首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Serum amyloid A (SAA) circulates bound to HDL3 during the acute-phase response (APR), and recent evidence suggests that elevated levels of SAA may be a risk factor for cardiovascular disease. In this study, SAA-HDL was produced in vivo during the APR and without the APR by injection of an adenoviral vector expressing human SAA-1. SAA-HDL was also produced in vitro by incubating mouse HDL with recombinant mouse SAA and by SAA-expressing cultured hepatoma cells. Whether produced in vivo or in vitro, SAA-HDL floated at a density corresponding to that of human HDL3 (d 1.12 g/ml) separate from other apolipoproteins, including apolipoprotein A-I (apoA-I; d 1.10 g/ml) when either apoA-I or apolipoprotein E (apoE) was present. In the absence of both apoA-I and apoE, SAA was found in VLDL and LDL, with low levels in the HDL and the lipid-poor fractions suggesting that other HDL apolipoproteins are incapable of facilitating the formation of SAA-HDL. We conclude that SAA does not exist in plasma as a lipid-free protein. In the presence of HDL-associated apoA-I or apoE, SAA circulates as SAA-HDL with a density corresponding to that of human HDL3. In the absence of both apoA-I and apoE, SAA-HDL is not formed and SAA associates with any available lipoprotein.  相似文献   

2.
Serum amyloid A is an acute phase protein that is carried in the plasma largely as an apolipoprotein of high density lipoprotein (HDL). In this study we investigated whether SAA is a ligand for the HDL receptor, scavenger receptor class B type I (SR-BI), and how SAA may influence SR-BI-mediated HDL binding and selective cholesteryl ester uptake. Studies using Chinese hamster ovary cells expressing SR-BI showed that (125)I-labeled SAA, both in lipid-free form and in reconstituted HDL particles, functions as a high affinity ligand for SR-BI. SAA also bound with high affinity to the hepatocyte cell line, HepG2. Alexa-labeled SAA was shown by fluorescence confocal microscopy to be internalized by cells in a SR-BI-dependent manner. To assess how SAA association with HDL influences HDL interaction with SR-BI, SAA-containing HDL was isolated from mice overexpressing SAA through adenoviral gene transfer. SAA presence on HDL had little effect on HDL binding to SR-BI but decreased (30-50%) selective cholesteryl ester uptake. Lipid-free SAA, unlike lipid-free apoA-I, was an effective inhibitor of both SR-BI-dependent binding and selective cholesteryl ester uptake of HDL. We have concluded that SR-BI plays a key role in SAA metabolism through its ability to interact with and internalize SAA and, further, that SAA influences HDL cholesterol metabolism through its inhibitory effects on SR-BI-mediated selective lipid uptake.  相似文献   

3.
Plasma concentrations of high density lipoprotein (HDL) cholesterol and its major apolipoprotein (apo)A-I are significantly decreased in inflammatory states. Plasma levels of the serum amyloid A (SAA) protein increase markedly during the acute phase response and are elevated in many chronic inflammatory states. Because SAA is associated with HDL and has been shown to be capable of displacing apoA-I from HDL in vitro, it is believed that expression of SAA is the primary cause of the reduced HDL cholesterol and apoA-I in inflammatory states. In order to directly test this hypothesis, we constructed recombinant adenoviruses expressing the murine SAA and human SAA1 genes (the major acute phase SAA proteins in both species). These recombinant adenoviruses were injected intravenously into wild-type and human apoA-I transgenic mice and the effects of SAA expression on HDL cholesterol and apoA-I were compared with mice injected with a control adenovirus. Plasma levels of SAA were comparable to those seen in the acute phase response in mice and humans. However, despite high plasma levels of murine or human SAA, no significant changes in HDL cholesterol or apoA-I levels were observed. SAA was found associated with HDL but did not specifically alter the cholesterol or human apoA-I distribution among lipoproteins. In summary, high plasma levels of SAA in the absence of a generalized acute phase response did not result in reduction of HDL cholesterol or apoA-I in mice, suggesting that there are components of the acute phase response other than SAA expression that may directly influence HDL metabolism.  相似文献   

4.
Serum amyloid A (SAA) is an acute-phase protein mainly associated with HDL. To study the role of SAA in mediating changes in HDL composition and metabolism during inflammation, we generated mice in which the two major acute-phase SAA isoforms, SAA1.1 and SAA2.1, were deleted [SAA knockout (SAAKO) mice], and induced an acute phase to compare lipid and apolipoprotein parameters between wild-type (WT) and SAAKO mice. Our data indicate that SAA does not affect apolipoprotein A-I (apoA-I) levels or clearance under steady-state conditions. HDL and plasma triglyceride levels following lipopolysaccharide administration, as well as the decline in liver expression of apoA-I and apoA-II, did not differ between both groups of mice. The expected size increase of WT acute-phase HDL was surprisingly also seen in SAAKO acute-phase HDL despite the absence of SAA. HDLs from both mice showed increased phospholipid and unesterified cholesterol content during the acute phase. We therefore conclude that in the mouse, SAA does not impact HDL levels, apoA-I clearance, or HDL size during the acute phase and that the increased size of acute-phase HDL in mice is associated with an increased content of surface lipids, particularly phospholipids, and not surface proteins. These data need to be transferred to humans with caution due to differences in apoA-I structure and remodeling functions.  相似文献   

5.
Longitudinal studies were carried out in the rabbit model to determine alterations in the concentration and density distribution of plasma lipids and apolipoproteins during the acute phase response (APR) characterized by elevated levels of C-reactive protein (CRP) and serum amyloid A (SAA). Twelve hr after the intramuscular injection of croton oil, SAA was detectable in high density lipoprotein (HDL). At the height of the response (72 hr), HDL decreased while SAA became the major HDL apoprotein, up to 80% of the proteins in the higher density fractions. The SAA-enriched particles became denser (density of HDL3) but larger (size of HDL2), had slower electrophoretic mobility, and were depleted in apoA-I, cholesterol, triglyceride, and phospholipid. HDL-cholesterol decreased and was redistributed to other fractions while apoA-I disappeared from the circulation. During this time plasma triglycerides increased 6- to 10-fold while plasma cholesterol and phospholipids showed minimal changes. ApoB increased 5- to 6-fold while the apoB-containing particles shifted to higher density resulting in elevated IDL and then LDL during recovery. VLDL (d less than 1.006 g/ml) increased and acquired 30-40% of the plasma triglycerides, cholesterol, phospholipid, and apoB. SAA also increased in VLDL while apoE decreased.  相似文献   

6.
Serum amyloid A (SAA) is an amphiphilic helical protein that is found associated with plasma HDL in various pathological conditions, such as acute or chronic inflammation. Cellular lipid release and generation of HDL by this protein were investigated, in comparison with the reactions by apolipoprotein A-I (apoA-I) and several types of cells that appear with various specific profiles of cholesterol and phospholipid release. SAA mediated cellular lipid release from these cells with the same profile as apoA-I. Upregulation of cellular ABCA1 protein by liver X receptor/retinoid X receptor agonists resulted in an increase of cellular lipid release by apoA-I and SAA. SAA reacted with the HEK293-derived clones that stably express human ABCA1 (293/2c) or ABCA7 (293/6c) to generate cholesterol-containing HDL in a similar manner to apoA-I. Dibutyryl cyclic AMP and phorbol 12-myristate 13-acetate, which differentiate apoA-I-mediated cellular lipid release between 293/2c and 293/6c, also exhibited the same differential effects on the SAA-mediated reactions. No evidence was found for the ABCA1/ABCA7-independent lipid release by SAA. Characterization of physicochemical properties of the HDL revealed that SAA-generated HDL particles had higher density, larger diameter, and slower electrophoretic mobility than those generated by apoA-I. These results demonstrate that SAA generates cholesterol-containing HDL directly with cellular lipid and that the reaction is mediated by ABCA1 and ABCA7.  相似文献   

7.
Genetic variations of paraoxonase (PON) correlate with HDL cholesterol and apolipoprotein A-I (apoA-I), suggesting antiatherogenic properties. Atherosclerosis occurs naturally in humans and rabbits but not in mice. We compared variations of PON arylesterase activity (PON AEase, phenylacetate substrate) in humans, rabbits, and mice. In humans and rabbits, >95% of PON AEase is HDL associated. In mice, about 30% of PON AEase is lipid poor. In the absence of apoA-I in mice, total PON AEase is reduced and >60% is lipid poor. PON AEase level and distribution is restored in apoA-I-/- mice injected with adenoviruses encoding human apoA-I and in transgenic mice expressing human apoA-I at a steady-state level. Thus, while apoA-I is not required for the HDL association of PON AEase, induced variations in apoA-I correlate with changes in HDL-associated, but not lipid-poor, PON AEase. PON AEase associates only with apoA-I- or apoE-containing HDL but not VLDL. In the absence of both apoA-I and apoE, PON AEase is all-lipid-poor. PON AEase is displaced from HDL by ultracentrifugation and following incubation with serum amyloid A. Variations in the PON distribution between HDL and lipid-poor fractions may have important consequences in its antioxidant activity and in atherogenesis.  相似文献   

8.
In the present study we have used adenovirus-mediated gene transfer of apoA-I (apolipoprotein A-I) mutants in apoA-I-/- mice to investigate how structural mutations in apoA-I affect the biogenesis and the plasma levels of HDL (high-density lipoprotein). The natural mutants apoA-I(R151C)Paris, apoA-I(R160L)Oslo and the bioengineered mutant apoA-I(R149A) were secreted efficiently from cells in culture. Their capacity to activate LCAT (lecithin:cholesterol acyltransferase) in vitro was greatly reduced, and their ability to promote ABCA1 (ATP-binding cassette transporter A1)-mediated cholesterol efflux was similar to that of WT (wild-type) apoA-I. Gene transfer of the three mutants in apoA-I-/- mice generated aberrant HDL phenotypes. The total plasma cholesterol of mice expressing the apoA-I(R160L)Oslo, apoA-I(R149A) and apoA-I(R151C)Paris mutants was reduced by 78, 59 and 61% and the apoA-I levels were reduced by 68, 64 and 55% respectively, as compared with mice expressing the WT apoA-I. The CE (cholesteryl ester)/TC (total cholesterol) ratio of HDL was decreased and the apoA-I was distributed in the HDL3 region. apoA-I(R160L)Oslo and apoA-I(R149A) promoted the formation of prebeta1 and alpha4-HDL subpopulations and gave a mixture of discoidal and spherical particles. apoA-I(R151C)Paris generated subpopulations of different sizes that migrate between prebeta and alpha-HDL and formed mostly spherical and a few discoidal particles. Simultaneous treatment of mice with adenovirus expressing any of the three mutants and human LCAT normalized plasma apoA-I, HDL cholesterol levels and the CE/TC ratio. It also led to the formation of spherical HDL particles consisting mostly of alpha-HDL subpopulations of larger size. The correction of the aberrant HDL phenotypes by treatment with LCAT suggests a potential therapeutic intervention for HDL abnormalities that result from specific mutations in apoA-I.  相似文献   

9.
Serum amyloid A (SAA) was markedly increased in the plasma and in the liver upon acute inflammation induced by intraperitoneal injection of lipopolysaccharide (LPS) in mice, and SAA in the plasma was exclusively associated with HDL. In contrast, no HDL was present in the plasma and only a small amount of SAA was found in the VLDL/LDL fraction (d < 1.063 g/ml) after the induction of inflammation in ABCA1-knockout (KO) mice, although SAA increased in the liver. Primary hepatocytes isolated from LPS-treated wild-type (WT) and ABCA1-KO mice both secreted SAA into the medium. SAA secreted from WT hepatocytes was associated with HDL, whereas SAA from ABCA1-KO hepatocytes was recovered in the fraction that was >1.21 g/ml. The behavior of apolipoprotein A-I (apoA-I) was the same as that of SAA in HDL biogenesis by WT and ABCA1-KO mouse hepatocytes. Lipid-free SAA and apoA-I both stabilized ABCA1 and caused cellular lipid release in WT mouse-derived fibroblasts, but not in ABCA1-KO mouse-derived fibroblasts, in vitro when added exogenously. We conclude that both SAA and apoA-I generate HDL largely in hepatocytes only in the presence of ABCA1, likely being secreted in a lipid-free form to interact with cellular ABCA1. In the absence of ABCA1, nonlipidated SAA is seemingly removed rapidly from the extracellular space.  相似文献   

10.
Small particles of high density lipoproteins (HDL) were isolated from fresh, fasting human plasma and from the ultracentrifugally isolated high density lipoprotein fraction by means of ultrafiltration through membranes of molecular weight cutoff of 70,000. These particles were found to contain cholesterol, phospholipids, and apolipoproteins A-I and A-II; moreover, they floated at a density of 1.21 kg/l. They contained 67.5% of their mass as protein and the rest as lipid. Two populations of small HDL particles were identified: one containing apolipoprotein A-I alone [(A-I)HDL] and the other containing both apolipoproteins A-I and A-II [A-I + A-II)HDL]. The molar ratio of apoA-I to apoA-II in the latter subclass isolated from plasma or HDL was 1:1. The molecular weights of these subpopulations were determined by nondenaturing gradient polyacrylamide gel electrophoresis and found to be 70,000; 1.5% of the plasma apoA-I was recovered in the plasma ultrafiltrate.  相似文献   

11.
Koukos G  Chroni A  Duka A  Kardassis D  Zannis VI 《Biochemistry》2007,46(37):10713-10721
To explain the etiology and find a mode of therapy of genetically determined low levels of high-density lipoprotein (HDL), we have generated recombinant adenoviruses expressing apolipoprotein A-I (apoA-I)(Leu141Arg)Pisa and apoA-I(Leu159Arg)FIN and studied their properties in vitro and in vivo. Both mutants were secreted efficiently from cells but had diminished capacity to activate lecithin/cholesterol acyltransferase (LCAT) in vitro. Adenovirus-mediated gene transfer of either of the two mutants in apoA-I-deficient (apoA-I-/-) mice resulted in greatly decreased total plasma cholesterol, apoA-I, and HDL cholesterol levels. The treatment also decreased the cholesteryl ester to total cholesterol ratio (CE/TC), caused accumulation of prebeta1-HDL and small size alpha4-HDL particles, and generated only few spherical HDL particles, as compared to mice expressing wild-type (WT) apoA-I. Simultaneous treatment of the mice with adenoviruses expressing either of the two mutants and human LCAT normalized the plasma apoA-I, HDL cholesterol levels, and the CE/TC ratio, restored normal prebeta- and alpha-HDL subpopulations, and generated spherical HDL. The study establishes that apoA-I(Leu141Arg)Pisa and apoA-I(Leu159Arg)FIN inhibit an early step in the biogenesis of HDL due to inefficient esterification of the cholesterol of the prebeta1-HDL particles by the endogenous LCAT. Both defects can be corrected by treatment with LCAT.  相似文献   

12.
Inflammation is associated with significant decreases in plasma HDL-cholesterol (HDL-C) and apoA-I levels. Endothelial lipase (EL) is known to be an important determinant of HDL-C in mice and in humans and is upregulated during inflammation. In this study, we investigated whether serum amyloid A (SAA), an HDL apolipoprotein highly induced during inflammation, alters the ability of EL to metabolize HDL. We determined that EL hydrolyzes SAA-enriched HDL in vitro without liberating lipid-free apoA-I. Coexpression of SAA and EL in mice by adenoviral vector produced a significantly greater reduction in HDL-C and apoA-I than a corresponding level of expression of either SAA or EL alone. The loss of HDL occurred without any evidence of HDL remodeling to smaller particles that would be expected to have more rapid turnover. Studies with primary hepatocytes demonstrated that coexpression of SAA and EL markedly impeded ABCA1-mediated lipidation of apoA-I to form nascent HDL. Our findings suggest that a reduction in nascent HDL formation may be partly responsible for reduced HDL-C during inflammation when both EL and SAA are known to be upregulated.  相似文献   

13.
Peripheral lymph lipoproteins have been characterized in animals, but there is little information about their composition, and none about their ultrastructure, in normal humans. Therefore, we collected afferent leg lymph from 16 healthy males and quantified lipids and apolipoproteins in fractions separated by high performance-size exclusion chromatography. Apolipoprotein B (apoB) was found almost exclusively in low density lipoproteins. The distribution of apoA-I, particularly in lipoprotein A-I (LpA-I) without A-II particles, was shifted toward larger particles relative to plasma. The fractions containing these particles were also enriched in apoA-II, apoE, total cholesterol, and phospholipids and had greater unesterified cholesterol-to-cholesteryl ester ratios than their counterparts in plasma. Fractions containing smaller apoA-I particles were enriched in phospholipid. Most apoA-IV was lipid poor or lipid free. Most apoC-III coeluted with large apoA-I-containing particles. Electron microscopy showed that lymph contained discoidal particles not seen in plasma. These findings support other evidence that high density lipoproteins (HDL) undergo extensive remodeling in human tissue fluid. Total cholesterol concentration in lymph HDL was 30% greater (P < 0.05) than could be explained by the transendothelial transfer of HDL from plasma, providing direct confirmation that HDL acquire cholesterol in the extravascular compartment. Net transport rates of new HDL cholesterol in the cannulated vessels corresponded to a mean whole body reverse cholesterol transport rate via lymph of 0.89 mmol (344 mg)/day.  相似文献   

14.
Apolipoprotein A-I (apoA-I) was liberated from human high-density lipoprotein (HDL) without exposure to organic solvents or chaotropic salts by the action of isolated insect hemolymph lipid transfer particle (LTP). LTP-catalyzed lipid redistribution results in transformation of HDL into larger, less dense particles accompanied by an overall decrease in HDL particle surface area:core volume ratio, giving rise to an excess of amphiphilic surface components. Preferential dissociation of apolipoprotein versus phospholipid and unesterified cholesterol from the particle surface results in apolipoprotein recovery in the bottom fraction following ultracentrifugation at a density = 1.23 g/mL. ApoA-I was then isolated from other contaminating HDL apolipoproteins by incubation with additional HDL in the absence of LTP, whereupon apolipoprotein A-II and the C apolipoproteins reassociate with the HDL surface by displacement of apoA-I. After a second density gradient ultracentrifugation, electrophoretically pure apoA-I was obtained. Sedimentation equilibrium experiments revealed that apoA-I isolated via this method exhibits a tendency to self-associate in an aqueous solution while its circular dichroism spectrum was indicative of a significant amount of alpha-helix. Both measurements are consistent with that observed on material prepared by denaturation/renaturation. The ability of apoA-I to activate lecithin:cholesterol acyltransferase was found to be similar to that of apoA-I isolated by conventional methods. The present results illustrate that LTP-mediated alteration in lipoprotein particle surface area leads to dissociation of substantial amounts of surface active apoprotein components, thus providing the opportunity to isolate apoA-I without the denaturation/renaturation steps common to all previous isolation procedures.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
Low levels of transgenic mouse apolipoprotein E (apoE) suppress atherosclerosis in apoE knockout (apoE-/-) mice without normalizing plasma cholesterol. To test whether this is due to facilitation of cholesterol efflux from the vessel wall, we produced apoA-I-/-/apoE-/- mice with or without the transgene. Even without apoA-I and HDL, apoA-I-/-/apoE-/- mice had the same amount of aorta cholesteryl ester as apoE-/- mice. Low apoE in the apoA-I-/-/apoE-/- transgenic mice reduced aortic lesions by 70% versus their apoA-I-/-/apoE-/- siblings. To define the free cholesterol (FC) efflux capacity of lipoproteins from the various genotypes, sera were assayed on macrophages expressing ATP-binding cassette transporter A1 (ABCA1). Surprisingly, ABCA1 FC efflux was twice as high to sera from the apoA-I-/-/apoE-/- or apoE-/- mice compared with wild-type mice, and this activity correlated with serum apoA-IV. Immunodepletion of apoA-IV from apoA-I-/-/apoE-/- serum abolished ABCA1 FC efflux, indicating that apoAI-V serves as a potent acceptor for FC efflux via ABCA1. With increasing apoE expression, apoA-IV and FC acceptor capacity decreased, indicating a reciprocal relationship between plasma apoE and apoA-IV. Low plasma apoE (1-3 x 10(-8) M) suppresses atherosclerosis by as yet undefined mechanisms, not dependent on the presence of apoA-I or HDL or an increased capacity of serum acceptors for FC efflux.  相似文献   

16.
A fraction of plasma transthyretin (TTR) circulates in HDL through binding to apolipoprotein A-I (apoA-I). Moreover, TTR is able to cleave the C terminus of lipid-free apoA-I. In this study, we addressed the relevance of apoA-I cleavage by TTR in lipoprotein metabolism and in the formation of apoA-I amyloid fibrils. We determined that TTR may also cleave lipidated apoA-I, with cleavage being more effective in the lipid-poor prebeta-HDL subpopulation. Upon TTR cleavage, discoidal HDL particles displayed a reduced capacity to promote cholesterol efflux from cholesterol-loaded THP-1 macrophages. In similar assays, TTR-containing HDL from mice expressing human TTR in a TTR knockout background had a decreased ability to perform reverse cholesterol transport compared with similar particles from TTR knockout mice, reinforcing the notion that cleavage by TTR reduces the ability of apoA-I to promote cholesterol efflux. As amyloid deposits composed of N-terminal apoA-I fragments are common in the atherosclerotic intima, we assessed the impact of TTR cleavage on apoA-I aggregation and fibrillar growth. We determined that TTR-cleaved apoA-I has a high propensity to form aggregated particles and that it formed fibrils faster than full-length apoA-I, as assessed by electron microscopy. Our results show that apoA-I cleavage by TTR may affect HDL biology and the development of atherosclerosis by reducing cholesterol efflux and increasing the apoA-I amyloidogenic potential.  相似文献   

17.
ATP binding cassette transporter G1 (ABCG1) mediates the transport of cellular cholesterol to HDL, and it plays a key role in maintaining macrophage cholesterol homeostasis. During inflammation, HDL undergoes substantial remodeling, acquiring lipid changes and serum amyloid A (SAA) as a major apolipoprotein. In the current study, we investigated whether remodeling of HDL that occurs during acute inflammation impacts ABCG1-dependent efflux. Our data indicate that lipid free SAA acts similarly to apolipoprotein A-I (apoA-I) in mediating sequential efflux from ABCA1 and ABCG1. Compared with normal mouse HDL, acute phase (AP) mouse HDL containing SAA exhibited a modest but significant 17% increase in ABCG1-dependent efflux. Interestingly, AP HDL isolated from mice lacking SAA (SAAKO mice) was even more effective in promoting ABCG1 efflux. Hydrolysis with Group IIA secretory phospholipase A(2) (sPLA(2)-IIA) significantly reduced the ability of AP HDL from SAAKO mice to serve as a substrate for ABCG1-mediated cholesterol transfer, indicating that phospholipid (PL) enrichment, and not the presence of SAA, is responsible for alterations in efflux. AP human HDL, which is not PL-enriched, was somewhat less effective in mediating ABCG1-dependent efflux compared with normal human HDL. Our data indicate that inflammatory remodeling of HDL impacts ABCG1-dependent efflux independent of SAA.  相似文献   

18.
Numerous factors are known to affect the plasma metabolism of HDL, including lipoprotein receptors, lipid transfer protein, lipolytic enzymes and HDL apolipoproteins. In order to better define the role of HDL apolipoproteins in determining plasma HDL concentrations, the aims of the present study were: a) to compare the in vivo rate of plasma turnover of HDL apolipoproteins [i.e., apolipoprotein A-I (apoA-I), apoC-I, apoC-III, and apoE], and b) to investigate to what extent these metabolic parameters are related to plasma HDL levels. We thus studied 16 individuals with HDL cholesterol levels ranging from 0.56-1.66 mmol/l and HDL apoA-I levels ranging from 89-149 mg/dl. Plasma kinetics of HDL apolipoproteins were investigated using a primed constant (12 h) infusion of deuterated leucine. Plasma HDL apolipoprotein levels were 41.8 +/- 1.5, 9.7 +/- 0.5, 4.9 +/- 0.5, and 0.7 +/- 0.1 micromol/l for apoA-I, apoC-I, apoC-III and apoE. Plasma transport rates (TRs) were 388.6 +/- 24.7, 131.5 +/- 12.5, 66.5 +/- 9.1, and 31.4 +/- 3.3 nmol.kg-1.day-1; and residence times (RTs) were 5.1 +/- 0.4, 3.7 +/- 0.3, 3.6 +/- 0.3, and 1.1 +/- 0.1 days, respectively. HDL cholesterol and apoA-I levels were significantly correlated with HDL apoA-I RT (r = 0.69 and r = 0.56), and were not significantly correlated with HDL apoA-I TR. In contrast, HDL apoC-I, apoC-III, and apoB levels were all positively related to their TRs and not their RTs. HDL apoC-III TR was positively correlated with levels of HDL apoC-III (r = 0.73, P < 0.01), and with those of HDL cholesterol and apoA-I (r = 0.54 and r = 0.53, P < 0.05, respectively). HDL apoC-III TR was in turn related to HDL apoA-I RT (r = 0.51, P < 0.05). Together, these results provide in vivo evidence for a link between the metabolism of HDL apoC-III and apoA-I, and suggest a role for apoC-III in the regulation of plasma HDL levels.  相似文献   

19.
Two fluorescent probes-cis- and trans-parinaric acids were used to study the dimensions, lipid dynamics and apolipoprotein location in the reconstituted discoidal high density lipoproteins (rHDL). The rHDL particles made from apolipoprotein A-I (apoA-I), dipalmitoylphosphatidylcholine (DPPC), with or without cholesterol (Chol) were compared with the analogous particles with two other apolipoproteins-apoE and apoA-II. The data obtained for apoA-I-containing rHDL were as follows: (1) the inclusion of 8 mol.% of cholesterol did not significantly change the particle dimensions (13+/-1 nm) or the mean distance between apoA-I and the disc axis; (2) the phospholipid domains-boundary lipid region in the close vicinity to apoA-I molecule and the remaining part of the bilayer-existed at temperatures both lower and above DPPC transition temperature T(t); (3) at T相似文献   

20.
Recent studies have indicated that the scavenger receptor class B type I (SR-BI) may play an important role in the uptake of high density lipoprotein (HDL) cholesteryl ester in liver and steroidogenic tissues. To investigate the in vivo effects of liver-specific SR-BI overexpression on lipid metabolism, we created several lines of SR-BI transgenic mice with an SR-BI genomic construct where the SR-BI promoter region had been replaced by the apolipoprotein (apo)A-I promoter. The effect of constitutively increased SR-BI expression on plasma HDL and non-HDL lipoproteins and apolipoproteins was characterized. There was an inverse correlation between SR-BI expression and apoA-I and HDL cholesterol levels in transgenic mice fed either mouse chow or a diet high in fat and cholesterol. An unexpected finding in the SR-BI transgenic mice was the dramatic impact of the SR-BI transgene on non-HDL cholesterol and apoB whose levels were also inversely correlated with SR-BI expression. Consistent with the decrease in plasma HDL and non-HDL cholesterol was an accelerated clearance of HDL, non-HDL, and their major associated apolipoproteins in the transgenics compared with control animals. These in vivo studies of the effect of SR-BI overexpression on plasma lipoproteins support the previously proposed hypothesis that SR-BI accelerates the metabolism of HDL and also highlight the capacity of this receptor to participate in the metabolism of non-HDL lipoproteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号