首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A new catalyst, which is composed of nonnatural ribonucleotides, was synthesized by the in vitro selection method. Nonnatural RNAs that bound to N-methylmesoporphyrin were selected from a pool of random-sequence RNAs containing 2'-amino cytidine 5'-triphosphate (2'-amino CTP) instead of CTP. The selected RNAs not only bound to the ligand, N-methylmesoporphyrin (NMM), but also catalyzed metalation reaction of porphyrin.  相似文献   

2.
3.
A new metal ion chelator has been developed for use in the immobilised metal ion affinity chromatography (IMAC) of proteins. The aromatic tridentate ligand 2,6-diaminomethylpyridine (bisampyr), 1, was prepared as the dihydrochloride salt, via a two step synthesis from 2,6-pyridinedimethanol, 2, and immobilised onto Sepharose CL-4B through an epoxide coupling procedure. The resulting sorbent was chelated with Cu2+ ions to a density of 420 micromol Cu2+ ions per g gel and then characterised by frontal analysis using the protein, horse heart myoglobin (HMYO), at pH 7.0 and 9.0. From the resulting adsorption isotherms, the adsorption capacity, qm, for HMYO at pH 7.0 and pH 9.0 with the immobilised Cu2+-bisampyr Sepharose sorbent was found to be 1.27 micromol protein/g gel and 1.43 micromol protein/g gel, whilst the corresponding dissociation constants, K(D)s, were 18.0 x 10(-6) M and 16.0 x 10(-6) M respectively. The results confirm that the HMYO-Cu2+-bisampyr complex had similar stability at these pH values. This finding is in contrast with the situation observed with some other commonly used IMAC chelating ligates such as Cu2+-iminodiacetic acid (Cu2+-IDA) or Cu2+-nitrilotriacetic acid (Cu2+-NTA). Using human serum proteins, the interactive properties of the immobilised Cu2+-bisampyr Sepharose sorbent were further characterised at pH 5.0, 7.0 and 9.0 with specific reference to the binding behaviour of albumin, transferrin, and alpha2-macroglobulin.  相似文献   

4.
The nucleoside triphosphate pools of two cytidine auxotrophic mutants of Salmonella typhimurium LT-2 were studied under different conditions of pyrimidine starvation. Both mutants, DP-45 and DP-55, are defective in cytidine deaminase and cytidine triphosphate (CTP) synthase. In addition, DP-55 has a requirement for uracil (uridine). Cytidine starvation of the mutants results in accumulation of high concentrations of uridine triphosphate (UTP) in the cells, while the pools of CTP and deoxy-CTP drop to undetectable levels within a few minutes. Addition of deoxycytidine to such cells does not restore the dCTP pool, indicating that S. typhimurium has no deoxycytidine kinase. From the kinetics of UTP accumulation during cytidine starvation, it is concluded that only cytidine nucleotides participate in the feedback regulation of de novo synthesis of UTP; both uridine and cytidine nucleotides participate in the regulation of UTP synthesis from exogenously supplied uracil or uridine. Uracil starvation of DP-55 in presence of cytidine results in extensive accumulation of CTP, suggesting that CTP does not regulate its own synthesis from exogenous cytidine. Analysis of the thymidine triphosphate (dTTP) pool of DP-55 labeled for several generations with (32)P-orthophosphate and (3)H-uracil in presence of (12)C-cytidine shows that only 20% of the dTTP pool is derived from uracil (via the methylation of deoxyuridine monophosphate); 80% is apparently synthesized from a cytidine nucleotide.  相似文献   

5.
High-throughput screening (HTS) using NMR spectroscopy has become a common component of the drug discovery effort and is widely used throughout the pharmaceutical industry. NMR provides additional information about the nature of small molecule-protein interactions compared to traditional HTS methods. In order to achieve comparable efficiency, small molecules are often screened as mixtures in NMR-based assays. Nevertheless, an analysis of the efficiency of mixtures and a corresponding determination of the optimum mixture size (OMS) that minimizes the amount of material and instrumentation time required for an NMR screen has been lacking. A model for calculating OMS based on the application of the hypergeometric distribution function to determine the probability of a hit for various mixture sizes and hit rates is presented. An alternative method for the deconvolution of large screening mixtures is also discussed. These methods have been applied in a high-throughput NMR screening assay using a small, directed library.  相似文献   

6.
7.
CMP-Kdn synthetase catalyses the reaction of sialic acids (Sia) and CTP to the corresponding activated sugar nucleotide CMP-Sia and pyrophosphate PP i . Saturation Transfer Difference (STD) NMR spectroscopy has been employed to investigate the sub-structural requirements of the enzyme’s binding domain. Sialylnucleoside mimetics, where the sialic acid moiety has been replaced by a carboxyl group and a hydrophobic moiety, have been used in NMR experiments, to probe the tolerance of the CMP-Kdn synthetase to such replacements. From our data it would appear that unlike another sialylnucleotide-recognising protein, the CMP-Neu5Ac transport protein, either a phosphate group or other functional groups on the sialic acid framework may play important roles in recognition by the synthetase. Dedicated to the memory of Professor Dr Yasuo Inoue  相似文献   

8.
N-Acetylneuraminic acid cytidylyltransferase (EC 2.7.7.43) (CAMP-NeuAc synthetase) from rat liver catalyzes the formation of cytidine monophosphate N-acetylneuraminic acid from CTP and NeuAc. We have purified this enzyme to apparent homogeneity (241-fold) using gel filtration on Sephacryl S-200 and two types of affinity chromatographies (Reactive Brown-10 Agarose and Blue Sepharose CL-6B columns). The pure enzyme, whose amino acid composition and NH2-terminal amino acid sequence are also established, migrates as a single protein band on non-denaturing polyacrylamide gel electrophoresis. The molecular mass of the native enzyme, estimated by gel filtration, was 116 +/- 2 kDa whereas its Mr in sodium dodecyl sulfate-polyacrylamide gel electrophoresis was 58 +/- 1 kDa. CMP-NeuAc synthetase requires Mg2+ for catalysis although this ion can be replaced by Mn2+, Ca2+, or Co2+. The optimal pH was 8.0 in the presence of 10 mM Mg2+ and 5 mM dithiothreitol. The apparent Km for CTP and NeuAc are 1.5 and 1.3 mM, respectively. The enzyme also converts N-glycolylneuraminic acid to its corresponding CMP-sialic acid (Km, 2.6 mM), whereas CMP-NeuAc, high CTP concentrations, and other nucleotides (CDP, CMP, ATP, UTP, GTP, and TTP) inhibited the enzyme to different extents.  相似文献   

9.
An enzyme has been found in particulate fractions of Escherichia coli that catalyzes the incorporation of cytidine triphosphate (CTP) into lipid in the presence of exogenous phosphatidic acid and Mg(++). The product has been identified enzymatically and by chromatography as cytidine diphosphate diglyceride. The reaction is optimal at a pH of 6.5 and Mg(++) concentration of 5-10 mm. The apparent K(m) for CTP is 7 x 10(-4)M and for phosphatidic acid, 2 x 10(-3)M. The reaction rate falls off rapidly with time and ceases entirely after 1 hr as the result of inactivation of the system by Mg(++).  相似文献   

10.
Helmink BA  Braker JD  Kent C  Friesen JA 《Biochemistry》2003,42(17):5043-5051
CTP:phosphocholine cytidylyltransferase alpha (CCTalpha) contains a central region that functions as a catalytic domain, converting phosphocholine and cytidine 5'-triphosphate (CTP) to CDP-choline for the subsequent synthesis of phosphatidylcholine. We have investigated the catalytic role of lysine 122 and arginine 196 of rat CCTalpha using site-directed mutagenesis and a baculovirus expression system. Arginine 196 is part of the highly conserved RTEGIST motif, while lysine 122 has not previously been identified by protein sequence alignment as a candidate catalytic amino acid. Removing the side chain of lysine 122 compromises the catalytic ability of CCTalpha, decreasing the apparent V(max) value in mutant enzymes Lys122Ala and Lys122Arg to 0.30 and 0.09% of the wild-type value, respectively. The decrease in V(max) is accompanied by dramatic 471- and 80-fold increases in the apparent K(m) value for phosphocholine but no greater than 3-fold increases in the apparent Hill constant (K*) value for CTP. Mutation of arginine 196 to lysine results in an enzyme that retains 24% of the wild-type V(max) value with a modest 5-fold increase in the K(m) value for phosphocholine. However, the Arg196Lys mutant enzyme exhibits a 23-fold increase in the K* value for CTP. These data suggest lysine 122 and arginine 196 of rat CTP:phosphocholine cytidylyltransferase are functionally important amino acids, perhaps at or near the active site involved in forming contacts with the substrates phosphocholine and CTP, respectively.  相似文献   

11.
1. Spectroscopic methods for protein and active-site determination with the same sample of immobilised horse liver alcohol dehydrogenase have been developed. 2. The influence of pH, active-site protection of the soluble enzyme and protein concentration on coupling of alcohol dehydrogenase with cyanogen-bromide-activated Sepharose has been investigated. In phosphate buffer (pH 8.0) products with over 90% active-site retention have been synthesized. The binary complex alcohol-dehydrogenase . NADH gives a preparation with the same active-site content but a lower apparent specific activity compared to the unprotected enzyme. Increase in protein concentration yields products with the same active-site content relative to bound protein but the apparent specific activity is decreased. 3. The great similarity in spectroscopic properties of soluble and immobilised enzyme, as well as of their ternary complexes, shows that no significant conformational change has taken place during immobilisation. 4. Exchange of the non-catalytic Zn2+ against Co2+ yields a hybrid Sepharose--Co2Zn2-alcohol-dehydrogenase with over 90% active-site retention during metal exchange. The absorption spectra of the soluble and immobilised hybrid are identical.  相似文献   

12.
A protein fragment from the Tec family member Rlk (also known as Txk) containing a single proline-rich ligand adjacent to a Src homology 3 (SH3) domain has been investigated by nuclear magnetic resonance (NMR) spectroscopy. Analysis of the concentration dependence of the chemical shifts, NMR linewidths and self-diffusion coefficients reveal that the Rlk fragment dimerizes in solution. Mutation of two critical prolines in the proline-rich ligand abolishes dimerization. Furthermore, analysis of the extrapolated chemical shifts at infinite dilution reveal that intramolecular binding of the proline-rich ligand to the SH3 domain is disfavored. This is in contrast to the corresponding fragment of Itk, for which the proline-rich ligand/SH3 interaction occurs exclusively in an intramolecular fashion and no intermolecular binding is observed. Comparison of the Itk and Rlk sequences reveals that Rlk contains five fewer residues than Itk in the linker region between the proline-rich ligand and the SH3 domain. To assess whether linker length is a molecular determinant of intra- versus intermolecular self-association, we varied the length of the linker in both Rlk and Itk and analyzed the resulting variants by NMR. Intramolecular binding in Itk is reduced by shortening the linker and conversely a longer linker between the proline-rich ligand and the SH3 domain in Rlk enhances intramolecular self-association. Association constants for the binding of peptides corresponding to the proline-rich ligand with their respective SH3 domains were also measured by NMR. The protein/peptide data combined with the association constants for binding of each proline-rich peptide to the corresponding SH3 domain provide an explanation for the opposing modes of self-association within the otherwise closely related Rlk and Itk proteins.  相似文献   

13.
We present a method for improving the quality of nuclear magnetic resonance (NMR) spectra involving exchangeable protons near the base of the stem of RNA hairpin molecules. NMR spectra of five different RNA hairpins were compared. These hairpins consisted of a native RNA structure and four molecules each having different unpaired, or dangling, nucleotides at the 3′ end. NMR experiments were acquired in water for each construct and the quality of the imino proton spectral regions were examined. The imino resonances near the base of the stem of the wild type RNA structure were not observed due to breathing motions. However, a significant increase in spectral quality for molecules with dangling 3′ adenosine or guanosine nucleotides was observed, with imino protons detected in these constructs that were not observed in the wild type construct. A modest improvement in spectral quality was seen for the construct with a 3′ unpaired uridine, whereas no significant improvement was observed for a 3′ unpaired cytidine. This improvement in NMR spectral quality mirrors the increased thermodynamic stability observed for 3′ unpaired nucleotides which is dependant on the stacking interactions of these nucleotides against the base of the stem. The use of a dangling 3′ adenosine nucleotide represents an easy method to significantly improve the quality of NMR spectra of RNA molecules. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

14.
The pyrG gene of Lactococcus lactis subsp. cremoris, encoding CTP synthase, has been cloned and sequenced. It is flanked upstream by an open reading frame showing homology to several aminotransferases and downstream by an open reading frame of unknown function. L. lactis strains harboring disrupted pyrG alleles were constructed. These mutants required cytidine for growth, proving that in L. lactis, the pyrG product is the only enzyme responsible for the amination of UTP to CTP. In contrast to the situation in Escherichia coli, an L. lactis pyrG mutant could be constructed in the presence of a functional cdd gene encoding cytidine deaminase. A characterization of the enzyme revealed similar properties as found for CTP synthases from other organisms. However, unlike the majority of CTP synthases the lactococcal enzyme can convert dUTP to dCTP, although a half saturation concentration of 0.6 mm for dUTP makes it unlikely that this reaction plays a significant physiological role. As for other CTP synthases, the oligomeric structure of the lactococcal enzyme was found to be a tetramer, but unlike most of the other previously characterized enzymes, the tetramer was very stable even at dilute enzyme concentrations.  相似文献   

15.
Discovery of small molecule inhibitors of protein-protein interactions is a major challenge to pharmaceutical development. Fragment-based approaches have begun to be widely adopted as an effective way of exploring chemical space on a protein surface with reduced library size. On completion of a fragment screen, the subsequent selection of appropriate "hit" molecules for development is a key decision point. Thermodynamic parameters can be used in this decision process. In this work, a fragment identification protocol based on a virtual fragment analysis and selection followed by 19F NMR screening was directed at the phosphotyrosine binding site of the Src SH2 domain. Three new ligands were identified. Isothermal titration calorimetry was used to provide thermodynamic parameters for the physiologically relevant ligand and the selected fragments. One of these fragments possesses a highly favorable enthalpic contribution to complex formation compared to other fragments and to the physiologically relevant ligand suggesting that it would make a good candidate for compound development.  相似文献   

16.
Rabbit liver tRNA nucleotidyltransferase catalyzes the incorporation of AMP and CMP into the model acceptor substrate, cytidine. The apparent Km for cytidine in this reaction is about 80 to 90 mM which is more than 10(4) greater than the Km values for the natural substrates, tRNA lacking the terminal AMP (tRNA-C-C) and tRNA lacking the terminal pCpA (tRNA-C). The Vmax values for the model reaction are only 5% and 2% of those for the reaction with the natural tRNA substrates. Addition of the tRNA fragments, tRNA lacking the terminal XpCpCpA sequence (tRNA-(X - 1)p) and tRNA lacking the terminal CpCpA (tRNA-Xp), greatly stimulates the rate of nucleotide incorporation into cytidine. In the case of CMP incorporation into cytidine, tRNA-Xp stimulates the reaction about 60-fold, to a rate similar to that of the normal reaction with tRNA-C. The tRNA fragment has no effect on the apparent Km of either cytidine or CTP, but only alters the Vmax of the reaction. Stimulation of the model reactions is maximal with tRNA fragments of specific chain lengths. These results provide direct evidence that the nonreacting regions of a substrate molecule play an important role in the catalytic efficiency of an enzyme.  相似文献   

17.
The ligand-binding properties of a 53 kDa homomultimeric trimer from mannose-binding protein (MBP) have been investigated using residual dipolar couplings (RDCs) that are easily measured from NMR spectra of the ligand and isotopically labeled protein. Using a limited set of 1H-15N backbone amide NMR assignments for MBP and orientational information derived from the RDC measurements in aligned media, an order tensor for MBP has been determined that is consistent with symmetry-based predictions of an axially symmetric system. 13C-1H couplings for a bound trisaccharide ligand, methyl 3,6-di-O-(alpha-D-mannopyranosyl)-alpha-D-mannopyranoside (trimannoside) have been determined at natural abundance and used as orientational constraints. The bound ligand geometry and orientational constraints allowed docking of the trimannoside ligand in the binding site of MBP to produce a structural model for MBP-oligosaccharide interactions.  相似文献   

18.
Bacillus subtilis No. 344 is a cytidine-producing mutant strain derived from wild type strain No. 122. When 3-deazauracil-resistant mutants were derived from strain No. 344, some of the mutants had higher productivities of cytidine. Among them, strain No. 428 accumulated 14.2 mg/ml cytidine in the culture. Cytidine 5′-triphosphate (CTP) synthetase from strain No. 428 changed to be free from feedback inhibition by CTP, compared with the enzyme from strain No. 344.  相似文献   

19.
CMP-Kdn synthetase catalyses the reaction of sialic acids (Sia) and cytidine-5'-triphosphate (CTP) to the corresponding activated sugar nucleotide CMP-Sia and pyrophosphate PP(i). STD NMR experiments of a recombinant nucleotide cytidine-5'-monophosphate-3-deoxy-d-glycero-d-galacto-nonulosonic acid synthetase (CMP-Kdn synthetase) were performed to map the binding epitope of the substrate CTP and the product CMP-Neu5Ac. The STD NMR analysis clearly shows that the anomeric proton of the ribose moiety of both investigated compounds is in close proximity to the protein surface and is likely to play a key role in the binding process. The relative rates of the enzyme reaction, derived from (1)H NMR signal integrals, show that Kdn is activated at a rate 2.5 and 3.1 faster than Neu5Ac and Neu5Gc, respectively. Furthermore, proton-decoupled (31)P NMR spectroscopy was successfully used to follow the enzyme reaction and clearly confirmed the appearance of CMP-Sia and the inorganic pyrophosphate by-product.  相似文献   

20.
In structural genomics centers, nuclear magnetic resonance (NMR) screening is in increasing use as a tool to identify folded proteins that are promising targets for three-dimensional structure determination by X-ray crystallography or NMR spectroscopy. The use of 1D 1H NMR spectra or 2D [1H,15N]-correlation spectroscopy (COSY) typically requires milligram quantities of unlabeled or isotope-labeled protein, respectively. Here, we outline ways towards miniaturization of a structural genomics pipeline with NMR screening for folded globular proteins, using a high-density micro-fermentation device and a microcoil NMR probe. The proteins are micro-expressed in unlabeled or isotope-labeled media, purified, and then subjected to 1D 1H NMR and/or 2D [1H,15N]-COSY screening. To demonstrate that the miniaturization is functioning effectively, we processed nine mouse homologue protein targets and compared the results with those from the “macro-scale” Joint Center of Structural Genomics (JCSG) high-throughput pipeline. The results from the two pipelines were comparable, illustrating that the data were not compromised in the miniaturized approach.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号