-2-infected Spodoptera frugiperda (Sf9) cells was detected 24 h after infection and maximal accumulation (2-3% of the cytosolic protein) was achieved 48-72 h post-infection. The expressed protein is active as a soluble protein tyrosine kinase, both in Sf9 cells and in vitro. Rapid purification to near homogeneity was accomplished by sequential chromatography on Fast-Q-Sepharose and phenyl-Superose with an overall yield of 35% and a specific activity with histone as substrate of 20 nmol/min/mg protein. Autophosphorylation activated the intrinsic kinase activity of BIRK and decreased its mobility on sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Using a combination of tryptic digestion and immunoprecipitation with specific antipeptide antisera, it was ascertained that 30-40% of the 32P incorporated into BIRK by autophosphorylation is in the carboxyl-terminal domain (that includes tyrosyl residues 1316 and 1322 of the human proreceptor). Of the remaining radioactivity, 75% is in the amino-terminal domain (that includes tyrosyl residues 953, 960, 972, 999, and 1075) and 25% is in the conserved autophosphorylation domain (including tyrosyl residues 1146, 1150, and 1151). Limited digestion of BIRK with trypsin yielded a fragment, Mr 38,000, that lacks the carboxyl-terminal domain. This fragment exhibits protein tyrosine kinase activity that is stimulated by autophosphorylation. The properties of the soluble, monomeric BIRK are similar to those of the intact, activated, oligomeric insulin receptor kinase with respect to specificity, immunoreactivity, divalent cation requirements, and specific activity. These observations coupled with the ease of producing 0.4 mg of purified enzyme from 100 ml of suspension culture suggest that BIRK will be useful for biochemical and biophysical analysis of the insulin receptor protein tyrosine kinase.  相似文献   

7.
We identified the major autophosphorylation sites in the insulin receptor and correlated their phosphorylation with the phosphotransferase activity of the receptor on synthetic peptides. The receptor, purified from Fao hepatoma cells on immobilized wheat germ agglutinin, undergoes autophosphorylation at several tyrosine residues in its beta-subunit; however, anti-phosphotyrosine antibody (alpha-PY) inhibited most of the phosphorylation by trapping the initial sites in an inactive complex. Exhaustive trypsin digestion of the inhibited beta-subunit yielded two peptides derived from the Tyr-1150 domain (Ullrich, A, Bell, J. R., Chen, E. Y., Herrera, R., Petruzzelli, L. M., Dull, T. J., Gray, A., Coussens, L., Liao, Y.-C., Tsubokawa, M., Mason, A., Seeburg, P. H., Grunfeld, C., Rosen, O. M., and Ramachandran, J. (1985) Nature 313, 756-761) called pY4 and pY5. Both peptides contained 2 phosphotyrosyl residues (2Tyr(P], one corresponding to Tyr-1146 and the other to Tyr-1150 or Tyr-1151. In the absence of the alpha-PY additional sites were phosphorylated. The C-terminal domain of the beta-subunit contained phosphotyrosine at Tyr-1316 and Tyr-1322. Removal of the C-terminal domain by mild trypsinolysis did not affect the phosphotransferase activity of the beta-subunit suggesting that these sites did not play a regulatory role. Full activation of the insulin receptor during in vitro assay correlated with the appearance of two phosphopeptides in the tryptic digest of the beta-subunit, pY1 and pY1a, that were inhibited by the alpha-PY. Structural analysis suggested that pY1 and pY1a were derived from the Tyr-1150 domain and contained 3 phosphotyrosyl residues (3Tyr(P] corresponding to Tyr-1146, Tyr-1150, and Tyr-1151. The phosphotransferase of the receptor that was phosphorylated in the presence of alpha-PY at 2 tyrosyl residues in the Tyr-1150 domain was not fully activated during kinase assays carried out with saturating substrate concentrations which inhibited further autophosphorylation. During insulin stimulation of the intact cell, the 3Tyr(P) form of the Tyr-1150 domain was barely detected, whereas the 2Tyr(P) form predominated. We conclude that 1) autophosphorylation of the insulin receptor begins by phosphorylation of Tyr-1146 and either Tyr-1150 or Tyr-1151; 2) progression of the cascade to phosphorylation of the third tyrosyl residue fully activates the phosphotransferase during in vitro assay; 3) in vivo, the 2Tyr(P) form predominates, suggesting that progression of the autophosphorylation cascade to the 3Tyr(P) form is regulated during insulin stimulation.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

8.
K T Yu  J E Pessin  M P Czech 《Biochimie》1985,67(10-11):1081-1093
The regulation of the insulin receptor kinase by phosphorylation and dephosphorylation has been examined. Under in vitro conditions, the tyrosine kinase activity of the insulin receptor toward histone is markedly activated when the receptor either undergoes autophosphorylation or is phosphorylated by a purified preparation of src tyrosine kinase on tyrosine residues of its beta subunit. The elevated kinase activity of the phosphorylated insulin receptor is readily reversed when the receptor is dephosphorylated with alkaline phosphatase. Analysis of tryptic digests of phosphorylated insulin receptor using reverse-phase high pressure liquid chromatography suggests that phosphorylation of a specific tyrosine site on the receptor beta subunit may be involved in the mechanism of the receptor kinase activation. Further studies indicate that tyrosine phosphorylation-mediated increase in insulin receptor activity also occurs in intact cells. Thus, when the histone kinase activities of insulin receptor from control and insulin-treated H-35 hepatoma cells are assayed in vitro following the purification of the receptors under conditions which preserve the phosphorylation state of the receptors, the insulin receptors extracted from insulin-treated cells exhibit histone kinase activities 100% higher than those from control cells. The elevated receptor kinase activity from insulin-treated cells appears to result from the increase in phosphotyrosine content of the receptor. Taken together, these results indicate that tyrosine phosphorylation of the insulin receptor beta subunit exerts a major stimulatory effect on the kinase activity of the receptor. Insulin receptor partially purified by specific immunoprecipitation from detergent extracts of control and isoproterenol-treated cells have similar basal but diminished insulin-stimulated beta subunit autophosphorylation activities when incubated with [gamma-32 P]ATP. Similarly, the ability of insulin to stimulate the receptor beta subunit phosphorylation in intact isoproterenol-treated adipocytes is greatly attenuated, whereas, the basal phosphorylation of the insulin receptor is slightly increased by the beta-catecholamine. These data indicate that in rat adipocytes, a cyclic AMP-mediated mechanism, possibly through serine and threonine phosphorylation of the receptor or its regulatory components, may uncouple the receptor tyrosine kinase activity from activation by insulin. Treatment of 32P-labeled H-35 hepatoma cells with phorbol myristate acetate (PMA) results in a marked increase in serine phosphorylation of the insulin receptor beta subunit.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

9.
To examine the phosphorylation of casein kinase II in cells, the enzyme was isolated by immunoprecipitation from metabolically labeled human epidermal carcinoma A431 cells using polyclonal antipeptide antibodies specific for either the alpha subunit or the beta subunit of the enzyme. When isolated from 32P-labeled cells, the beta subunit was found to be significantly labeled on serine residues whereas only minimal labeling was associated with the alpha subunit. In vitro, the beta subunit of purified bovine casein kinase II was autophosphorylated, also on serine residues. Cleavage of the beta subunit, that had been autophosphorylated in vitro, at tryptophan 9 and tryptophan 12 using N-chlorosuccinimide demonstrated that the autophosphorylation site is located near the amino terminus of the protein, most likely at serine 2 and serine 3. Two-dimensional maps of phosphopeptides generated by digestion of the beta subunit with endoproteinase Glu-C indicted that the majority of the phosphate that was incorporated into the protein in cells was at sites that were indistinguishable from the sites that were autophosphorylated in vitro. In addition to phosphorylation at the autophosphorylation site, the beta subunit is also phosphorylated at an additional site, serine 209, in intact cells. This residue, which is near the carboxyl terminus of the protein, can be phosphorylated in vitro by p34cdc2.  相似文献   

10.
When a partially purified insulin receptor preparation immobilized on insulin-agarose is incubated with [gamma-32P]ATP, Mn2+, and Mg2+ ions, the receptor beta subunit becomes 32P-labeled. The 32P-labeling of the insulin receptor beta subunit is increased by 2-3-fold when src kinase is included in the phosphorylation reaction. In addition, the presence of src kinase results in the phosphorylation of a Mr = 125,000 species. The Mr = 93,000 receptor beta subunit and the Mr = 125,000 32P-labeled bands are absent when an insulin receptor-deficient sample, prepared by the inclusion of excess free insulin to inhibit the adsorption of the receptor to the insulin-agarose, is phosphorylated in the presence of the src kinase. These results indicate that the insulin receptor alpha and beta subunits are phosphorylated by the src kinase. The src kinase-catalyzed phosphorylation of the insulin receptor is not due to the activation of receptor autophosphorylation because a N-ethylmaleimide-treated receptor preparation devoid of receptor kinase activity is also phosphorylated by the src kinase. Conversely, the insulin receptor kinase does not catalyze phosphorylation of the active or N-ethylmaleimide-inactivated src kinase. Subsequent to src kinase-mediated tyrosine phosphorylation, the insulin receptor, either immobilized on insulin-agarose or in detergent extracts, exhibits a 2-fold increase in associated kinase activity using histone as substrate. src kinase mediates phosphorylation of predominantly tyrosine residues on both alpha and beta subunits of the insulin receptor. Tryptic peptide mapping of the 32P-labeled receptor alpha and beta subunits by high pressure liquid chromatography reveals that the src kinase-mediated phosphorylation sites on both receptor subunits exhibit elution profiles identical with those phosphorylated by the receptor kinase. Furthermore, the HPLC elution profile of the receptor auto- or src kinase-catalyzed phosphorylation sites on the receptor alpha subunit are also identical with that on the receptor beta subunit. These results indicate that: the src kinase catalyzes tyrosine phosphorylation of the insulin receptor alpha and beta subunits; and src kinase-catalyzed phosphorylation of insulin receptor can mimic the action of autophosphorylation to activate the insulin receptor kinase in vitro, although whether this occurs in intact cells remains to be determined.  相似文献   

11.
To approach the question of why insulin-like growth factor-I (IGF-I) and insulin have different physiological actions, we developed antibodies directed against cytoplasmic regions of the IGF-I receptor exhibiting a low degree of homology with the corresponding sequences of the insulin receptor. We found that an antipeptide antibody directed against the beta-subunit carboxyl-terminal sequence (1232-1246) of the IGF-I receptor significantly reduced the in vitro receptor autophosphorylation. The ability of the synthetic peptide corresponding to the IGF-I receptor sequence 1232-1246 to abolish this inhibitory effect reflects the specific nature of the antibody interaction with the targeted domain in the receptor. Antipeptide antibody to IGF-I receptor sequence 1232-1246 also decreased receptor phosphorylation activity toward the exogenous substrate poly(Glu/Tyr). The reduction in poly(Glu/Tyr) phosphorylation was seen even when the antibody was incubated with a receptor previously activated and phosphorylated. Therefore, the inhibitory action on substrate phosphorylation is likely to be unrelated to the antibody reduction of receptor autophosphorylation but rather results from a global decrease in receptor enzymatic activity. The effect of the antipeptide antibody on receptor tyrosine kinase cannot be accounted for by a lowering of the receptor Km for ATP or of its affinity for the substrate poly(Glu/Tyr). Moreover, the interaction of the antibody with the receptor had no repercussion on the ligand binding site as shown by the unaltered IGF-I binding. Taken together our data suggest that the beta-subunit carboxyl-terminal domain of the IGF-I receptor plays a key role in regulating its kinase activity and that the particular sequence recognized by our antipeptide antibody could be involved in negative regulation of receptor functioning.  相似文献   

12.
R E Lewis  L Cao  D Perregaux  M P Czech 《Biochemistry》1990,29(7):1807-1813
The ability of tumor-promoting phorbol diesters to inhibit both insulin receptor tyrosine kinase activity and its intracellular signaling correlates with the phosphorylation of the insulin receptor beta subunit on serine and threonine residues. In the present studies, mouse 3T3 fibroblasts transfected with a human insulin receptor cDNA and expressing greater than one million of these receptors per cell were labeled with [32P]phosphate and treated with or without 100 nM 4 beta-phorbol 12 beta-myristate 13 alpha-acetate (PMA). Phosphorylated insulin receptors were immunoprecipitated and digested with trypsin. Alternatively, insulin receptors affinity purified from human term placenta were phosphorylated by protein kinase C prior to trypsin digestion of the 32P-labeled beta subunit. Analysis of the tryptic phosphopeptides from both the in vivo and in vitro labeled receptors by reversed-phase HPLC and two-dimensional thin-layer separation revealed that PMA and protein kinase C enhanced the phosphorylation of a peptide with identical chromatographic properties. Partial hydrolysis and radiosequence analysis of the phosphopeptide derived from insulin receptor phosphorylated by protein kinase C indicated that the phosphorylation of this tryptic peptide occurred specifically on a threonine, three amino acids from the amino terminus of the tryptic fragment. Comparison of these data with the known, deduced receptor sequence suggested that the receptor-derived tryptic phosphopeptide might be Ile-Leu-Thr(P)-Leu-Pro-Arg. Comigration of a phosphorylated synthetic peptide containing this sequence with the receptor-derived phosphopeptide confirmed the identity of the tryptic fragment. The phosphorylation site corresponds to threonine 1336 in the human insulin receptor beta subunit.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
The effect of insulin and ATP on insulin receptor beta subunit conformation was studied in vitro with radioiodinated monoclonal antibodies directed at several regions of the receptor beta subunit. Insulin plus ATP inhibited their binding to the receptor. The greatest inhibitory effect of insulin and ATP was seen with antibody 17A3 which recognizes a domain of the beta subunit that is near the major tyrosine autophosphorylation sites at residues 1158, 1162, and 1163. ATP alone inhibited 17A3 binding with a one-half maximal ATP inhibitory concentration of 186 +/- 7 microM. Insulin at concentrations as low as 100 pM potentiated the effect of ATP; at 100 nM where insulin had its maximal effect, insulin lowered the one-half maximal inhibitory concentration of ATP to 16 +/- 6 microM. At 1 mM CTP, GTP, ITP, TTP, and AMP were without effect in either the presence or absence of insulin; in contrast, ADP was inhibitory in the presence of insulin. Of major interest was adenyl-5'-yl imidodiphosphate (AMP-PNP). This nonhydrolyzable analog of ATP inhibited 17A3 binding, and the effect of AMP-PNP (like ATP) was potentiated by insulin. Two insulin receptor beta subunit mutants then were studied. Mutant receptor F3, where the major tyrosine autophosphorylation sites at residues 1158, 1162, and 1163 were changed to phenylalanines, bound to 17A3; antibody binding was inhibited by insulin and ATP in a manner similar to normal receptors. In contrast, mutant receptor M1030, where the lysine in the ATP binding site at residue 1030 was changed to methionine, bound 17A3, but unlike either normal receptors or F3 receptors, the binding of 17A3 was not inhibited by insulin and ATP. Therefore, these studies raise the possibility that, in vivo, ATP binding in the presence of insulin may induce a conformational change in the insulin receptor beta subunit which in turn signals some of the biological effects of insulin.  相似文献   

14.
Subtypes of insulin-growth factor I (IGF-I) receptors, including hybrid receptors containing insulin receptor alpha beta dimers associated with IGF-I receptor alpha beta dimers, have been described in a number of systems. The molecular basis of the multiple subtypes and their functional significance is not understood. Ligand-dependent phosphorylation of insulin and IGF-I receptors and immunoprecipitation with antipeptide and monoclonal antibodies have been used to characterize the subpopulations of these receptors in the human KB cell line. IGF-I receptors exhibit beta subunits of 95 and 102 kDa in these cells. IGF-I receptors containing 102-kDa beta subunits are immunoprecipitated by the IGF-I receptor-specific antibody alpha-IR3. Antibody alpha-IR3 does not appear to recognize a hybrid receptor in these cells. However, an antipeptide antibody against the carboxyl-terminal domain of the insulin receptor (AbP5) immunoprecipitates a population of receptors phosphorylated in response to IGF-I (1 nM) which contains both 95- and 102-kDa beta subunits. These receptors must be hybrid complexes because AbP5 does not recognize the 102-kDa beta subunit directly. The inability of antibody alpha-IR3 to recognize these complexes suggests that their IGF-I receptor alpha subunits must differ from typical IGF-I receptor alpha subunits either in primary sequence or conformation. Therefore, KB cells may contain more than one type of IGF-I receptor alpha subunit. Hybrid IGF-I receptors can also be distinguished from homotypic IGF-I receptors by their responsiveness to IGF-II. Stimulation of autophosphorylation in hybrid IGF-I receptors by IGF-I is 3-4-fold greater than that seen in response to IGF-II. In contrast, IGF-I and IGF-II are nearly equipotent in stimulating autophosphorylation in the alpha-IR3-reactive receptor population. This suggests the existence of functionally distinct receptor subtypes which may differ in their ability to mediate the biological effects of IGF-II.  相似文献   

15.
Sodium vanadate activates "in vitro" insulin receptor autophosphorylation and protein tyrosine kinase in a dose-dependent manner. Insulin receptor protein tyrosine kinase is directly activated also by the anti-insulin receptor beta subunit monoclonal antibody 18-44. We previously demonstrated that the anti-insulin receptor monoclonal antibody MA-10 decreases insulin-stimulated receptor protein tyrosine kinase activity "in vitro", without inhibiting insulin receptor binding. In this report we show that insulin receptor protein tyrosine kinase, activated by sodium vanadate or by monoclonal antibody 18-44, is inhibited by MA-10 antibody. These data suggest that insulin receptor protein tyrosine kinase activity can be either activated and inhibited through mechanisms different from insulin binding.  相似文献   

16.
Insulin stimulates the autophosphorylation of the partially purified insulin receptor initially on tyrosine residues 1146, 1150 and 1151. This is followed by increased autophosphorylation of tyrosine residues 1316, 1322 and two further residues, possibly tyrosine residues 953 and 960 or 972 [Tavaré & Denton (1988) Biochem. J. 252, 607-615]. In the present paper we have used two cell lines transfected with insulin-receptor cDNA (CHO.T and NIH 3T3 HIR3.5 cells) to assess which tyrosine residues are phosphorylated on the insulin receptor within intact cells. We show that: (1) insulin causes a rapid increase in phosphorylation of tyrosine residues 1146, 1150 and 1151 in both cell types; tyrosine residues 1316 and 1322 are also phosphorylated, but apparently to a lesser extent in NIH 3T3 HIR3.5 cells; (2) the sites that may correspond to tyrosine residues 953 and 960 or 972 appear to be very poorly phosphorylated in both intact cell types; (3) insulin also promotes a substantial and rapid increase in the phosphorylation of serine and threonine residues on insulin receptors on CHO.T cells; this results in the appearance of two phosphopeptides not evident in the maps of the solubilized receptor preparations autophosphorylated in vitro.  相似文献   

17.
We have studied a series of insulin receptor molecules in which the 3 tyrosine residues which undergo autophosphorylation in the kinase domain of the beta-subunit (Tyr1158, Tyr1162, and Tyr1163) were replaced individually, in pairs, or all together with phenylalanine or serine by in vitro mutagenesis. A single-Phe replacement at each of these three positions reduced insulin-stimulated autophosphorylation of solubilized receptor by 45-60% of that observed with wild-type receptor. The double-Phe replacements showed a 60-70% reduction, and substitution of all 3 tyrosine residues with Phe or Ser reduced insulin-stimulated tyrosine autophosphorylation by greater than 80%. Phosphopeptide mapping each mutant revealed that all remaining tyrosine autophosphorylation sites were phosphorylated normally following insulin stimulation, and no new sites appeared. The single-Phe mutants showed insulin-stimulated kinase activity toward a synthetic peptide substrate of 50-75% when compared with wild-type receptor kinase activity. Insulin-stimulated kinase activity was further reduced in the double-Phe mutants and barely detectable in the triple-Phe mutants. In contrast to the wild-type receptor, all of the mutant receptor kinases showed a significant reduction in activation following in vitro insulin-stimulated autophosphorylation. When studied in intact Chinese hamster ovary cells, insulin-stimulated receptor autophosphorylation and tyrosine phosphorylation of the cellular substrate pp185 in the single-Phe and double-Phe mutants was progressively lower with increased tyrosine replacement and did not exceed the basal levels in the triple-Phe mutants. However, all the mutant receptors, including the triple-Phe mutant, retained the ability to undergo insulin-stimulated Ser and Thr phosphorylation. Thus, full activation of the insulin receptor tyrosine kinase is dependent on insulin-stimulated Tris phosphorylation of the kinase domain, and the level of autophosphorylation in the kinase domain provides a mechanism for modulating insulin receptor kinase activity following insulin stimulation. By contrast, insulin stimulation of receptor phosphorylation on Ser and Thr residues by cellular serine/threonine kinases can occur despite markedly reduced tyrosine autophosphorylation.  相似文献   

18.
1. A partially purified preparation of human placental insulin receptors was incubated with [gamma-32P]ATP in the presence or absence of insulin. The 32P-labelled insulin-receptor beta-subunits were then isolated, cleaved with trypsin followed by protease V8 and the [32P]phosphopeptides generated were analysed by thin layer electrophoresis and chromatography. This approach revealed that insulin stimulates autophosphorylation of the insulin-receptor beta-subunit in vitro on at least seven tyrosine residues distributed among three distinct domains. 2. One domain (domain 2), containing tyrosine residues 1146, 1150 and 1151 was the most rapidly phosphorylated and could be recovered as mono-, di- and triphosphorylated peptides cleaved by trypsin at Arg-1143 and either Lys-1153 or Lys-1156. Multiple phosphorylation of this domain appears to partially inhibit the cleavage at Lys-1153 by trypsin. 3. In a second domain (domain 3) containing two phosphorylated tyrosine residues at positions 1316 and 1322 the tyrosines were phosphorylated more slowly than those in domain 2. This domain is close to the C-terminus of the beta-subunit polypeptide chain. 4. At least two further tyrosine residues appeared to be phosphorylated after those in domains 2 and 3. These residues probably residue within a domain lying in close proximity to the inner face of the plasma membrane containing tyrosines 953, 960 and 972, but conclusive evidence is still required. 5. The two-dimensional thin-layer analysis employed in this study to investigate insulin-receptor phosphorylation has several advantages over previous methods based on reverse-phase chromatography. It allows greater resolution of 32P-labelled tryptic peptides and, when coupled to radioautography, is considerably more sensitive. The approach can be readily adapted to study phosphorylation of the insulin receptor within intact cells.  相似文献   

19.
Insulin stimulates autophosphorylation of the insulin receptor on multiple tyrosines in three domains: tyrosines 1316 and 1322 in the C-terminal tail, 1146, 1150 and 1151 in the tyrosine-1150 domain, and possibly 953, 960 or 972 in the juxtamembrane domain. In the present work the sequence of dephosphorylation of the various autophosphorylation sites by particulate and cytosolic preparations of phosphotyrosyl-protein phosphatase from rat liver was studied with autophosphorylated human placental insulin receptor as substrate. Both phosphatase preparations elicited a broadly similar pattern of dephosphorylation. The tyrosine-1150 domain in triphosphorylated form was found to be exquisitely sensitive to dephosphorylation, and was dephosphorylated 3-10-fold faster than the di- and monophosphorylated forms of the tyrosine-1150 domain or phosphorylation sites in other domains. The major route for dephosphorylation of the triphosphorylated tyrosine-1150 domain involved dephosphorylation of one of the phosphotyrosyl pair, 1150/1151, followed by phosphotyrosyl 1146 to generate a species monophosphorylated mainly (greater than 80%) at tyrosine 1150 or 1151. Insulin receptors monophosphorylated in the tyrosine-1150 domain disappeared slowly, and overall the other domains were completely dephosphorylated faster than the tyrosine-1150 domain. Dephosphorylation of the diphosphorylated C-terminal domain yielded insulin receptor in which the domain was singly phosphorylated at tyrosine 1322. Triphosphorylation of the insulin receptor in the tyrosine-1150 domain appears important in activating the receptor tyrosine kinase to phosphorylate other proteins. The extreme sensitivity of the triphosphorylated form of the tyrosine-1150 domain to dephosphorylation may thus be important in terminating or regulating insulin-receptor tyrosine kinase action and insulin signalling.  相似文献   

20.
The phosphorylation characteristics of insulin receptor from control and insulin-treated rat H-35 hepatoma cells 32P-labeled to equilibrium have been documented. The 32P-labeled insulin receptor is isolated by immunoprecipitation with patient-derived insulin receptor antibodies in the presence of phosphatase and protease inhibitors to preserve the native phosphorylation and structural characteristics of the receptor. The unstimulated insulin receptor contains predominantly [32P] phosphoserine and trace amounts of [32P]phosphothreonine in its beta subunit. In response to insulin, the insulin receptor beta subunit exhibits marked tyrosine phosphorylation and a 2-fold increase in total [32P]phosphoserine contents. High pressure liquid chromatography of the tryptic hydrolysates of the 32P-labeled receptor beta subunit from quiescent cells results in the resolution of up to 9 fractions containing [32P]phosphoserine. The insulin-stimulated tyrosine phosphorylation is concentrated in two of these receptor phosphopeptide fractions, whereas the increase in [32P]phosphoserine content is scattered in low abundance over all receptor tryptic fractions. Insulin receptors affinity-purified by lectin- and insulin-agarose chromatographies from insulin-treated, 32P-labeled cells exhibit a 22-fold increase in the Vmax of receptor tyrosine kinase activity toward histone when compared to controls. The elevated kinase activity of the insulin receptor derived from insulin-treated cells is not due to the presence of hormone bound to the receptor because the receptor kinase activity is assayed while immobilized on insulin-agarose. Furthermore, the insulin-activated receptor kinase activity is reversed following dephosphorylation of the receptor beta subunit with alkaline phosphatase in vitro. The correlation between the insulin-stimulated site specific tyrosine phosphorylation on receptor beta subunit and the elevation of receptor tyrosine kinase activity strongly suggests that the insulin receptor kinase is activated by hormone-stimulated autophosphorylation on tyrosine residues in intact cells, as previously demonstrated for the purified receptor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号