首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Cell signaling pathways interact with one another to form networks in mammalian systems. Such networks are complex in their organization and exhibit emergent properties such as bistability and ultrasensitivity. Analysis of signaling networks requires a combination of experimental and theoretical approaches including the development and analysis of models. This review focuses on theoretical approaches to understanding cell signaling networks. Using heterotrimeric G protein pathways an example, we demonstrate how interactions between two pathways can result in a network that contains a positive feedback loop and function as a switch. Different mathematical approaches that are currently used to model signaling networks are described, and future challenges including the need for databases as well as enhanced computing environments are discussed.  相似文献   

3.
4.
If perturbing two genes together has a stronger or weaker effect than expected, they are said to genetically interact. Genetic interactions are important because they help map gene function, and functionally related genes have similar genetic interaction patterns. Mapping quantitative (positive and negative) genetic interactions on a global scale has recently become possible. This data clearly shows groups of genes connected by predominantly positive or negative interactions, termed monochromatic groups. These groups often correspond to functional modules, like biological processes or complexes, or connections between modules. However it is not yet known how these patterns globally relate to known functional modules. Here we systematically study the monochromatic nature of known biological processes using the largest quantitative genetic interaction data set available, which includes fitness measurements for ~5.4 million gene pairs in the yeast Saccharomyces cerevisiae. We find that only 10% of biological processes, as defined by Gene Ontology annotations, and less than 1% of inter-process connections are monochromatic. Further, we show that protein complexes are responsible for a surprisingly large fraction of these patterns. This suggests that complexes play a central role in shaping the monochromatic landscape of biological processes. Altogether this work shows that both positive and negative monochromatic patterns are found in known biological processes and in their connections and that protein complexes play an important role in these patterns. The monochromatic processes, complexes and connections we find chart a hierarchical and modular map of sensitive and redundant biological systems in the yeast cell that will be useful for gene function prediction and comparison across phenotypes and organisms. Furthermore the analysis methods we develop are applicable to other species for which genetic interactions will progressively become more available.  相似文献   

5.
To take full advantage of high-throughput genetic and physical interaction mapping projects, the raw interactions must first be assembled into models of cell structure and function. PanGIA (for physical and genetic interaction alignment) is a plug-in for the bioinformatics platform Cytoscape, designed to integrate physical and genetic interactions into hierarchical module maps. PanGIA identifies 'modules' as sets of proteins whose physical and genetic interaction data matches that of known protein complexes. Higher-order functional cooperativity and redundancy is identified by enrichment for genetic interactions across modules. This protocol begins with importing interaction networks into Cytoscape, followed by filtering and basic network visualization. Next, PanGIA is used to infer a set of modules and their functional inter-relationships. This module map is visualized in a number of intuitive ways, and modules are tested for functional enrichment and overlap with known complexes. The full protocol can be completed between 10 and 30 min, depending on the size of the data set being analyzed.  相似文献   

6.
Proteins interact with each other within a cell, and those interactions give rise to the biological function and dynamical behavior of cellular systems. Generally, the protein interactions are temporal, spatial, or condition dependent in a specific cell, where only a small part of interactions usually take place under certain conditions. Recently, although a large amount of protein interaction data have been collected by high-throughput technologies, the interactions are recorded or summarized under various or different conditions and therefore cannot be directly used to identify signaling pathways or active networks, which are believed to work in specific cells under specific conditions. However, protein interactions activated under specific conditions may give hints to the biological process underlying corresponding phenotypes. In particular, responsive functional modules consist of protein interactions activated under specific conditions can provide insight into the mechanism underlying biological systems, e.g. protein interaction subnetworks found for certain diseases rather than normal conditions may help to discover potential biomarkers. From computational viewpoint, identifying responsive functional modules can be formulated as an optimization problem. Therefore, efficient computational methods for extracting responsive functional modules are strongly demanded due to the NP-hard nature of such a combinatorial problem. In this review, we first report recent advances in development of computational methods for extracting responsive functional modules or active pathways from protein interaction network and microarray data. Then from computational aspect, we discuss remaining obstacles and perspectives for this attractive and challenging topic in the area of systems biology.  相似文献   

7.
Detection of functional modules from protein interaction networks   总被引:4,自引:0,他引:4  
  相似文献   

8.
Accumulated genetic data are stimulating the use of mathematical and computational tools for studying the concerted action of genes during cell differentiation and morphogenetic processes. At the same time, network theory has flourished, enabling analyses of complex systems that have multiple elements and interactions. Reverse engineering methods that use genomic data or detailed experiments on gene interactions have been used to propose gene network architectures. Experiments on gene interactions incorporate enough detail for relatively small developmental modules and thus allow dynamical analyses that have direct functional interpretations. Generalities are beginning to emerge. For example, biological genetic networks are robust to environmental and genetic perturbations. Such dynamical studies also enable novel predictions that can lead to further experimental tests, which might then feedback to the theoretical analyses. This interplay is proving productive for understanding plant development. Finally, both experiments on gene interactions and theoretical analyses allow the identification of frequent or fixed evolutionary solutions to developmental problems, and thus are contributing to an understanding of the genetic basis of the evolution of development and body plan.  相似文献   

9.

Background

MicroRNA (miRNA) sponges with multiple tandem miRNA binding sequences can sequester miRNAs from their endogenous target mRNAs. Therefore, miRNA sponge acting as a decoy is extremely important for long-term loss-of-function studies both in vivo and in silico. Recently, a growing number of in silico methods have been used as an effective technique to generate hypotheses for in vivo methods for studying the biological functions and regulatory mechanisms of miRNA sponges. However, most existing in silico methods only focus on studying miRNA sponge interactions or networks in cancer, the module-level properties of miRNA sponges in cancer is still largely unknown.

Results

We propose a novel in silico method, called miRSM (miRNA Sponge Module) to infer miRNA sponge modules in breast cancer. We apply miRSM to the breast invasive carcinoma (BRCA) dataset provided by The Cancer Genome Altas (TCGA), and make functional validation of the computational results. We discover that most miRNA sponge interactions are module-conserved across two modules, and a minority of miRNA sponge interactions are module-specific, existing only in a single module. Through functional annotation and differential expression analysis, we also find that the modules discovered using miRSM are functional miRNA sponge modules associated with BRCA. Moreover, the module-specific miRNA sponge interactions among miRNA sponge modules may be involved in the progression and development of BRCA. Our experimental results show that miRSM is comparable to the benchmark methods in recovering experimentally confirmed miRNA sponge interactions, and miRSM outperforms the benchmark methods in identifying interactions that are related to breast cancer.

Conclusions

Altogether, the functional validation results demonstrate that miRSM is a promising method to identify miRNA sponge modules and interactions, and may provide new insights for understanding the roles of miRNA sponges in cancer progression and development.
  相似文献   

10.
ABSTRACT: BACKGROUND: The use of biological molecular network information for diagnostic and prognostic purposes and elucidation of molecular disease mechanism is a key objective in systems biomedicine. The network of regulatory miRNA-target and functional protein interactions is a rich source of information to elucidate the function and the prognostic value of miRNAs in cancer. The objective of this study is to identify miRNAs that have high influence on target protein complexes in prostate cancer as a case study. This could provide biomarkers or therapeutic targets relevant for prostate cancer treatment. RESULTS: Our findings demonstrate that a miRNA's functional role can be explained by its target protein connectivity within a physical and functional interaction network. To detect miRNAs with high influence on target protein modules, we integrated miRNA and mRNA expression profiles with a sequence based miRNA-target network and human functional and physical protein interactions (FPI). miRNAs with high influence on target protein complexes play a role in prostate cancer progression and are promising diagnostic or prognostic biomarkers. We uncovered several miRNA-regulated protein modules which were enriched in focal adhesion and prostate cancer genes. Several miRNAs such as miR-96, miR-182, and miR-143 demonstrated high influence on their target protein complexes and could explain most of the gene expression changes in our analyzed prostate cancer data set. CONCLUSIONS: We describe a novel method to identify active miRNA-target modules relevant to prostate cancer progression and outcome. miRNAs with high influence on protein networks are valuable biomarkers that can be used in clinical investigations for prostate cancer treatment.  相似文献   

11.
It is widely believed that the modular organization of cellular function is reflected in a modular structure of molecular networks. A common view is that a “module” in a network is a cohesively linked group of nodes, densely connected internally and sparsely interacting with the rest of the network. Many algorithms try to identify functional modules in protein-interaction networks (PIN) by searching for such cohesive groups of proteins. Here, we present an alternative approach independent of any prior definition of what actually constitutes a “module”. In a self-consistent manner, proteins are grouped into “functional roles” if they interact in similar ways with other proteins according to their functional roles. Such grouping may well result in cohesive modules again, but only if the network structure actually supports this. We applied our method to the PIN from the Human Protein Reference Database (HPRD) and found that a representation of the network in terms of cohesive modules, at least on a global scale, does not optimally represent the network''s structure because it focuses on finding independent groups of proteins. In contrast, a decomposition into functional roles is able to depict the structure much better as it also takes into account the interdependencies between roles and even allows groupings based on the absence of interactions between proteins in the same functional role. This, for example, is the case for transmembrane proteins, which could never be recognized as a cohesive group of nodes in a PIN. When mapping experimental methods onto the groups, we identified profound differences in the coverage suggesting that our method is able to capture experimental bias in the data, too. For example yeast-two-hybrid data were highly overrepresented in one particular group. Thus, there is more structure in protein-interaction networks than cohesive modules alone and we believe this finding can significantly improve automated function prediction algorithms.  相似文献   

12.
Genes and proteins are organized on the basis of their particular mutual relations or according to their interactions in cellular and genetic networks. These include metabolic or signaling pathways and protein interaction, regulatory or co-expression networks. Integrating the information from the different types of networks may lead to the notion of a functional network and functional modules. To find these modules, we propose a new technique which is based on collective, multi-body correlations in a genetic network. We calculated the correlation strength of a group of genes (e.g. in the co-expression network) which were identified as members of a module in a different network (e.g. in the protein interaction network) and estimated the probability that this correlation strength was found by chance. Groups of genes with a significant correlation strength in different networks have a high probability that they perform the same function. Here, we propose evaluating the multi-body correlations by applying the superparamagnetic approach. We compare our method to the presently applied mean Pearson correlations and show that our method is more sensitive in revealing functional relationships.  相似文献   

13.
Non-linear behaviour of biochemical networks, such as intracellular gene, protein or metabolic networks, is commonly represented using graphs of the underlying topology. Nodes represent abundance of molecules and edges interactions between pairs of molecules. These graphs are linear and thus based on an implicit linearization of the kinetic reactions in one or several dynamic modes of the total system. It is common to use data from different sources -- experiments conducted under different conditions or even on different species -- meaning that the graph will be a superposition of linearizations made in many different modes. The mixing of different modes makes it hard to identify functional modules, that is sub-systems that carry out a specific biological function, since the graph will contain many interactions that do not naturally occur at the same time. The ability to establish a boundary between the sub-system and its environment is critical in the definition of a module, contrary to a motif in which only internal interactions count. Identification of functional modules should therefore be done on graphs depicting the mode in which their function is carried out, i.e. graphs that only contain edges representing interactions active in the specific mode. In general, when an interaction between two molecules is established, one should always state the mode of the system in which it is active.  相似文献   

14.
Towards zoomable multidimensional maps of the cell   总被引:3,自引:0,他引:3  
The detailed structure of molecular networks, including their dependence on conditions and time, are now routinely assayed by various experimental techniques. Visualization is a vital aid in integrating and interpreting such data. We describe emerging approaches for representing and visualizing systems data and for achieving semantic zooming, or changes in information density concordant with scale. A central challenge is to move beyond the display of a static network to visualizations of networks as a function of time, space and cell state, which capture the adaptability of the cell. We consider approaches for representing the role of protein complexes in the cell cycle, displaying modules of metabolism in a hierarchical format, integrating experimental interaction data with structured vocabularies such as Gene Ontology categories and representing conserved interactions among orthologous groups of genes.  相似文献   

15.
Network medicine has been applied successfully to elicit the structure of large-scale molecular interaction networks. Its main proponents have claimed that this approach to integrative medical investigation should make it possible to identify functional modules of interacting molecular biological units as well as interactions themselves. This paper takes a significant step in this direction. Based on a large-scale analysis of the nervous system molecular medicine literature, this study analyzes and visualizes the complex structure of associations between diseases on the one hand and all types of molecular substances on the other. From this analysis it then identifies functional co-association groups consisting of several types of molecular substances, each consisting of substances that exhibit a pattern of frequent co-association with similar diseases. These groups in turn exhibit interlinking in a complex pattern, suggesting that such complex interactions between functional molecular modules may play a role in disease etiology. We find that the patterns exhibited by the networks of disease – molecular substance associations studied here correspond well to a number of recently published research results, and that the groups of molecular substances identified by statistical analysis of these networks do appear to be interesting groups of molecular substances that are interconnected in identifiable and interpretable ways. Our results not only demonstrate that networks are a convenient framework to analyze and visualize large-scale, complex relationships among molecular networks and diseases, but may also provide a conceptual basis for bridging gaps in experimental and theoretical knowledge.  相似文献   

16.
This review is devoted to describing, summarizing, and analyzing of dynamic proteomics data obtained over the last few years and concerning the role of protein-protein interactions in modeling of the living cell. Principles of modern high-throughput experimental methods for investigation of protein-protein interactions are described. Systems biology approaches based on integrative view on cellular processes are used to analyze organization of protein interaction networks. It is proposed that finding of some proteins in different protein complexes can be explained by their multi-modular and polyfunctional properties; the different protein modules can be located in the nodes of protein interaction networks. Mathematical and computational approaches to modeling of the living cell with emphasis on molecular dynamics simulation are provided. The role of the network analysis in fundamental medicine is also briefly reviewed.  相似文献   

17.
Many complex networks such as computer and social networks exhibit modular structures, where links between nodes are much denser within modules than between modules. It is widely believed that cellular networks are also modular, reflecting the relative independence and coherence of different functional units in a cell. While many authors have claimed that observations from the yeast protein–protein interaction (PPI) network support the above hypothesis, the observed structural modularity may be an artifact because the current PPI data include interactions inferred from protein complexes through approaches that create modules (e.g., assigning pairwise interactions among all proteins in a complex). Here we analyze the yeast PPI network including protein complexes (PIC network) and excluding complexes (PEC network). We find that both PIC and PEC networks show a significantly greater structural modularity than that of randomly rewired networks. Nonetheless, there is little evidence that the structural modules correspond to functional units, particularly in the PEC network. More disturbingly, there is no evolutionary conservation among yeast, fly, and nematode modules at either the whole-module or protein-pair level. Neither is there a correlation between the evolutionary or phylogenetic conservation of a protein and the extent of its participation in various modules. Using computer simulation, we demonstrate that a higher-than-expected modularity can arise during network growth through a simple model of gene duplication, without natural selection for modularity. Taken together, our results suggest the intriguing possibility that the structural modules in the PPI network originated as an evolutionary byproduct without biological significance.  相似文献   

18.
生物信息学方法预测蛋白质相互作用网络中的功能模块   总被引:1,自引:0,他引:1  
蛋白质相互作用是大多数生命过程的基础。随着高通量实验技术和计算机预测方法的发展,在各种生物中已获得了数目十分庞大的蛋白质相互作用数据,如何从中提取出具有生物学意义的数据是一项艰巨的挑战。从蛋白质相互作用数据出发获得相互作用网络进而预测出其中的功能模块,对于蛋白质功能预测、揭示各种生化反应过程的分子机理都有着极大的帮助。我们分类概括了用生物信息学预测蛋白质相互作用功能模块的方法,以及对这些方法的评价,并介绍了蛋白质相互作用网络比较的一些方法。  相似文献   

19.
The structure and function of protein modules.   总被引:1,自引:0,他引:1  
Analysis of protein sequences shows that many proteins in multicellular organisms have evolved by a process of exon shuffling, deletion and duplication. These exons often correspond to autonomously folding protein modules. Many extracellular enzymes have this modular structure; for example, serine proteases involved in blood-clotting, fibrinolysis and complement. The main role of these modules is to confer specificity by protein-protein interactions. Lack of structural information about such proteins has required a new strategy for studying the structure and function of protein modules. The strategy involves the production of individual modules by protein expression techniques, determination of their structure by high resolution nuclear magnetic resonance and definition of functional patches on the modules by site-directed mutagenesis and biological assays. The structures of the growth factor module, the fibronectin type 1 module and the complement module are briefly described. The possible functional roles of modules in various proteins, including the enzymes factor IX and tissue plasminogen activator, are discussed.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号