首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Compared with folded structures, natively unfolded protein domains are over-represented in protein-protein and protein-DNA interactions. Such domains are common features of all colicins and are required for their translocation across the outer membrane of the target Escherichia coli cell. All of these domains bind to at least one periplasmic protein of the Tol or Ton family. Similar domains are found in Ton-dependent outer membrane transporters, indicating they may interact in a related manner. In this article we have studied binding of the colicin N translocation domain to its periplasmic receptor TolA, by fluorescence resonance energy transfer (FRET) using fluorescent probes attached to engineered cysteine residues and NMR techniques. The domain exhibits a random coil circular dichroism spectrum. However, FRET revealed that guanidinium hydrochloride denaturation caused increases in all measured intramolecular distances showing that, although natively unfolded, the domain is not extended. Furthermore NMR reported a compact hydrodynamic radius of 18 A. Nevertheless the FRET-derived distances changed upon binding to TolA indicating a significant structural rearrangement. Using 1H-15N NMR we show that, when bound, the peptide switches from a disordered state to an ordered state. The kinetics of binding and the associated structural change were measured by stopped-flow methods, and both events appear to occur simultaneously. The data therefore suggest that this molecular recognition involves the concerted binding and folding of a flexible but collapsed state.  相似文献   

2.
Tau, a neuronal microtubule-associated protein that aggregates in Alzheimer disease is a natively unfolded protein. In solution, Tau adopts a "paperclip" conformation, whereby the N- and C-terminal domains approach each other and the repeat domain ( Jeganathan, S., von Bergen, M., Brutlach, H., Steinhoff, H. J., and Mandelkow, E. (2006) Biochemistry 45, 2283-2293 ). In AD, Tau is in a hyperphosphorylated state. The consequences for microtubule binding or aggregation are a matter of debate. We therefore tested whether phosphorylation alters the conformation of Tau. To avoid the ambiguities of heterogeneous phosphorylation we cloned "pseudo-phosphorylation" mutants of Tau where combinations of Ser or Thr residues were converted into Glu. These mutations were combined with FRET pairs inserted in different locations to allow distance measurements. The results show that the paperclip conformation becomes tighter or looser, depending on the pseudo-phosphorylation state. In particular, pseudo-phosphorylation at the epitope of the diagnostic antibody AT8* (S199E + S202E + T205E) moves the N-terminal domain away from the C-terminal domain. Pseudo-phosphorylation at the PHF1 epitope (S396E + S404E) moves the C-terminal domain away from the repeat domain. In both cases the paperclip conformation is opened up. By contrast, the combination of AT8* and PHF1 sites leads to compaction of the paperclip, such that the N-terminus approaches the repeat domain. The compaction becomes even stronger by combining pseudo-phosphorylated AT8*, AT100, and PHF1 epitopes. This is accompanied by a strong increase in the reaction with conformation-dependent antibody MC1, suggesting the generation of a pathological conformation characteristic for Tau in AD. Furthermore, the compact paperclip conformation enhances the aggregation to paired helical filaments but has little influence on microtubule interactions. The data provide a framework for the global folding of Tau dependent on proline-directed phosphorylation in the domains flanking the repeats and the consequences for pathological properties of Tau.  相似文献   

3.
Tau protein, a neuronal microtubule-associated protein, forms insoluble fibers ("paired helical filaments") in Alzheimer's disease and other tauopathies. Conflicting views on the structure of the fibers have been proposed recently, ranging from mainly alpha-helical structure to mainly beta-sheet, or a mixture of mostly random coil and beta-sheet. We have addressed this issue by studying tau fibers immunopurified from Alzheimer brain tissue by a conformation-specific antibody and comparing them with fibers reassembled from recombinant tau or tau constructs in vitro, using a combination of electron microscopy and spectroscopic methods. Brain-derived fibers and reassembled fibers both exhibit a typical twisted appearance when examined by electron microscopy. The soluble tau protein is a natively unfolded protein dominated by random coil structure, whereas Alzheimer PHFs and reassembled fibers show a shift toward an increase in the level of beta-structure. The results support a model in which the repeat domain of tau (which lies within the core of PHFs) adopts an increasing level of beta-structure during aggregation, whereas the N- and C-terminal domains projecting away from the PHF core are mostly random coil.  相似文献   

4.
Small-angle X-ray scattering (SAXS) is a universal low-resolution method to study size and shape of globular proteins in solution but recent developments facilitate the quantitative characterization of the structure and structural transitions of metastable systems like partially or completely unfolded proteins. We present here a study of temperature induced transitions in tau, a natively unfolded protein involved in Alzheimer's disease. Previous studies on full length tau and several disease-related mutants provided information about the residual structure in different domains revealing a specific role and extended conformations of the so-called repeat domains, which are considered to be responsible for the formation of amyloid-like fibrils ("paired helical filaments"). Here, we employ SAXS to investigate the temperature dependent properties of tau. Slow heating/cooling of the full length protein from 10°C to 50°C did not lead to detectable changes in the overall size. Surprisingly, quick heating/cooling caused tau to adopt a significantly more compact conformation, which was stable over up to 3 h and represents a structural "memory" effect. This compaction is not observed for the shorter tau constructs containing largely the repeat domains. The structural and functional implications of the observed unusual behavior of tau under nonequilibrium conditions are discussed.  相似文献   

5.
We have studied biochemical and structural parameters of several missense and deletion mutants of tau protein (G272V, N279K, DeltaK280, P301L, V337M, R406W) found in frontotemporal dementia and parkinsonism linked to chromosome 17 (FTDP-17). The mutant proteins were expressed on the basis of both full-length tau (htau40) and constructs derived from the repeat domain. They were analyzed with respect to the capacity to enhance microtubule assembly, binding of tau to microtubules, secondary structure content, and aggregation into Alzheimer-like paired helical or straight filaments. We find that the mutations cause a moderate decrease in microtubule interactions and stabilization, and they show no gross structural changes compared with the natively unfolded conformation of the wild-type protein, but the aggregation into PHFs is strongly enhanced, particularly for the mutants DeltaK280 and P301L. This gain of pathological aggregation would be consistent with the autosomal dominant nature of the disease.  相似文献   

6.
Tau is one of the two main proteins involved in the pathology of Alzheimer's disease via formation of beta-sheet rich intracellular aggregates named paired helical filaments (PHFs). Given that tau is a natively unfolded protein with no folded core (even upon binding to physiological partners such as microtubules), its structural analysis by high-resolution techniques has been difficult. In this study, employing solution small-angle X-ray scattering from the full length isoforms and from a variety of deletion and point mutants the conformation of tau in solution is structurally characterized. A recently developed ensemble optimization method was employed to generate pools of random models and to select ensembles of coexisting conformations, which fitted simultaneously the scattering data from the full length protein and deletion mutants. The analysis of the structural properties of these selected ensembles allowed us to extract information about residual structure in different domains of the native protein. The short deletion mutants containing the repeat domain (considered the core constituent of the PHFs) are significantly more extended than random coils, suggesting an extended conformation of the repeat domain. The longer tau constructs are comparable in size with the random coils, pointing to long-range contacts between the N- and C-termini compensating for the extension of the repeat domain. Moreover, most of the aggregation-promoting mutants did not show major differences in structure from their wild-type counterparts, indicating that their increased pathological effect is triggered only after an aggregation core has been formed.  相似文献   

7.
The ABL and ARG tyrosine kinases regulate many pivotal cellular processes and are implicated in the pathogenesis of several forms of leukemia. We have modelled the previously uncharacterized core domain (SH3-SH2-tyrosine kinase) and C-terminal actin-binding domain of ARG. We have also investigated the structural arrangement of the ABL and ARG Cap region and of the long multifunctional region located downstream of the tyrosine kinase domain. We report that the ARG core domain is homologous to the corresponding ABL region, therefore suggesting that ARG catalytic activity is likely regulated by the same SH3-SH2 clamp described for ABL. We also report that the Cap of both ABL and ARG is natively unfolded. Hence, biological events determining the folding of the Cap are critical to allow its interaction with the tyrosine kinase C-lobe. Furthermore, our results show that, with the exception of the C-terminal actin-binding domain, the entire region encoded by the ABL and ARG last exon is natively unfolded. Phosphorylation events or protein-protein interactions regulating the folding of this region will therefore modulate the activity of its numerous functional domains. Finally, our analyses show that the C-terminal actin-binding domain of ARG displays a four-helix bundle structure similar to the one reported for the corresponding ABL region. Our findings imply that many biological activities attributed to ABL, ARG, and their oncogenic counterparts are regulated by natively unfolded regions.  相似文献   

8.
Unfolded proteins under strongly denaturing conditions are highly expanded. However, when the conditions are more close to native, an unfolded protein may collapse to a compact globular structure distinct from the folded state. This transition is akin to the coil-globule transition of homopolymers. Single-molecule FRET experiments have been particularly conducive in revealing the collapsed state under conditions of coexistence with the folded state. The collapse can be even more readily observed in natively unfolded proteins. Time-resolved studies, using FRET and small-angle scattering, have shown that the collapse transition is a very fast event, probably occurring on the submicrosecond time scale. The forces driving collapse are likely to involve both hydrophobic and backbone interactions. The loss of configurational entropy during collapse makes the unfolded state less stable compared to the folded state, thus facilitating folding.  相似文献   

9.
The WW domain adopts a compact, three-stranded, antiparallel beta-sheet structure that mediates protein-protein interactions by binding to xPPxY-based protein ligands, such as the PY-ligand (EYPPYPPPPYPSG) derived from p53 binding protein-2. The conserved Trp residues, after which this domain was named, were replaced with Phe so their importance in structural integrity and for ligand binding could be evaluated. A biophysical approach was employed to compare the W17F, W39F, and W17F/W39F WW domains to the wild-type protein. The data demonstrate that replacement of Trp39 with Phe (W39F) does not disrupt the structure of the WW domain variant, but does abolish ligand binding. In contrast, the W17F WW domain variant is largely if not completely unfolded; however, this variant undergoes a PY-ligand induced disorder to order (folding) transition. The dissociation constant for the W17F WW domain-PY-ligand interaction is 15.1 +/- 1.2 microM, only slightly higher than that observed for the wild-type WW domain interaction (5.9 +/- 0.33 microM). The W17F WW domain is a natively unfolded protein which adopts a native conformation upon PY-ligand binding.  相似文献   

10.
The assembly of multiprotein complexes at the membrane interface governs many signaling processes in cells. However, very few methods exist for obtaining biophysical information about protein complex formation at the membrane. We used single molecule fluorescence resonance energy transfer to study complexin and synaptotagmin interactions with the SNARE complex in deposited lipid bilayers. Using total internal reflectance microscopy, individual binding events at the membrane could be resolved despite an excess of unbound protein in solution. Fluorescence resonance energy transfer (FRET)-efficiency derived distances for the complexin-SNARE interaction were consistent with the crystal structure of the complexin-SNARE complex. The unstructured N-terminal region of complexin showed broad distributions of FRET efficiencies to the SNARE complex, suggesting that information on conformational variability can be obtained from FRET efficiency distributions. The low-affinity interaction of synaptotagmin with the SNARE complex changed dramatically upon addition of Ca2+ with high FRET efficiency interactions appearing between the C2B domain and linker domains of synaptotagmin and the membrane proximal portion of the SNARE complex. These results demonstrate that single molecule FRET can be used as a "spectroscopic ruler" to simultaneously gain structural and kinetic information about transient multiprotein complexes at the membrane interface.  相似文献   

11.
The unfolded states in proteins and nucleic acids remain weakly understood despite their importance in folding processes; misfolding diseases (Parkinson's and Alzheimer's); natively unfolded proteins (as many as 30% of eukaryotic proteins, according to Fink); and the study of ribozymes. Research has been hindered by the inability to quantify the residual (native) structure present in an unfolded protein or nucleic acid. Here, a scaling model is proposed to quantify the molar degree of folding and the unfolded state. The model takes a global view of protein structure and can be applied to a number of analytic methods and to simulations. Three examples are given of application to small-angle scattering from pressure-induced unfolding of SNase, from acid-unfolded cytochrome c, and from folding of Azoarcus ribozyme. These examples quantitatively show three characteristic unfolded states for proteins, the statistical nature of a protein folding pathway, and the relationship between extent of folding and chain size during folding for charge-driven folding in RNA.  相似文献   

12.
The folding reaction of a β-barrel membrane protein, outer membrane protein A (OmpA), is probed with F?rster resonance energy transfer (FRET) experiments. Four mutants of OmpA were generated in which the donor fluorophore, tryptophan, and acceptor molecule, a naphthalene derivative, are placed in various locations on the protein to report the evolution of distances across the bilayer and across the protein pore during a folding event. Analysis of the FRET efficiencies reveals three timescales for tertiary structure changes associated with insertion and folding into a synthetic bilayer. A narrow pore forms during the initial stage of insertion, followed by bilayer traversal. Finally, a long-time component is attributed to equilibration and relaxation, and may involve global changes such as pore expansion and strand extension. These results augment the existing models that describe concerted insertion and folding events, and highlight the ability of FRET to provide insight into the complex mechanisms of membrane protein folding. This article is part of a Special Issue entitled: Membrane protein structure and function.  相似文献   

13.
Tau is a natively unfolded protein that forms intracellular aggregates in the brains of patients with Alzheimer's disease. To decipher the mechanism underlying the formation of tau aggregates, we developed a novel approach for constructing models of natively unfolded proteins. The method, energy-minima mapping and weighting (EMW), samples local energy minima of subsequences within a natively unfolded protein and then constructs ensembles from these energetically favorable conformations that are consistent with a given set of experimental data. A unique feature of the method is that it does not strive to generate a single ensemble that represents the unfolded state. Instead we construct a number of candidate ensembles, each of which agrees with a given set of experimental constraints, and focus our analysis on local structural features that are present in all of the independently generated ensembles. Using EMW we generated ensembles that are consistent with chemical shift measurements obtained on tau constructs. Thirty models were constructed for the second microtubule binding repeat (MTBR2) in wild-type (WT) tau and a DeltaK280 mutant, which is found in some forms of frontotemporal dementia. By focusing on structural features that are preserved across all ensembles, we find that the aggregation-initiating sequence, PHF6*, prefers an extended conformation in both the WT and DeltaK280 sequences. In addition, we find that residue K280 can adopt a loop/turn conformation in WT MTBR2 and that deletion of this residue, which can adopt nonextended states, leads to an increase in locally extended conformations near the C-terminus of PHF6*. As an increased preference for extended states near the C-terminus of PHF6* may facilitate the propagation of beta-structure downstream from PHF6*, these results explain how a deletion at position 280 can promote the formation of tau aggregates.  相似文献   

14.
Refolding of the SH3 domain of PI3 kinase from the guanidine hydrochloride (GdnHCl)-unfolded state has been probed with millisecond (stopped flow) and sub-millisecond (continuous flow) measurements of the change in fluorescence, circular dichroism, ANS fluorescence and three-site fluorescence resonance energy transfer (FRET) efficiency. Fluorescence measurements are unable to detect structural changes preceding the rate-limiting step of folding, whereas measurements of changes in ANS fluorescence and FRET efficiency indicate that polypeptide chain collapse precedes the major structural transition. The initial chain collapse reaction is complete within 150 μs. The collapsed form at this time possesses hydrophobic clusters to which ANS binds. Each of the three measured intra-molecular distances has contracted to an extent predicted by the dependence of the FRET signal in completely unfolded protein on denaturant concentration, indicating that contraction is non-specific. The extent of contraction of each intra-molecular distance in the collapsed product of sub-millisecond folding increases continuously with a decrease in [GdnHCl]. The gradual contraction is continuous with the gradual contraction seen in completely unfolded protein, and its dependence on [GdnHCl] is not indicative of an all-or-none collapse reaction. The dependence of the extent of contraction on [GdnHCl] was similar for the three distances, indicating that chain collapse occurs in a synchronous manner across different segments of the polypeptide chain. The sub-millisecond measurements of folding in GdnHCl were unable to determine whether hydrophobic cluster formation, probed by ANS fluorescence measurement, precedes chain contraction probed by FRET. To determine whether hydrogen bonding plays a role in initial chain collapse, folding was initiated by dilution of the urea-unfolded state. The extent of contraction of at least one intra-molecular distance in the collapsed product of sub-millisecond folding in urea is similar to that seen in GdnHCl, and the initial contraction in urea too appears to be gradual.  相似文献   

15.
16.
The phenomena of protein reconstitution and three-dimensional domain swapping reveal that highly similar structures can be obtained whether a protein is comprised of one or more polypeptide chains. In this review, we use protein reconstitution as a lens through which to examine the range of protein tolerance to chain interruptions and the roles of the primary structure in related features of protein structure and folding, including circular permutation, natively unfolded proteins, allostery, and amyloid fibril formation. The results imply that noncovalent interactions in a protein are sufficient to specify its structure under the constraints imposed by the covalent backbone.  相似文献   

17.
Initial polypeptide chain collapse plays a major role in the development of subsequent structure during protein folding, but it has been difficult to elucidate the coupling between its cooperativity and specificity. To better understand this important aspect of protein folding, nine different intramolecular distances in the protein have been measured by fluorescence resonance energy transfer (FRET) in the product(s) of the initial, sub-millisecond collapse reaction during the folding of barstar, under different folding conditions. All nine distances contract in these initial folding products, when the denaturant concentration is reduced. Two of these distances were also measured in peptides corresponding to sequence segments 38-55 and 51-69 of the protein. Surprisingly, both distances do not contract in the peptides which remain fully unfolded when the denaturant concentration is reduced. This suggests that the contraction of at least some segments of the polypeptide chain may be facilitated only by contraction of other segments. In the case of the initial product of folding of the protein, the dependence on denaturant concentration of the relative change in each distance suggests that there are two components to the initial folding reaction. One is a nonspecific component, which appears to be driven by the change in denaturant concentration that is used to initiate refolding. This component corresponds to the collapse of completely unfolded protein (U) to unfolded protein in refolding conditions (U(C)). The extent of nonspecific collapse can be predicted by the response of completely unfolded protein to a change in denaturant concentration. All distances undergo such solvent-induced contraction, but each distance contracts to a different extent. There is also a specific component to initial sub-millisecond folding, in which some distances (but not all) contract more than that predicted by solvent-induced contraction. The observation that only some of the distances undergo contraction over and above solvent-induced contraction, suggest that this specific component is associated with the formation of a specific intermediate (I(E)). FRET efficiency and distance change differently for the different donor-acceptor pairs, with a change in denaturant concentration, indicating that the formation or dissolution of structure in U(C) and I(E) does not happen in a synchronized manner across different regions of the protein molecule. Also, all nine FRET efficiencies and intramolecular distances in the product(s) of sub-ms folding, change continuously with a change in denaturant concentration. Hence, it appears that the transitions from U to U(C) and to I(E) are gradual transformations, and not all-or-none structural transitions. Nevertheless, the product of these gradual transitions, I(E), possesses specific structure.  相似文献   

18.
A regulatory mechanism is introduced whereupon the catalytic activity of a given enzyme is controlled by ligand binding to a receptor domain of choice. A small enzyme (barnase) and a ligand-binding polypeptide (GCN4) are fused so that a simple topological constraint prevents them from existing simultaneously in their folded states. The two domains consequently engage in a thermodynamic tug-of-war in which the more stable domain forces the less stable domain to unfold. In the absence of ligand, the barnase domain is more stable and is therefore folded and active; the GCN4 domain is substantially unstructured. DNA binding induces folding of GCN4, forcibly unfolding and inactivating the barnase domain. Barnase-GCN4 is thus a "natively unfolded" protein that uses ligand binding to switch between partially folded forms. The key characteristics of each parent protein (catalytic efficiency of barnase, DNA binding affinity and sequence specificity of GCN4) are retained in the chimera. Barnase-GCN4 thus defines a modular approach for assembling enzymes with novel sensor capabilities from a variety of catalytic and ligand binding domains.  相似文献   

19.
The structure of C-terminal domain (CaD136, C-terminal residues 636-771) of chicken gizzard caldesmon has been analyzed by a variety of physico-chemical methods. We are showing here that CaD136 does not have globular structure, has low secondary structure content, is essentially noncompact, as it follows from high R(g) and R(S) values, and is characterized by the absence of distinct heat absorption peaks, i.e. it belongs to the family of natively unfolded (or intrinsically unstructured) proteins. Surprisingly, effective binding of single calmodulin molecule (K(d) = 1.4 +/- 0.2 microM) leads only to a very moderate folding of this protein and CaD136 remains substantially unfolded within its tight complex with calmodulin. The biological significance of these observations is discussed.  相似文献   

20.
Tau is a natively unfolded protein that forms intracellular aggregates in the brains of patients with Alzheimer''s disease. To decipher the mechanism underlying the formation of tau aggregates, we developed a novel approach for constructing models of natively unfolded proteins. The method, energy-minima mapping and weighting (EMW), samples local energy minima of subsequences within a natively unfolded protein and then constructs ensembles from these energetically favorable conformations that are consistent with a given set of experimental data. A unique feature of the method is that it does not strive to generate a single ensemble that represents the unfolded state. Instead we construct a number of candidate ensembles, each of which agrees with a given set of experimental constraints, and focus our analysis on local structural features that are present in all of the independently generated ensembles. Using EMW we generated ensembles that are consistent with chemical shift measurements obtained on tau constructs. Thirty models were constructed for the second microtubule binding repeat (MTBR2) in wild-type (WT) tau and a ΔK280 mutant, which is found in some forms of frontotemporal dementia. By focusing on structural features that are preserved across all ensembles, we find that the aggregation-initiating sequence, PHF6*, prefers an extended conformation in both the WT and ΔK280 sequences. In addition, we find that residue K280 can adopt a loop/turn conformation in WT MTBR2 and that deletion of this residue, which can adopt nonextended states, leads to an increase in locally extended conformations near the C-terminus of PHF6*. As an increased preference for extended states near the C-terminus of PHF6* may facilitate the propagation of β-structure downstream from PHF6*, these results explain how a deletion at position 280 can promote the formation of tau aggregates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号