首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mouse B cells are stimulated to proliferate by Fab'2 fragments of rabbit anti-mouse Ig antibodies. Proliferation is inhibited, however, in the presence of IgG anti-mouse Ig. We have previously shown that this inhibition is mediated by binding of the IgG anti-Ig to receptors for Fc gamma R on B cells. This report describes conditions under which IgG anti-mu or anti-delta will induce proliferation despite Fc gamma R engagement. Culture supernatants of Con A-stimulated, Il-4-secreting Th cell lines, but not of Il-2-secreting Th cell lines, will co-stimulate with IgG anti-Ig to induce small B cells to incorporate [3H]TdR. This co-mitogenic activity is inhibitable by anti-IL-4 antibodies and can also be induced by Il-4 affinity purified from the T cell supernatants or by supernatants containing rIl-4. B cells precultured with Il-4 for 18 h, while still expressing normal levels of Fc gamma R, also proliferate to IgG anti-Ig. We have previously shown that Fc gamma R-mIg cross-linking will inhibit mIg-dependent increases in c-myc mRNA levels. We investigated whether Il-4 allows B cells to respond to IgG anti-Ig by elevating c-myc. The data show that Il-4 has little effect on c-myc mRNA levels in either IgG or Fab'2 anti-Ig-containing cultures.  相似文献   

2.
Humans are infected with two types of EBV (Type 1 (T1) and Type 2 (T2)) that differ substantially in their EBNA2 and EBNA 3A/B/C latency proteins and have different phenotypes in B cells. T1 EBV transforms B cells more efficiently than T2 EBV in vitro, and T2 EBV-infected B cells are more lytic. We previously showed that both increased NFATc1/c2 activity, and an NFAT-binding motif within the BZLF1 immediate-early promoter variant (Zp-V3) contained in all T2 strains, contribute to lytic infection in T2 EBV-infected B cells. Here we compare cellular and viral gene expression in early-passage lymphoblastoid cell lines (LCLs) infected with either T1 or T2 EBV strains. Using bulk RNA-seq, we show that T2 LCLs are readily distinguishable from T1 LCLs, with approximately 600 differentially expressed cellular genes. Gene Set Enrichment Analysis (GSEA) suggests that T2 LCLs have increased B-cell receptor (BCR) signaling, NFAT activation, and enhanced expression of epithelial-mesenchymal-transition-associated genes. T2 LCLs also have decreased RNA and protein expression of a cellular gene required for survival of T1 LCLs, IRF4. In addition to its essential role in plasma cell differentiation, IRF4 decreases BCR signaling. Knock-down of IRF4 in a T1 LCL (infected with the Zp-V3-containing Akata strain) induced lytic reactivation whereas over-expression of IRF4 in Burkitt lymphoma cells inhibited both NFATc1 and NFATc2 expression and lytic EBV reactivation. Single-cell RNA-seq confirmed that T2 LCLs have many more lytic cells compared to T1 LCLs and showed that lytically infected cells have both increased NFATc1, and decreased IRF4, compared to latently infected cells. These studies reveal numerous differences in cellular gene expression in B cells infected with T1 versus T2 EBV and suggest that decreased IRF4 contributes to both the latent and lytic phenotypes in cells with T2 EBV.  相似文献   

3.
B cell Ag receptor (BCR) cross-linking with anti-Ig Abs efficiently induces activation of latently infected EBV in some B cell lines, but not in others. The present study was aimed at defining the molecular mechanisms that determine the response to BCR-mediated EBV activation. Comparison of Burkitt's lymphoma-derived Akata, Mutu-I, and Daudi cells, which are representative responders and nonresponders to BCR-mediated EBV activation, respectively, indicated that three signaling pathways, phosphatidylinositol 3-kinase (PI3K), extracellular signal-regulated kinase (ERK), and p38 mitogen-activated protein kinase (MAPK), were activated in anti-Ig-treated Akata and Mutu-I cells. However, in anti-Ig-treated Daudi cells PI3K was not activated, ERK was faintly activated, and p38 MAPK was constitutively phosphorylated irrespective of anti-Ig treatment. Restoration of PI3K activity with insulin-like growth factor 1 restored ERK and p38 MAPK pathways, and was accompanied by EBV activation in anti-Ig-treated Daudi cells. In contrast, a specific inhibitor for PI3K, wortmannin, inhibited EBV activation by anti-Ig Abs in Akata and Mutu-I cells. Transfection assays in EBV-negative Daudi cells revealed that PI3K activated a promoter for BZLF1, which is a switch of EBV activation from a latent infection, in the absence of other EBV products suggesting that the BZLF promoter was a target of BCR signaling, and that PI3K was important for BCR-mediated BZLF1 activation. These results indicate that the absence of PI3K impedes the progression of signals through the BCR and becomes a determinant of unresponsiveness to BCR-mediated EBV activation.  相似文献   

4.
The Fc portion of rabbit anti-mouse immunoglobulin (Ig) antibodies interferes with anti-Ig-induced B lymphocyte activation as measured by DNA synthesis on day 3 of culture or maturation to Ig-secreting cells in the presence of soluble helper factors on day 4 or 5. To investigate this Fc-dependent effect at an earlier stage in B cell activation, rabbit IgG anti-mouse mu-chain- or delta-chain-specific antibodies were compared with their F(ab')2 fragments for the ability to induce mouse B cells to undergo blast transformation, as defined by an increase in cell volume during the first 24 hr of culture. Both F(ab')2 anti-Ig reagents induce blast transformation, although F(ab')2 anti-mu antibodies induce a greater size change than F(ab')2 anti-delta antibodies. Whole anti-mu or anti-delta antibodies do not induce blast transformation; however, in the presence of a monoclonal anti-mouse Fc gamma receptor antibody that blocks IgG binding to Fc gamma receptors (Fc gamma R), whole anti-mu or anti-delta antibodies induce blast transformation as well as their F(ab')2 fragments. Because the anti-Fc gamma R antibody alone has no effect on blast transformation, it appears that the simultaneous binding of membrane IgM (or IgD) and Fc gamma R by whole anti-Ig antibodies prevents this early event in membrane Ig-induced B cell activation.  相似文献   

5.
6.
The activation of phosphoprotein tyrosine kinases was studied in the regulation of EBV activation in Akata cells after cross-linking membrane IgG with anti-IgG. Protein tyrosine phosphorylation was induced in Akata cells after stimulation with anti-IgG, as determined by immunoblotting with the PY20 anti-phosphotyrosine mAb. The frequency of phosphotyrosine-activated cells was also measured by immunofluorescence with the PY20 antibody. Genistein, an inhibitor of tyrosine kinases, at non-cytotoxic doses blocked EBV activation, as measured in the induction of EBV Ag, EBV immediate early BZLF1 mRNA, and its protein product ZEBRA. Such inhibitions were reversed upon removing genistein from the cultures. Genistein inhibition of early Ag induction depended upon the time of addition of genistein after stimulation with anti-IgG. These findings indicate that activation of tyrosine kinase is required for EBV activation after cross-linking membrane IgG in Akata cells.  相似文献   

7.
8.
Epstein-Barr virus (EBV) infection in vitro causes transformation of B cells and generates B lymphoblastoid cell lines (LCLs). These LCLs have been widely used for the diagnostic of several genetic metabolic disorders. However, up to now, efficiency of LCL generation has been based on misleading subjective analysis. In this study, quantitative analyses have been performed to indicate efficiency of B-cell transformation to measuring human lysosomal acid hydrolases associated with: GM1-gangliosidosis type I, Gaucher disease and mucopolysaccharidosis type I. Peripheral blood mononuclear cells were isolated from 13 subjects, and LCLs were produced by culturing them with EBV for 12 days. Activities of the enzymes beta-galactosidase, beta-glucosidase and alpha-iduronidase were measured before and after cryopreservation in liquid nitrogen for 30 days. Efficiency of the B-cell transformation was screened every 4 days by the enumeration of cell proliferation, cell counts and changes in granularity estimated by flow cytometry. We observed the generation of 13 LCLs. Cell transformation was confirmed by the gradual increase of cellular clusters, cell size and granularity. In addition, we determined that the activity of the enzymes mentioned above did not change following cryopreservation. These data suggest that our enumerative approach for screening of EBV-LCLs is efficient for the enzymatic determination of human lysosomal acid hydrolases and may thus replace misleading subjective analyses.  相似文献   

9.
Lymphoblastoid cell lines (LCLs) are commonly used in molecular genetics, supplying DNA for the HapMap and 1000 Genomes Projects, used to test chemotherapeutic agents, and informing the basis of a number of population genetics studies of gene expression. The process of transforming human B cells into LCLs requires the presence of Epstein-Barr virus (EBV), a double-stranded DNA virus which through B-cell immortalisation maintains an episomal virus genome in every cell of an LCL at variable copy numbers. Previous studies have reported that EBV alters host-gene expression and EBV copy number may be under host genetic control. We performed a genome-wide association study of EBV genome copy number in LCLs and found the phenotype to be highly heritable, although no individual SNPs achieved a significant association with EBV copy number. The expression of two host genes (CXCL16 and AGL) was positively correlated and expression of ADARB2 was negatively correlated with EBV copy number in a genotype-independent manner. This study shows an association between EBV copy number and the gene expression profile of LCLs, and suggests that EBV copy number should be considered as a covariate in future studies of host gene expression in LCLs.  相似文献   

10.
The B-lymphotropic Epstein-Barr virus (EBV) encodes two isoforms of latent membrane protein 2 (LMP2), LMP2A and LMP2B, which are expressed during latency in B cells. The function of LMP2B is largely unknown, whereas LMP2A blocks B-cell receptor (BCR) signaling transduction and induction of lytic EBV infection, thereby promoting B-cell survival. Transfection experiments on LMP2B in EBV-negative B cells and the silencing of LMP2B in EBV-harboring Burkitt's lymphoma-derived Akata cells suggest that LMP2B interferes with the function of LMP2A, but the role of LMP2B in the presence of functional EBV has not been established. Here, LMP2B, LMP2A, or both were overexpressed in EBV-harboring Akata cells to study the function of LMP2B. The overexpression of LMP2B increased the magnitude of EBV switching from its latent to its lytic form upon BCR cross-linking, as indicated by a more-enhanced upregulation and expression of EBV lytic genes and significantly increased production of transforming EBV compared to Akata vector control cells or LMP2A-overexpressing cells. Moreover, LMP2B lowered the degree of BCR cross-linking required to induce lytic EBV infection. Finally, LMP2B colocalized with LMP2A as demonstrated by immunoprecipitation and immunofluorescence and restored calcium mobilization upon BCR cross-linking, a signaling process inhibited by LMP2A. Thus, our findings suggest that LMP2B negatively regulates the function of LMP2A in preventing the switch from latent to lytic EBV replication.  相似文献   

11.
The common pathogen Epstein-Barr virus (EBV) transforms normal human B cells and can cause cancer. Latent membrane protein 2A (LMP2A) of EBV supports activation and proliferation of infected B cells and is expressed in many types of EBV-associated cancer. It is not clear how latent EBV infection and cancer escape elimination by host immunity, and it is unknown whether LMP2A can influence the interaction of EBV-infected cells with the immune system. We infected primary B cells with EBV deleted for LMP2A, and established lymphoblastoid cell lines (LCLs). We found that CD8+ T cell clones showed higher reactivity against LMP2A-deficient LCLs compared to LCLs infected with complete EBV. We identified several potential mediators of this immunomodulatory effect. In the absence of LMP2A, expression of some EBV latent antigens was elevated, and cell surface expression of MHC class I was marginally increased. LMP2A-deficient LCLs produced lower amounts of IL-10, although this did not directly affect CD8+ T cell recognition. Deletion of LMP2A led to several changes in the cell surface immunophenotype of LCLs. Specifically, the agonistic NKG2D ligands MICA and ULBP4 were increased. Blocking experiments showed that NKG2D activation contributed to LCL recognition by CD8+ T cell clones. Our results demonstrate that LMP2A reduces the reactivity of CD8+ T cells against EBV-infected cells, and we identify several relevant mechanisms.  相似文献   

12.
13.
The Burkitt's lymphoma (BL) cell line Akata retains the latency I program of Epstein-Barr virus (EBV) gene expression and cross-linking of its surface immunoglobulin G (IgG) by antibodies results in activation of viral replication. When EBV nuclear antigen 2 (EBNA2) was artificially expressed by a constitutive expression vector, the Cp EBNA promoter remained inactive and accordingly the latency III program was not induced. In contrast, expression of LMP2A and activity of the Fp lytic promoter were activated. Consistent with this Fp activity, the rate of spontaneous activation of the EBV replicative cycle was increased significantly, suggesting the possibility that EBNA2 can induce EBV replication. The efficiency of anti-IgG-induced activation of the viral replication was reduced in Akata cells expressing EBNA2. To obtain more direct evidence for EBNA2-induced activation of the EBV replicative cycle, this protein was next expressed by a tetracycline-regulated expression system. EBNA2 was undetectable with low doses (<0.5 microgram/ml) of tetracycline, while its expression was rapidly induced after removal of the antibiotic. This induced expression of EBNA2 was immediately followed by expression of EBV replicative cycle proteins in up to 50% of the cells, as shown by indirect immunofluorescence and immunoblot analysis. These results suggest an unexpected potential of EBNA2 to disrupt EBV latency and to activate viral replication.  相似文献   

14.
Expression of the lytic cycle genes of Epstain-Barr virus (EBV) is induced in type I Burkitt's lymphoma-derived cells by treatment with phorbol esters (e.g., phorbol myristate acetate [PMA]), anti-immunoglobulin, or the cytokine transforming growth factor beta (TGF-beta). Concomitantly, all these agents induce apoptosis as judged by a sub-G1 fluorescence-activated cell sorter (FACS) profile, proteolytic cleavage of poly(ADP-ribose) polymerase (PARP) and terminal deoxynucleotidyltransferase-mediated dUTP-biotin nick end labeling (TUNEL) staining. However, caspase activation is not required for induction of the lytic cycle since the latter is not blocked by the caspase inhibitor ZVAD. Furthermore, not all agents that induce apoptosis in these cultures (for example, cisplatin and ceramide) induce the EBV lytic programme. Although it is closely associated with the lytic cycle, apoptosis is neither necessary nor sufficient for its activation. Multiparameter FACS analysis of cultures treated with PMA, anti-Ig, or TGF-beta revealed BZLF1-expressing cells distributed in different phases of the cell cycle according to which inducer was used. However, BZLF1-positive cells did not appear to undergo apoptosis and accumulate with a sub-G1 DNA content, irrespective of the inducer used. This result, which suggests that lytic gene expression is protective, was confirmed and extended by immunofluorescence staining doubled with TUNEL analysis. BZLF1- and also gp350-expressing cells were almost always shown to be negative for TUNEL staining. Similar experiments using EBV-positive and -negative subclones of Akata BL cells carrying an episomal BZLF1 reporter plasmid confirmed that protection from apoptosis was associated with the presence of the EBV genome. Finally, treatment with phosphonoacetic acid or acyclovir prior to induction with PMA, anti-Ig, or TGF-beta blocked the protective effect in Mutu-I cells. These data suggest that a late gene product(s) may be particularly important for protection against caspase activity and cell death.  相似文献   

15.
T-cell memory to Epstein-Barr virus (EBV) was first demonstrated through regression of EBV-induced B-cell transformation to lymphoblastoid cell lines (LCLs) in virus-infected peripheral blood mononuclear cell (PBMC) cultures. Here, using donors with virus-specific T-cell memory to well-defined CD4 and CD8 epitopes, we reexamine recent reports that the effector cells mediating regression are EBV latent antigen-specific CD4+ and not, as previously assumed, CD8+ T cells. In regressing cultures, we find that the reversal of CD23+ B-cell proliferation was always coincident with an expansion of latent epitope-specific CD8+, but not CD4+, T cells; furthermore CD8+ T-cell clones derived from regressing cultures were epitope specific and reproduced regression when cocultivated with EBV-infected autologous B cells. In cultures of CD4-depleted PBMCs, there was less efficient expansion of these epitope-specific CD8+ T cells and correspondingly weaker regression. The data are consistent with an effector role for epitope-specific CD8+ T cells in regression and an auxiliary role for CD4+ T cells in expanding the CD8 response. However, we also occasionally observed late regression in CD8-depleted PBMC cultures, though again without any detectable expansion of preexisting epitope-specific CD4+ T-cell memory. CD4+ T-cell clones derived from such cultures were LCL specific in gamma interferon release assays but did not recognize any known EBV latent cycle protein or derived peptide. A subset of these clones was also cytolytic and could block LCL outgrowth. These novel effectors, whose antigen specificity remains to be determined, may also play a role in limiting virus-induced B-cell proliferation in vitro and in vivo.  相似文献   

16.
The proliferation and differentiation of human leukemic B cells (B-CLL cells) with anti-Ig and T cell-derived helper factors are described. Stimulation of B-CLL cells with anti-Ig and T helper factors could induce proliferation as well as differentiation into IgM- and IgG-producing cells. Neither anti-Ig nor T helper factors alone could induce any proliferation and/or differentiation of B-CLL cells. Not only whole molecules of anti-Ig but also F(ab')2 fragments could induce proliferation and differentiation of B-CLL cells in the presence of T helper factors, but monovalent Fab' fragments were not effective. Induction of both IgM and IgG with the same idiotype was confirmed by immunofluorescent and SDS-PAGE analysis. By employing an IL 2-dependent cytotoxic T cell line and a TRF-responsive B cell line, T cell factors were separated into a fraction with IL2 activity but no TRF activity and a fraction with TRF activity but no IL 2 activity by chromatofocusing. Anti-Ig and IL 2 fraction could induce proliferation of B-CLL cells, but TRF fraction was not effective for the induction of proliferation in anti-IG-stimulated cells. For IgM and IgG production, anti-Ig and both IL 2 and TRF fractions were required. Depletion of IL 2 fraction in the first 2 days' culture inhibited Ig production, whereas the absence of TRF fraction in the first 2 days did not show any inhibitory effect on Ig production.  相似文献   

17.
EBV-transformed lymphoblastoid cell lines (LCLs) are used as a resource for human genetic, immunological, and pharmacogenomic studies. We investigated the biological activity of 20 LCL strains during continuous long-term subculture up to a passage number of 160. Out of 20 LCL strains, 17 proliferated up to a passage number of 160, at which point LCLs are generally considered as “immortalized”. The other three LCL strains lost the ability to proliferate at an average passage number of 41, during which these LCLs may have undergone cellular crisis. These non-immortal LCL strains exhibited no telomerase activity, decreased EBV gene expression, and a lower copy number of the EBV genome and mitochondrial DNA when compared with immortal LCLs. Thus, this study suggests that sustained EBV viral activity as well as telomerase activity may be required for complete LCL immortalization. These authors contributed equally to this work.  相似文献   

18.
The experiments in this paper demonstrate that monoclonal anti-Lyb2.1 antibody enhances the proliferative response of anti-immunoglobulin (anti-Ig)-stimulated but not of dextran sulfate-stimulated B cells. The magnitude of this enhanced B-cell proliferation is comparable to that induced by BSF-1 on anti-Ig-stimulated cells. The ability of this antibody to enhance B-cell proliferation does not result from its ability to neutralize the suppressive effects on B-cell activation that is mediated by the Fc fragment of anti-Ig antibody as it is equally as effective in enhancing B-cell proliferative responses stimulated by F(ab')2 fragments of anti-Ig. BSF-1 and Anti-Lyb2.1 appear to stimulate nonoverlapping pathways leading to B-cell activation since the enhanced responses induced by the combination of BSF-1 and anti-Lyb2.1 on anti-Ig-stimulated cells are additive even when maximum quantities of these activators are employed. There is also a marked difference in their activity on T cells; while BSF-1 can enhance T-cell proliferation in synergy with phorbol ester, anti-Lyb2.1 is ineffective in this regard. These data, while consistent with the suggestion that the Lyb2 surface determinant on B cells may be involved in B-cell activation, indicate that it is distinct from the receptors for BSF-1 or BCGF-II.  相似文献   

19.
In the present study we investigated whether interleukin-4 (IL-4), IL-5, and IL-6 could enhance the efficiency of Epstein-Barr virus (EBV) transformation for the generation of specific human monoclonal antibody (HuMAb)-producing B-cell lines directed against erythrocyte Rhesus(D) antigen. In newly EBV-infected B cells, IL-4 and IL-6 caused a comparable enhancement of proliferation and of total IgG and IgA production. IL-6 showed a much stronger effect than IL-4 on IgM production, whereas IL-4 was unique in inducing IgE production. No stimulatory effects of IL-5 on either growth or Ig production were observed. Although addition of IL-6 resulted during the early phase after EBV infection in high numbers of Ag-specific antibody-producing wells, this did not result in an increased number of stable HuMAb-secreting cell lines. When the effects of cytokines were tested on established polyclonal EBV B cells, in a high cell density culture system, only IL-6 was able to enhance Ig secretion, while no effect could be demonstrated on proliferation. These studies substantiate that IL-6 is an important regulator of proliferation and Ig production, and that it acts at distinct stages after EBV infection, but does not increase the final overall recovery of Ag-specific EBV B-cell lines.  相似文献   

20.
While Epstein-Barr virus (EBV) latency-associated gene expression is associated with cell cycle progression, the relationship between the EBV lytic program and the cell cycle is less clear. Using four different EBV lytic induction systems, we address the relationship between lytic cycle activation and the cell cycle. In three of these systems, G0 or G1 cell growth arrest signaling is observed prior to detection of the EBV immediate-early gene product Zta. In tetradecanoyl phorbol acetate-treated P3HR1 cultures and in 5-iodo-2'-deoxyuridine-treated NPC-KT cultures, cell cycle analysis of Zta-expressing cell populations showed a significant G1 bias during the early stages of lytic cycle progression. In contrast, treatment of the cell line Akata with anti-immunoglobulin (Ig) results in rapid induction of immediate-early gene expression, and accordingly, activation of the immediate-early gene product Zta precedes significant anti-Ig-induced cell cycle effects. Nevertheless, cell cycle analysis of the Zta-expressing population following anti-Ig treatment shows a bias for cells in G1, indicating that anti-Ig-mediated induction of Zta occurs more efficiently in cells traversing G1. Last, although 5-azacytidine treatment of Rael cells results in a G1 arrest in the total cell population which precedes the induction of Zta, cell cycle analysis of the Zta-expressing population shows a significant bias for cells with an apparent G2/M DNA content. This bias may result, in part, from activation of Zta expression following demethylation of the Zta promoter during S-phase. Together, these studies indicate that induction of Zta occurs through several distinct mechanisms, some of which may involve checkpoint signaling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号