首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Stress is an essential component during embryogenesis induction in microspore culture. Cold pretreatment has been used in cereal microspore culture but very seldom attempted in Brassica microspore culture. The effect of cold pretreatment of flower buds subjected to a liquid medium on microspore embryogenesis was investigated in spring and winter Brassica napus, as well as in B. rapa and B. oleracea. Cold pretreatment significantly enhanced microspore embryogenesis (by 1–7 fold) compared to commonly used microspore culture protocol in B. napus, while it was less effective in B. rapa or even negative in B. oleracea. The appropriate duration of cold pretreatment was found to be 2–4 days, which stimulated the best microspore embryogenesis. Cold pretreatment was also able to promote embryo development including the improvement of embryo quality and acceleration of embryogenesis. When incorporating with medium refreshing, cold pretreatment could initiate the most microspore embryogenesis than any other treatment used. With further improvement cold pretreatment method may have a positive potential in Brassica breeding programmes.  相似文献   

2.
We report the RFLP mapping of quantitative trait loci (QTLs) which regulate the total seed aliphaticglucosinolate content in Brassica napus L. A population of 99 F1-derived doubled-haploid (DH) recombinant lines from a cross between the cultivars Stellar (low-glucosinolate) and Major (high-glucosinolate) was used for singlemarker analysis and the interval mapping of QTLs associated with total seed glucosinolates. Two major loci, GSL-1 and GSL-2, with the largest influence on total seed aliphatic-glucosinolates, were mapped onto LG 20 and LG 1, respectively. Three loci with smaller effects, GSL-3, GSL-4 and GSL-5, were tentatively mapped to LG 18, LG 4 and LG 13, respectively. The QTLs acted in an additive manner and accounted for 71 % of the variation in total seed glucosinolates, with GSL-1 and GSL-2 accounting for 33% and 17%, respectively. The recombinant population had aliphatic-glucosinolate levels of between 6 and 160 moles per g-1 dry wt of seed. Transgressive segregation for high seed glucosinolate content was apparent in 25 individuals. These phenotypes possessed Stellar alleles at GSL-3 and Major alleles at the four other GSL loci demonstrating that low-glucosinolate genotypes (i.e. Stellar) may possess alleles for high glucosinolates which are only expressed in particular genetic backgrounds. Gsl-elong and Gsl-alk, loci which regulate the ratio of individual aliphatic glucosinolates, were also mapped. Gsl-elong-1 and Gsl-elong-2, which control elongation of the -amino-acid precursors, mapped to LG 18 and LG 20 and were coincident with GSL loci which regulate total seed aliphatic glucosinolates. A third tentative QTL, which regulates side-chain elongation, was tentatively mapped to LG 12. Gsl-alk, which regulates H3CS-removal and side-chain de-saturation, mapped to LG 20.  相似文献   

3.
The rate of photosynthesis and its relation to tissue nitrogen content was studied in leaves and siliques of winter oilseed rape (Brassica napus L.) growing under field conditions including three rates of nitrogen application (0, 100 or 200 kg N ha-1) and two levels of irrigation (rainfed or irrigated at a deficit of 20 mm). The predominant effect of increasing N application under conditions without water deficiency was enhanced expansion of photosynthetically active leaf and silique surfaces, while the rate of photosynthesis per unit leaf or silique surface area was similar in the different N treatments. Thus, oilseed rape did not increase N investment in leaf area expansion before a decline in photosynthetic rate per unit leaf area due to N deficiency could be avoided. Much less photosynthetically active radiation penetrated into high-N canopies than into low-N canopies. The specific leaf area increased markedly in low light conditions, causing leaves in shade to be less dense than leaves exposed to ample light. In both leaves and siliques the photosynthetic rate per unit surface area responded linearly to increasing N content up to about 2 g m-2, thus showing a constant rate of net CO2 assimilation per unit increment in N (constant photosynthetic N use efficiency). At higher tissue N contents, photosynthetic rate responded less to changes in N status. Expressed per unit N, light saturated photosynthetic rate was three times higher in leaves than in silique valves, indicating a more efficient photosynthetic N utilization in leaves than in siliques. Nevertheless, from about two weeks after completion of flowering and onwards total net CO2 fixation in silique valves exceeded that in leaves because siliques received much higher radiation intensities than leaves and because the leaf area declined rapidly during the reproductive phase of growth. Water deficiency in late vegetative and early reproductive growth stages reduced the photosynthetic rate in leaves and, in particular, siliques of medium- and high-N plants, but not of low-N plants.  相似文献   

4.
A method is described for regenerating callus from mesophyll protoplasts of a winter variety of Brassica napus. The method combines the use of Ficoll in an initial liquid medium, enhancing early protoplast division and cell colony formation, with a transfer to an agarose system after 10 days culture to give rapid microcalli formation. Further transfers resulted in callus regeneration and the initiation of organogenesis.  相似文献   

5.
The combined use of doubled haploid lines and molecular markers can provide new genetic information for use in breeding programs. An F1-derived doubled haploid (DH) population of Brassica napus obtained from a cross between an annual canola cultivar (Stellar) and a biennial rapeseed (Major) was used to construct a linkage map of 132 restriction fragment length polymorphism loci. The marker loci were arranged into 22 linkage groups and six pairs of linked loci covering 1016 cM. The DH map was compared to a partial map constructed with a common set of markers for an F2 population derived from the same F1 plant, and the overall maps were not significantly different. Comparisons of maps in Brassica species suggest that less recombination occurs in B. napus (n = 19) than expected from the combined map distances of the two hypothesized diploid progenitors, B. oleracea (n = 9) and B. rapa (n=10). A high percentage (32%) of segregating marker loci were duplicated in the DH map, and conserved linkage arrangements of some duplicated loci indicated possible intergenome homoeology in the amphidiploid or intragenome duplications from the diploid progenitors. Deviation from Mendelian segregation ratios (P < 0.05) was observed for 30% of the marker loci in the DH population and for 24% in the F2 population. Deviation towards each parent occurred at equal frequencies in both populations and marker loci that showed deviation clustered in specific linkage groups. The DH lines and molecular marker map generated for this study can be used to map loci for agronomic traits segregating in this population. Present address Embrapa/Cenargen, C.P. 0.2372, CEP 70.770, Brasilia DF, Brazil  相似文献   

6.
Uniconazole at various concentrations on rape, at the three-leaf stage, was examined for physiologic and yield effects. Foliar sprays of 10, 25, and 50 mg/liter significantly reduced seedling height, and increased shoot width (stem width before elongation), number of green leaves, and total dry weight at transplanting. Chlorophyll content, superoxide dismutase and catalase activities, root oxidizability (capacity for root oxidation), and ethylene production were also increased. Additionally, the number of branches and pods/plant were increased; and a 7.4, 8.5, and 4.3% increase of seed yield over the controls was observed with treatments at 10, 25, and 50 mg/liter uniconazole, respectively. No significant effects were observed on plant maturity, the seed oil content, or the erucic acid and glucosinolate content. Total oil production significantly increased with 10, 25, and 50 mg/liter by 9.9, 10.6, and 6.8%, respectively, over the controls. These results suggested that uniconazole-induced high productivity was accompanied by increased levels of activities of various antioxidants, including superoxide dismutase and catalase, and by the improvement of root oxidizability and plant vigor.Abbreviations SOD superoxide dismutase - CAT catalase - NBT nitro blue tetrazolium - TTC red tetrazolium - IAA indoleacetic acid  相似文献   

7.
The effect of colchicine on embryogenesis induction and chromosomedoubling during microspore culture was evaluated in two F1 hybridsofwinter oilseed rape (Brassica napus L.). Colchicinetreatment (50 and 500 mg/L) of isolated microspores during thefirst 15 h in culture stimulated embryogenesis and produced large amounts ofhealthy-looking embryos. These normal embryos germinated well at 24°C after being transferred to solid regeneration medium and aninitial period of low temperature (2 °C) for 10 days, andcoulddirectly and rapidly regenerate vigorous plants. A high doubling efficiency of84–88% was obtained from 500 mg/L colchicine treatment for15h with low frequency of polyploid and chimeric plants. Acolchicinetreatment duration of 6 h was less effective on embryogenesis anddoubling efficiency. The present experiment also showed that changing of induction medium 15h after microspore isolation produced higher spontaneous doublingefficiency, as compared with medium change 6 h after isolation.  相似文献   

8.
Summary The response of oilseed rape cultivars to infection with Agrobacterium tumefaciens and A. rhizogenes and the possibility of regenerating genetically transformed oilseed rape plants were examined. The frequency at which Agrobacterium induced galls or hairy-roots on in vitro cultured plants ranged from 10% to 70%, depending on the cultivar. From galls induced by the tumorigenic strain T37, known to be strongly shoot inducing on tobacco, roots developed frequently. Occasionally, shoots formed and some of these produced tumour cell specific nopaline. Attempts to grow the transformed shoots into plants have so far been unsuccessful. Whole plants transformed with Ri-T-DNA, however, were regenerated. These had crinkled leaves and abundant, frequently branching roots that showed reduced geotropism, similar to previously isolated Ri T-DNA transformed tobacco and potato plants. The transformed oilseed rape plants flowered, but failed to form seeds.  相似文献   

9.
10.
Breeding of oilseed rape (Brassica napus ssp. napus) has evoked a strong bottleneck selection towards double-low (00) seed quality with zero erucic acid and low seed glucosinolate content. The resulting reduction of genetic variability in elite 00-quality oilseed rape is particularly relevant with regard to the development of genetically diverse heterotic pools for hybrid breeding. In contrast, B. napus genotypes containing high levels of erucic acid and seed glucosinolates (++ quality) represent a comparatively genetically divergent source of germplasm. Seed glucosinolate content is a complex quantitative trait, however, meaning that the introgression of novel germplasm from this gene pool requires recurrent backcrossing to avoid linkage drag for high glucosinolate content. Molecular markers for key low-glucosinolate alleles could potentially improve the selection process. The aim of this study was to identify potentially gene-linked markers for important seed glucosinolate loci via structure-based allele-trait association studies in genetically diverse B. napus genotypes. The analyses included a set of new simple-sequence repeat (SSR) markers whose orthologs in Arabidopsis thaliana are physically closely linked to promising candidate genes for glucosinolate biosynthesis. We found evidence that four genes involved in the biosynthesis of indole, aliphatic and aromatic glucosinolates might be associated with known quantitative trait loci for total seed glucosinolate content in B. napus. Markers linked to homoeologous loci of these genes in the paleopolyploid B. napus genome were found to be associated with a significant effect on the seed glucosinolate content. This example shows the potential of Arabidopsis-Brassica comparative genome analysis for synteny-based identification of gene-linked SSR markers that can potentially be used in marker-assisted selection for an important trait in oilseed rape. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

11.
The impact of genetically modified oilseed rape (Brassica napus L.) on the foraging behaviour of honey bees (Apis mellifera L.) was evaluated on two different lines transformed to express constitutively heterologous chitinase in somatic tissue for enhanced disease resistance. Experiments were conducted in confinement in an indoor flight room with controlled conditions and in an outdoor flight cage with conditions more representative of the open environment. Foraging behaviour was analysed by observations of general bee behaviour (total number of visits) and of individual bee behaviour (using a video camera coupled with a special software program to process the data). The plants were analysed in terms of nectar quantity and quality (nectar volume and sugar content). The results showed no effects on bee foraging behaviour due to the modification of the genome of these plants by the introduction of a chitinase gene even though some differences between lines were found in the nectar. The methods applied in this original approach for the evaluation of the impact of genetically modified oilseed rape were shown to be sufficiently sensitive to detect changes in bee behaviour resulting from differences between plants.  相似文献   

12.
A procedure for direct gene transfer into isolated microspores of rapeseed (Brassica napus L.) and the production of fertile transgenic plants is presented. By modifying the microspore culture method and adopting the firefly luciferase (Luc) gene as a non-destructive marker, we could obtain stably transformed androgenetic embryos from bombarded microspores. Luc-positive embryos were easily isolated from the large non-transformed population using a high-sensitivity bioluminescent image analyzer. PCR and Southern blot analyses confirmed that the introduced transgene was integrated stably into the genome of the selected embryos. Diploidized plants obtained from the haploid embryos were self-pollinated, and all of the offspring tested were Luc-positive, indicating rapid fixation of the transgene which is characteristic of doubled haploids. Received: 14 May 1997 / Revision received: 15 July 1997 / Accepted: 28 July 1997  相似文献   

13.
The objective of this study was to evaluate pollen dispersal inBrassica napus (oilseed rape). The selectable marker, used to follow pollen movement, was a dominant transgene (bar) conferring resistance to the herbicide glufosinate-ammonium. Transgenic and non-transgenic plants of the cultivar Westar were planted in a 1.1 ha field trial, with the transgenic plants in a 9 m diameter circle at the centre, surrounded by non-transgenic plants to a distance of at least 47 m in all directions. A 1 m circle of non-transgenic plants was sown in the centre of the transgenic area to allow estimation of the level of pollen dispersal when plants were in close contact. Honeybee hives were placed at the trial site to optimize the opportunity for cross-pollination. During the flowering period, regular observations were made of the number of plants flowering and the number and type of insects present in 60 1 m2 areas. These areas were located uniformly around the plot at distances of 1, 3, 6, 12, 24, 36 and 47 m from the edge of the 9 m circle of transgenic plants. Seed samples were harvested from each of the 7 distances so that approximately 20% of the circumference of the plot was sampled at each distance. The centre non-transgenic circle was also sampled. Plants were grown from the seed samples and sprayed with glufosinate to estimate the frequency of pollen dispersal at each distance. In order to screen enough samples to detect low frequency cross-pollination events, seed samples were tested in the greenhouse and on a larger scale in the field. Results were confirmed by testing progeny for glufosinate resistance and by Southern blot analysis. The estimated percentage of pollen dispersal in the non-transgenic centre circle was 4.8%. The frequency was estimated to be 1.5% at a distance of 1 m and 0.4% at 3 m. The frequency decreased sharply to 0.02% at 12 m and was only 0.00033% at 47 m. No obvious directional effects were detected that could be ascribed to wind or insect activity.  相似文献   

14.
Summary Somatic hybridization between Brassica napus and B. hirta (or Sinapis alba) is described. No cybrid plant with B. napus nucleus exhibiting cytoplasmic male sterility was recovered. Somatic hybrids were identified morphologically and, for some of them, by cytological observations. They were also characterised by Southern hybridization of nuclear rDNA. Chloroplast and mitochondrial DNA restriction analysis showed that 2 plants out of 14 have B. hirta ctDNA, one the B. napus mtDNA and the other a hybrid. Nine possess B. napus ctDNA with a hybrid mtDNA. For six of them, mtDNA patterns present novel bands, suggesting intergenomic recombination during fusion. These hybrids will be included in the breeding program.  相似文献   

15.
The seasonal course of nitrogen uptake, incorporation and remobilization in different shoot components of winter oilseed rape (Brassica napus L.) was studied under field conditions including three rates of 15N labelled nitrogen application (0, 100 or 200 kg N ha-1) and two irrigation treatments (rainfed or watered at a deficit of 20 mm). The total amount of irrigation water applied was 260 mm, split over 13 occasions in a 7-week-period ranging from 1 week before onset of flowering until 4 weeks after flowering.Nitrogen application and irrigation increased plant growth and nitrogen accumulation. Irrespective of N and irrigation treatment more than 50% of total shoot N was present in the stem when flowering started. At the end of flowering, pod walls were the main N store containing about 30–40% of shoot N. The quantities of N remobilized from stems and pod walls amounted in all treatments to about 70% of the N present in these organs at mid-flowering. At harvest, stem and pod walls each contained about 10% of total shoot N, the remaining 80% being incorporated into seeds. The main component contributing to the response of seed N accumulation to nitrogen application and irrigation was pods in axillary racemes. Up to 20 kg N ha-1, corresponding to about 10% of final shoot N content, was lost from the plants by leaf drop.Irrigation increased the recovery at harvest of applied N from 30% to about 50%, while the level of N application did not affect the N recovery. 15N labelled (fertilizer derived) nitrogen constituted a greater proportion of the N content in old leaves than in young leaves and increased with age in the former, but not in the latter. Relative to soil N, fertilizer derived N also contributed more to the N content of vegetative than to that of reproductive shoot components. Small net changes in shoot N content after flowering reflected a balance between N import and export, leading to continuous dilution of 15N labelled N with unlabelled N.  相似文献   

16.
We have undertaken the construction of a Brassica napus genetic map with isozyme (4%), RFLP (26.5%) and RAPD (68%) markers on a 152 lines of a doubled-haploid population. The map covers 1765 cM and comprises 254 markers including three PCR-specific markers and a morphological marker. They are assembled into 19 linkage groups, covering approximatively 71% of the rapeseed genome. Thirty five percent of the studied markers did not segregate according to the expected Mendelian ratio and tended to cluster in eight specific linkage groups. In this paper, the structure of the genetic map is described and the existence of non-Mendelian segregations in linkage analysis as well as the origins of the observed distortions, are discussed. The mapped RFLP loci corresponded to the cDNAs already used to construct B. napus maps. The first results of intraspecific comparative mapping are presented.  相似文献   

17.
Oilseed rape (Brassica napus) lines transformedwith the coat protein (CP) gene of Turnip mosaic virus(TuMV) were used to determine the effectiveness of resistance to TuMV mediatedby CP RNA or coat protein. Lines with one, two, or more copies of transgeneswere produced. T2 and T3 lines containing the CP genewitha functional start codon synthesised coat protein and showed high, but variablelevels of resistance to TuMV (21–96% resistant plants per line). TheT1 and T2 progeny of all lines carrying the CP gene withamutated start codon so that RNA but not protein was expressed, were assusceptible to TuMV as controls. Thus, in these experiments we were able toinduce CP-mediated resistance, but not RNA-mediated resistance.  相似文献   

18.
Germination was readily induced in recalcitrant microspore-derived embryos of Brassica napus Topas when they were exposed to a period of chilling (9–12 days at 4°C) or partial desiccation (rapid or slow air drying) prior to germination. In general, embryos thirty-five days old had the highest germination rates as compared to younger or older ones. Populations of embryos were induced to germinate at a rate of over 90% under specific temperature, desiccation and age conditions. Comparisons to an embryogenic B. napus winter line, F346, are made.  相似文献   

19.
Erucic acid (22:1) is a valuable renewable resource for the oleochemical industry. Currently available high erucic acid rapeseed cultivars contain only about 50% erucic acid in the seed oil. A substantial increase of the erucic acid content of the rapeseed oil could increase market prospects. The transgenic line TNKAT, over expressing the rapeseed fatty acid elongase gene (fae1) and expressing the Ld-LPAAT gene from Limnanthes douglasii was crossed with the line 6575-1 HELP (high erucic and low polyunsaturated fatty acid). A from the F1 plants produced population of 90 doubled haploid (DH) lines was tested in a greenhouse with three replicates. Parental lines TNKAT and 6575-1 HELP contained 46 and 50% erucic acid in the seed oil, respectively. In the DH population the erucic acid content ranged between 35 and 59%. The Ld-LPAAT + Bn-fae1.1 transgene showed a 1:1 segregation. The transgenic DH lines contained up to 8% trierucolyglycerol, but surprisingly had a by 2.3% lower erucic acid content compared to the non-transgenic segregants. Results indicated that the ectopically expressed fae1.1 gene may not be functional. The DH population also showed a large quantitative variation for PUFA content ranging from 6 to 28% (TNKAT: 21%, 6575-1 HELP: 8%). Regression analysis showed that in the DH population a 10% reduction in PUFA content led to a 4.2% increase in erucic acid content. Development of locus specific PCR primers for the two resident erucic acid genes fae1.1 (A-genome) and fae1.2 genes (C-genome) of rapeseed allowed sequencing of the respective alleles from TNKAT and 6575-1 HELP. Single nucleotide polymorphisms were only found for the fae1.1 gene. Use of allele specific fae1.1 PCR primers, however, did not reveal a significant effect of the fae1.1 allele from either parent on erucic acid content. The high erucic acid low polyunsaturated fatty acid DH lines and the fae1 locus specific primers developed in the present study should be useful in future studies aimed at increasing erucic acid content in rapeseed.  相似文献   

20.
Summary Restriction patterns of chloroplast (cp) and mitochondrial (mt) DNA in Brassica napus rapeseed reveal the alloplasmic nature of cytoplasmic male sterility in this crop. Both the Shiga and Bronowski systems probably exploit cytoplasmic diversity in B. napus cultivars arising from introgression of cytoplasm from the other rapeseed species, B. campestris. Nuclear genes specific to these systems do not cause sterility in maintainers (Bronowski and Isuzu-natane) because they have a campestris cytoplasm, but give rise to sterility in napus cytoplasms. In the course of hybridization to napus cultivars a line with the triazine resistant cytoplasm (a campestris cytoplasm) has undergone an alteration in the mt genome rendering its restriction pattern more similar than previously to that of napus. The alteration may be an inversion between 7.2 and 3.4 kb in length.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号