首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Linkage information content of polymorphic genetic markers   总被引:2,自引:0,他引:2  
Guo X  Elston RC 《Human heredity》1999,49(2):112-118
The Polymorphism Information Content (PIC) value is often used to measure the informativeness of a genetic marker for linkage studies. The PIC value was first derived for the case of a rare dominant disease, when one of the parents is affected, and is a function of the particular mode of disease inheritance. We first generalize the definition of the PIC value in such a way that it does not depend on the mode of inheritance of the trait being studied, and then develop a Linkage Information Content (LIC) value to measure the informativeness of a marker about the identity-by-descent sharing status of particular types of pairs of relatives. Knowing the LIC value, it is possible to determine the effective number of fully informative pairs in a study when we have incomplete marker information.  相似文献   

2.
Eighteen low-copy and genomic microsatellite markers were tested for Mendelian inheritance and then assayed in 41 Pinus taeda L. samples drawn from five regions in the southern United States. The PCR products had multiple alleles, high levels of polymorphism, and little non-specific priming. Fifteen of the 18 markers were informative for a P. taeda three-generation RFLP (restriction fragment length polymorphism) pedigree, and a P. taeda population survey revealed three to 28 alleles per locus. The highest allele numbers and polymorphic information content (PIC) values were associated with complex repeat sequences and (or) with sequences consisting of the longer strings of perfect repeats. The abundance of low- to rare-frequency alleles also accounted for high PIC values in both types of markers. Low-copy microsatellites are useful for the large, complex pine genome, especially in the absence of entire gene sequences in public databases and with the low levels of polymorphism in markers developed from expressed sequence tags (ESTs).  相似文献   

3.
Large scale gene mapping efforts in domestic animals have generated and mapped a large number of genetic markers that are useful for mapping quantitative trait and disease loci and for DNA diagnostic purposes such as parentage testing. Marker polymorphism is an important criterion for selecting genetic markers in planning experiment for mapping quantitative trait loci or for DNA diagnostic purposes. Current formulations of marker polymorphism measures are functions of marker allele frequencies. In this study, two measures of marker polymorphism that are available from gene mapping studies and do not require allele frequencies were proposed and analyzed: the observed polymorphic information content (PIC) and the observed family information content (FIC). The observed FIC was more stable than the observed PIC because the observed FIC is unaffected by the variation in the frequency of heterozygous parents. However, both FIC and PIC are dependent on the gene mapping design. The effective number of alleles is recommended as a tool to standardize marker polymorphism measures so that polymorphism of different markers can be compared on an equal basis, and to obtain a new polymorphism measure (such an exclusion probability) from an existing measure (such as FIC). The usage of the effective number of alleles to standardize FIC, PIC and exclusion probabilities is illustrated using genetic markers in a published linkage map.  相似文献   

4.
Wu R  Ma CX  Casella G 《Genetics》2002,160(2):779-792
Linkage analysis and allelic association (also referred to as linkage disequilibrium) studies are two major approaches for mapping genes that control simple or complex traits in plants, animals, and humans. But these two approaches have limited utility when used alone, because they use only part of the information that is available for a mapping population. More recently, a new mapping strategy has been designed to integrate the advantages of linkage analysis and linkage disequilibrium analysis for genome mapping in outcrossing populations. The new strategy makes use of a random sample from a panmictic population and the open-pollinated progeny of the sample. In this article, we extend the new strategy to map quantitative trait loci (QTL), using molecular markers within the EM-implemented maximum-likelihood framework. The most significant advantage of this extension is that both linkage and linkage disequilibrium between a marker and QTL can be estimated simultaneously, thus increasing the efficiency and effectiveness of genome mapping for recalcitrant outcrossing species. Simulation studies are performed to test the statistical properties of the MLEs of genetic and genomic parameters including QTL allele frequency, QTL effects, QTL position, and the linkage disequilibrium of the QTL and a marker. The potential utility of our mapping strategy is discussed.  相似文献   

5.
Abstract

Large scale gene mapping efforts in domestic animals have generated and mapped a large number of genetic markers that are useful for mapping quantitative trait and disease loci and for DNA diagnostic purposes such as parentage testing. Marker polymorphism is an important criterion for selecting genetic markers in planning experiment for mapping quantitative trait loci or for DNA diagnostic purposes. Current formulations of marker polymorphism measures are functions of marker allele frequencies. In this study, two measures of marker polymorphism that are available from gene mapping studies and do not require allele frequencies were proposed and analyzed: the observed polymorphic information content (PIC) and the observed family information content (FIC). The observed FIC was more stable than the observed PIC because the observed FIC is unaffected by the variation in the frequency of heterozygous parents. However, both FIC and PIC are dependent on the gene mapping design. The effective number of alleles is recommended as a tool to standardize marker polymorphism measures so that polymorphism of different markers can be compared on an qual basis, and to obtain a new polymorphism measure (such an exclusion probability) from an existing measure (such as FIC). The usage of the effective number of alleles to standardize FIC, PIC and exclusion probabilities is illustrated using genetic markers in a published linkage map.  相似文献   

6.
7.
Microsatellites are robust markers for genome mapping, gene tagging and marker assisted selection. The genus Brassica, having a large and complex genome, requires such type of markers for various applications in genetics and breeding. A set of 202 microsatellite markers were used to screen two parental genotypes of Indian mustard (Brassica juncea) namely, ‘Varuna’, an indigenous cultivar and BEC144, an exotic collection from Poland, of which 36 (17.8%) were informative and usable for segregation analysis. The polymorphic markers detected heterozygosity in advanced generation recombinant inbred lines (RILs) developed earlier from the cross Varuna × BEC144 with a varying frequency that ranged from 0% to 23.5%. Normal Mendelian segregation for majority of microsatellite markers was observed. Eleven markers showed significant deviation from the expected 1:1 segregation ratio. Twelve markers were assigned to six different linkage groups of Indian mustard genome map. The level of polymorphism between the parents and the percentage of useful informative markers as observed in this study, suggested that many more markers are needed to achieve a reasonable coverage of mustard genome. This is the first report on the evaluation of microsatellite markers for genome mapping in B. juncea.  相似文献   

8.
We have characterized a subset of 172 microsatellite markers from the canine map, termed 'Minimal Screening Set 1' (Canine MSS-1), which we propose be used for initial genome-wide genetic linkage studies. Three hierarchical criteria were used to select markers from the current meiotic linkage and radiation hybrid maps for MSS-1. Markers were selected that (1) provided as complete coverage as possible of the canine genome, (2) were highly informative, and (3) have been ordered in linkage groups with a high degree of statistical support. This resulting screening set spans all reported meiotic linkage and RH groups, leaving only 10 known gaps > or = 20 cM. The average polymorphic information content (PIC) value of markers tested is 0.74. Coverage estimates suggest 42% of the genome is within 5 cM of at least one marker in the minimal screening set, 77% of the genome is within 10 cM. This minimal mapping set therefore provides an efficient and cost effective way to begin screening pedigrees of interest for genetic linkage.  相似文献   

9.
SSCP-SNP in pearl millet—a new marker system for comparative genetics   总被引:6,自引:0,他引:6  
A considerable array of genomic resources are in place in pearl millet, and marker-aided selection is already in use in the public breeding programme at ICRISAT. This paper describes experiments to extend these publicly available resources to a single nucleotide polymorphism (SNP)-based marker system. A new marker system, single-strand conformational polymorphism (SSCP)-SNP, was developed using annotated rice genomic sequences to initially predict the intron-exon borders in millet expressed sequence tags (ESTs) and then to design primers that would amplify across the introns. An adequate supply of millet ESTs was available for us to identify 299 homologues of single-copy rice genes in which the intron positions could be precisely predicted. PCR primers were then designed to amplify approximately 500-bp genomic fragments containing introns. Analysis of these fragments on SSCP gels revealed considerable polymorphism. A detailed DNA sequence analysis of variation at four of the SSCP-SNP loci over a panel of eight inbred genotypes showed complex patterns of variation, with about one SNP or indel (insertion-deletion) every 59 bp in the introns, but considerably fewer in the exons. About two-thirds of the variation was derived from SNPs and one-third from indels. Most haplotypes were detected by SSCP. As a marker system, SSCP-SNP has lower development costs than simple sequence repeats (SSRs), because much of the work is in silico, and similar deployment costs and through-put potential. The rates of polymorphism were lower but useable, with a mean PIC of 0.49 relative to 0.72 for SSRs in our eight inbred genotype panel screen. The major advantage of the system is in comparative applications. Syntenic information can be used to target SSCP-SNP markers to specific chromosomal regions or, conversely, SSCP-SNP markers can be used to unravel detailed syntenic relationships in specific parts of the genome. Finally, a preliminary analysis showed that the millet SSCP-SNP primers amplified in other cereals with a success rate of about 50%. There is also considerable potential to promote SSCP-SNP to a COS (conserved orthologous set) marker system for application across species by more specifically designing primers to precisely match the model genome sequence.Electronic Supplementary Material Supplementary material is available for this article at  相似文献   

10.
Molecular marker technologies have proven to be an important breakthrough for genetic studies, construction of linkage maps and population genetics analysis. Transposable elements (TEs) constitute major fractions of repetitive sequences in plants and offer a wide range of possible areas to be explored as molecular markers. Sequence characterized amplified region (SCAR) marker development provides us with a simple and time saving alternative approach for marker development. We employed the CACTA-TD to develop SCARs and then integrated them into linkage map and used them for population structure and genetic diversity analysis of corn inbred population. A total of 108 dominant SCAR markers were designed out of which, 32 were successfully integrated in to the linkage map of maize RIL population and the remaining were added to a physical map for references to check the distribution throughout all chromosomes. Moreover, 76 polymorphic SCARs were used for diversity analysis of corn accessions being used in Korean corn breeding program. The overall average polymorphic information content (PIC) was 0.34, expected heterozygosity was 0.324 and Shannon’s information index was 0.491 with a percentage of polymorphism of 98.67%. Further analysis by associating with desirable traits may also provide some accurate trait specific tagged SCAR markers. TE linked SCARs can provide an added level of polymorphism as well as improved discriminating ability and therefore can be useful in further breeding programs to develop high yielding germplasm.  相似文献   

11.
The construction of high-density linkage maps for use in identifying loci underlying important traits requires the development of large numbers of polymorphic genetic markers spanning the entire genome at regularly spaced intervals. As part of our efforts to develop markers for rainbow trout (Oncorhynchus mykiss), we performed a comparison of allelic variation between microsatellite markers developed from expressed sequence tag (EST) data and anonymous markers identified from repeat-enriched libraries constructed from genomic DNA. A subset of 70 markers (37 from EST databases and 33 from repeat enriched libraries) was characterized with respect to polymorphism information content (PIC), number of alleles, repeat number, locus duplication within the genome and ability to amplify in other salmonid species. Higher PIC was detected in dinucleotide microsatellites derived from ESTs than anonymous markers (72.7% vs. 54.0%). In contrast, dinucleotide repeat numbers were higher for anonymous microsatellites than for EST derived microsatellites (27.4 vs.18.1). A higher rate of cross-species amplification was observed for EST microsatellites. Approximately half of each marker type was duplicated within the genome. Unlike single-copy markers, amplification of duplicated microsatellites in other salmonids was not correlated to phylogenetic distance. Genomic microsatellites proved more useful than EST derived microsatellites in discriminating among the salmonids. In total, 428 microsatellite markers were developed in this study for mapping and population genetic studies in rainbow trout.  相似文献   

12.
Both theoretical and applied studies have proven that the utility of single nucleotide polymorphism (SNP) markers in linkage analysis is more powerful and cost-effective than current microsatellite marker assays. Here we performed a whole-genome scan on 115 White, non-Hispanic families segregating for alcohol dependence, using one 10.3-cM microsatellite marker set and two SNP data sets (0.33-cM, 0.78-cM spacing). Two definitions of alcohol dependence (ALDX1 and ALDX2) were used. Our multipoint nonparametric linkage analysis found alcoholism was nominal linked to 12 genomic regions. The linkage peaks obtained by using the microsatellite marker set and the two SNP sets had a high degree of correspondence in general, but the microsatellite marker set was insufficient to detect some nominal linkage peaks. The presence of linkage disequilibrium between markers did not significantly affect the results. Across the entire genome, SNP datasets had a much higher average linkage information content (0.33 cM: 0.93, 0.78 cM: 0.91) than did microsatellite marker set (0.57). The linkage peaks obtained through two SNP datasets were very similar with some minor differences. We conclude that genome-wide linkage analysis by using approximately 5,000 SNP markers evenly distributed across the human genome is sufficient and might be more powerful than current 10-cM microsatellite marker assays.  相似文献   

13.
Opium poppy (Papaver somniferum L.) is an important pharmaceutical crop with very few genetic marker resources. To expand these resources, we sequenced genomic DNA using pyrosequencing technology and examined the DNA sequences for simple sequence repeats (SSRs). A total of 1,244,412 sequence reads were obtained covering 474 Mb. Approximately half of the reads (52 %) were assembled into 166,724 contigs representing 105 Mb of the opium poppy genome. A total of 23,283 non-redundant SSRs were identified in 18,944 contigs (11.3 % of total contigs). Trinucleotide and tetranucleotide repeats were the most abundant SSR repeats, accounting for 49.0 and 27.9 % of all SSRs, respectively. The AAG/TTC repeat was the most abundant trinucleotide repeat, representing 19.7 % of trinucleotide repeats. Other SSR repeat types were AT-rich. A total of 23,126 primer pairs (98.7 % of total SSRs) were designed to amplify SSRs. Fifty-three genomic SSR markers were tested in 37 opium poppy accessions and seven Papaver species for determination of polymorphism and transferability. Intraspecific polymorphism information content (PIC) values of the genomic SSR markers were intermediate, with an average 0.17, while the interspecific average PIC value was slightly higher, 0.19. All markers showed at least 88 % transferability among related species. This study increases sequence coverage of the opium poppy genome by sevenfold and the number of opium poppy-specific SSR markers by sixfold. This is the first report of the development of genomic SSR markers in opium poppy, and the genomic SSR markers developed in this study will be useful in diversity, identification, mapping and breeding studies in opium poppy.  相似文献   

14.
Twinning is a complex trait with negative impacts on health and reproduction, which cause economic loss in dairy production. Several twinning rate quantitative trait loci (QTL) have been detected in previous studies, but confidence intervals for QTL location are broad and many QTL are unreplicated. To identify genomic regions or genes associated with twinning rate, QTL analysis based on linkage combined with linkage disequilibrium (LLD) and individual marker associations was conducted across the genome using high-throughput single nucleotide polymorphism (SNP) genotypes. A total of 9919 SNP markers were genotyped with 200 sires and sons in 19 half-sib North American Holstein dairy cattle families. After SNPs were genotyped, informative markers were selected for genome-wide association tests and QTL searches. Evidence for twinning rate QTL was found throughout the genome. Thirteen markers significantly associated with twinning rate were detected on chromosomes 2, 5 and 14 ( P  < 2.3 × 10−5). Twenty-six regions on fourteen chromosomes were identified by LLD analysis at P  < 0.0007. Seven previously reported ovulation or twinning rate QTL were supported by results of single marker association or LLD analyses. Single marker association analysis and LLD mapping were complementary tools for the identification of putative QTL in this genome scan.  相似文献   

15.
Only a few genetic maps based on recombinant inbred line (RIL) and backcross (BC) populations have been developed for tetraploid groundnut. The marker density, however, is not very satisfactory especially in the context of large genome size (2800 Mb/1C) and 20 linkage groups (LGs). Therefore, using marker segregation data for 10 RILs and one BC population from the international groundnut community, with the help of common markers across different populations, a reference consensus genetic map has been developed. This map is comprised of 897 marker loci including 895 simple sequence repeat (SSR) and 2 cleaved amplified polymorphic sequence (CAPS) loci distributed on 20 LGs (a01-a10 and b01-b10) spanning a map distance of 3, 863.6 cM with an average map density of 4.4 cM. The highest numbers of markers (70) were integrated on a01 and the least number of markers (21) on b09. The marker density, however, was lowest (6.4 cM) on a08 and highest (2.5 cM) on a01. The reference consensus map has been divided into 20 cM long 203 BINs. These BINs carry 1 (a10_02, a10_08 and a10_09) to 20 (a10_04) loci with an average of 4 marker loci per BIN. Although the polymorphism information content (PIC) value was available for 526 markers in 190 BINs, 36 and 111 BINs have at least one marker with >0.70 and >0.50 PIC values, respectively. This information will be useful for selecting highly informative and uniformly distributed markers for developing new genetic maps, background selection and diversity analysis. Most importantly, this reference consensus map will serve as a reliable reference for aligning new genetic and physical maps, performing QTL analysis in a multi-populations design, evaluating the genetic background effect on QTL expression, and serving other genetic and molecular breeding activities in groundnut.  相似文献   

16.
Construction of a genetic linkage map of the laboratory rat, Rattus norvegicus, establishes the rat as a genetic model. Allele sizes were reported for 432 simple sequence length polymorphisms (SSLPs) genotyped in 12 different substrains belonging to nine different inbred strains of rats. However, these nine strains represent only a fraction of the more than 140 inbred strains available. If allele sizes are not known, alternative indices of markers' polymorphism content can be used, such as heterozygosity (H) and polymorphism information content (PIC). Here, we have determined heterozygosity scores and PIC values for all markers of the rat genetic linkage map, and we evaluate the predictability of the heterozygosity and the PIC values. Correlation analysis between the nine inbred strains reported for the rat map and ten test strains yielded r=0.42 and r=0.44 for heterozygosity and PIC values, respectively. While the correlation of the indices between the two groups of animals is low, these indices do provide a means of predicting whether a genetic marker will be informative in strains where allele sizes are not known.  相似文献   

17.
MOTIVATION: Microsatellites, also known as simple sequence repeats, are the tandem repeats of nucleotide motifs of the size 1-6 bp found in every genome known so far. Their importance in genomes is well known. Microsatellites are associated with various disease genes, have been used as molecular markers in linkage analysis and DNA fingerprinting studies, and also seem to play an important role in the genome evolution. Therefore, it is of importance to study distribution, enrichment and polymorphism of microsatellites in the genomes of interest. For this, the prerequisite is the availability of a computational tool for extraction of microsatellites (perfect as well as imperfect) and their related information from whole genome sequences. Examination of available tools revealed certain lacunae in them and prompted us to develop a new tool. RESULTS: In order to efficiently screen genome sequences for microsatellites (perfect as well as imperfect), we developed a new tool called IMEx (Imperfect Microsatellite Extractor). IMEx uses simple string-matching algorithm with sliding window approach to screen DNA sequences for microsatellites and reports the motif, copy number, genomic location, nearby genes, mutational events and many other features useful for in-depth studies. IMEx is more sensitive, efficient and useful than the available widely used tools. IMEx is available in the form of a stand-alone program as well as in the form of a web-server. AVAILABILITY: A World Wide Web server and the stand-alone program are available for free access at http://203.197.254.154/IMEX/ or http://www.cdfd.org.in/imex.  相似文献   

18.
Simple sequence repeats (SSRs) are valuable molecular markers in many plant species. In common wheat (Triticum aestivum L.), which is characteristic of its large genomes and alloploidy, SSRs are one of the most useful markers. To increase SSR marker sources and construct an SSR-based linkage map of appropriate density, we tried to develop new SSR markers from SSR-enriched genomic libraries and the public database. SSRs having (GA)n and (GT)n motifs were isolated from enriched libraries, and di- and tri-nucleotide repeats were mined from expressed sequence tags (ESTs) and DNA sequences of Triticum species in the public database. Of the 1,147 primer pairs designed, 842 primers gave accurate amplification products, and 478 primers showed polymorphism among the nine wheat lines examined. Using a doubled haploid (DH) population from an intraspecific cross between Kitamoe and Münstertaler (KM), we constructed an SSR-based linkage map that consisted of 464 loci: 185 loci from genomic libraries, 65 loci from the sequence database including ESTs, 213 loci from the SSR markers already reported, and 1 locus of morphological marker. Although newly developed SSR loci were distributed throughout all chromosomes, clustering of them around putative centromeric regions was found on several chromosomes. The total length of the KM map spanned 3,441 cM and corresponded to approximately 86% genome coverage. The KM map comprised of 23 linkage groups because two gaps of over 50 cM distance remained on chromosome 6A. This is a first report of SSR-based linkage map using single intraspecific population of common wheat. This mapping result suggests that it becomes possible to construct linkage maps with sufficient genome coverage using only SSR markers without RFLP markers, even in an intraspecific population of common wheat. Moreover, the new SSR markers will contribute to the enrichment of molecular marker resources in common wheat.  相似文献   

19.
We have constructed nearly complete linkage maps of Pinus sylvestris (L.) using AFLP markers based on a two-way pseudo-testcross strategy in a full-sib family founded in an advanced breeding program. With 39 primer combinations, a total of 737 markers (320 from the mother and 417 from the father) segregated in a 1:1 ratio, corresponding to DNA polymorphism: heterozygous in one parent and null in the other. In the maternal parent, 188 framework markers were mapped in 12 linkage groups, equivalent to the Pinus haploid chromosome number, with a total coverage of 1,695.5 cM. In the paternal parent, 245 framework markers established a map with 15 linkage groups, spanning a genome length of 1,718.5 cM. The estimated total map length was L(F) = 1,681 cM for the female and L(M) = 1,645 cM for the male using a modified method-of-moment estimator. Combining these values with those estimated from the observed map lengths in both parents, we estimated the genome length in Scots pine to be between 1,600 and 2,100 cM. Our genome coverage was estimated to be more than 98% with a framework marker interval of 20 cM for both parents. Most of the female and male linkage groups were associated through the analysis of the intercross markers.  相似文献   

20.
Genetic linkage maps are essential for molecular breeding program. The first genetic linkage map of Pinus koraiensis, using an F1 progeny of 94 individuals, was constructed in the present paper. One hundred and twenty-two molecular markers were mapped onto 11 linkage groups, 1 triple and 8 pairs at the linkage criteria LOD 4.0. Among these markers, there were 96 sequence-related amplified polymorphism (SRAP) markers, 25 simple sequence repeat (SSR) markers, and 1 inter-simple sequence repeat (ISSR) marker. The consensus map gained covers 857.464 cM Kosambi (K) with an average marker spacing of 7.03 cM K. The presented map provides a basis and crucial information for future genomic studies of P. koraiensis, in particular for quantitative trait loci (QTL) mapping of economically important breeding target traits.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号