共查询到20条相似文献,搜索用时 0 毫秒
1.
Effect of quadriceps femoris muscle length on neural activation during isometric and concentric contractions. 总被引:2,自引:0,他引:2
Nicolas Babault Michel Pousson Anne Michaut Jacques Van Hoecke 《Journal of applied physiology》2003,94(3):983-990
The effect of muscle length on neural drive (here termed "neural activation") was investigated from electromyographic activities and activation levels (twitch interpolation). The neural activation was measured in nine men during isometric and concentric (30 and 120 degrees /s) knee extensions for three muscle lengths (35, 55, and 75 degrees knee flexion, i.e., shortened, intermediate, and lengthened muscles, respectively). Long (76 degrees ), medium (56 degrees ), and short (36 degrees ) ranges of motion were used to investigate the effect of the duration of concentric contraction. Neural activation was found to depend on muscle length. Reducing the duration of contraction had no effect. Neural activation was higher with short muscle length during isometric contractions and was weaker for shortened than for intermediate and lengthened muscles performing 120 degrees /s concentric contractions. Muscle length had no effect on 30 degrees /s concentric neural activation. Peripheral mechanisms and discharge properties of the motoneurons could partly explain the observed differences in the muscle length effect. We thus conclude that muscle length has a predominant effect on neural activation that would modulate the angular velocity dependency. 相似文献
2.
Eccentric and concentric torque-velocity relationships during arm flexion and extension
Influence of strength level 总被引:4,自引:0,他引:4
Influence of strength level 总被引:4,自引:0,他引:4
Tibor Hortobágyi Frank I. Katch 《European journal of applied physiology and occupational physiology》1990,60(5):395-401
Forty men were tested with a computerized dynamometer for concentric and eccentric torques during arm flexion and extension at 0.52, 1.57, and 2.09 rad.s-1. Based on the summed concentric and eccentric torque scores, subjects were placed into a high strength (HS) or low strength (LS) group. The eccentric and concentric segments of the torque-velocity curves (TVCs) were generated using peak torque and constant-angle torque (CAT) at 1.57 and 2.36 rad. Angle of peak torque was also recorded. Compared to LS, HS had significantly greater estimated lean body mass (+10.2 kg) and approximately 25% greater average torque output. Reliability of the peak torque scores on 2 days in 20 subjects was r greater than or equal to 0.85. The difference between observed torques and the mathematically computed criterion torque scores averaged 1% for three validation loads that ranged from 11.4 to 90.4 kg. Statistical analysis revealed that torque output in LS plateaued at low concentric velocities and was also flattened with increasing eccentric velocities. Conversely, torque output for HS increased with decreasing concentric velocities and increased with increasing eccentric velocities. The method of plotting the TVCs for peak or CAT did not influence the pattern of TVC. Eccentric flexion peak torque occurred at a significantly shorter muscle length (1.88 rad) than concentric torque (2.12 rad). This difference was also present for extension; it was 1.88 rad for eccentric and 2.03 rad for concentric torque.(ABSTRACT TRUNCATED AT 250 WORDS) 相似文献
3.
A. F. Mannion P. M. Jakeman M. Dunnett R. C. Harris P. L. T. Willan 《European journal of applied physiology and occupational physiology》1992,64(1):47-50
The content of anserine and carnosine in the lateral portion of the quadriceps femoris muscle of 50 healthy, human subjects has been studied. Anserine was undetectable in all muscle samples examined. Muscle carnosine values for the group conformed to a normal distribution with a mean (SD) value of 20.0 (4.7) mmol.kg-1 of dry muscle mass. The concentration of carnosine was significantly higher in the muscle of male subjects (21.3, 4.2 mmol.kg-1 dry mass) than in females of a similar age and training status (17.5, 4.8 mmol.kg-1 dry mass) (P less than 0.005). The test-retest reliability of measures was determined on a subgroup of 17 subjects. No significant difference in mean carnosine concentration was found between the two trials [21.5 (4.0) and 22.0 (5.2) mmol.kg-1 dry muscle mass; P greater than 0.05]. The importance of carnosine as a physicochemical buffer within human muscle was examined by calculating its buffering ability over the physiological pH range. From the range of carnosine concentrations observed (7.2-30.7 mmol.kg-1 dry muscle mass), it was estimated that the dipeptide could buffer between 2.4 and 10.1 mmol H+.kg-1 dry mass over the physiological pH range 7.1-6.5, contributing, on average, approximately 7% to the total muscle buffering. This suggests that in humans, in contrast to many other species, carnosine is of only limited importance in preventing the reduction in pH observed during high intensity exercise. 相似文献
4.
5.
Nigel A. S. Taylor James D. Cotter Stephen N. Stanley Robert N. Marshall 《European journal of applied physiology and occupational physiology》1991,62(2):116-121
Technical limitations of some isokinetic dynamometers have called into question the validity of some data on human muscle mechanics. The Biodex dynamometer has been shown to minimize the impact artefact while permitting automatic gravity correction. This dynamometer was used to study quadriceps muscle torque and power generation in elite power (n = 6) and elite endurance (n = 7) athletes over 12 randomly assigned isokinetic velocities from 30 degrees.s-1 to 300 degrees.s-1. The angle at peak torque varied as a negative, linear function of angular velocity, with the average angle across test velocities being 59.5 degrees (SD 10.2 degrees). Power athletes developed greater peak torque at each angular velocity (P less than 0.05) and experienced a 39.7% decrement in torque over the velocity range tested. Endurance athletes encountered a 38.8% decline in peak torque. Torques measured at 60 degrees of knee flexion followed a similar trend in both groups; however the greatest torques were recorded at 60 degrees.s-1 rather than at 30 degrees.s-1. Leg extensor muscle power increased monotonically with angular velocity in both power (r2 = 0.728) and endurance athletes (r2 = 0.839); however these curves diverged significantly so that the power athletes produced progressively more power with each velocity increment. These inter group differences probably reflected a combination of natural selection and training adaptation. 相似文献
6.
Ullrich B Brüggemann GP 《Journal of strength and conditioning research / National Strength & Conditioning Association》2008,22(5):1544-1555
In this study, we examined whether different exercise modes provoke functional differences in maximal and explosive force-generating capacities and fatigability of the quadriceps femoris (QF). Additionally, the interaction of different functional capacities was studied in competitive athletes. Ten competitive tennis players and 10 endurance athletes participated in the study. Pre-exercise force-generating capacities were determined during maximal voluntary isometric knee extensions (MVC). Fatigability of the QF was studied using sustained isometric contractions with target loads of 20% and 40% of pre-exercise MVC. Postexercise MVCs were conducted 20 seconds, 1 minute, and 3 minutes post task failure. Muscle activation of the QF during the fatiguing exercises and postexercise MVCs was estimated using surface electromyography. Higher explosive force-generating capacities, but no differences in absolute moments, were detected in tennis players compared with endurance athletes. Fatigability of the QF during both fatiguing tasks was approximately the same in both athletic populations. This was indicated by minor group differences in endurance time, postexercise MVC production, and electromyography (EMG)-estimated muscle activation during fatigue. Variability in endurance time was not significantly associated with pre-exercise force-generating capacities in these competitive athletes. In both athletic populations, recovery of MVC was significantly slower after the fatiguing contraction with 20% of MVC compared with that with 40% of MVC. These results may enhance understanding of plasticity of the neuromuscular system and yield interesting information for the optimization of athletic training programs. Explosive strength training might enhance endurance athletes' explosiveness without decreasing muscle fatigue resistance. The exercise profile of competitive tennis is suggested to act as a sufficient trigger to reach high neuromuscular fatigue resistance but may be inadequate to cause significant gains in absolute muscle strength. 相似文献
7.
8.
The objectives were to examine knee angle-, and gender-specific knee extensor torque output and quadriceps femoris (QF) muscle recruitment during maximal effort, voluntary contractions. Fourteen young adult men and 15 young adult women performed three isometric maximal voluntary contractions (MVC), in a random order, with the knee at 0 degrees (terminal extension), 10 degrees, 30 degrees, 50 degrees, 70 degrees, and 90 degrees flexion. Knee extensor peak torque (PT), and average torque (AT) were expressed in absolute (N m), relative (N m kg(-1)) and allometric-modeled (N m kg(-n)) units. Vastus medialis (VM), vastus lateralis (VL), and rectus femoris (RF) muscle EMG signals were full-wave rectified and integrated over the middle 3 s of each contraction, averaged over the three trials at each knee angle, and normalized to the activity recorded at 0 degrees. Muscle recruitment efficiency was calculated as the ratio of the normalized EMG of each muscle to the allometric-modeled average torque (normalized to the values at 0 degrees flexion), and expressed as a percent. Men generated significantly greater knee extensor PT and AT than women in absolute, relative and allometric-modeled units. Absolute and relative PT and AT were significantly highest at 70 degrees, while allometric-modeled values were observed to increase significantly across knee joint angles 10-90 degrees. VM EMG was significantly greater than the VL and RF muscles across all angles, and followed a similar pattern to absolute knee extensor torque. Recruitment efficiency improved across knee joint angles 10-90 degrees and was highest for the VL muscle. VM recruitment efficiency improved more than the VL and RF muscles across 70-90 degrees flexion. The findings demonstrate angle-, and gender-specific responses of knee extensor torque to maximal-effort contractions, while superficial QF muscle recruitment was most efficient at 90 degrees, and less dependent on gender. 相似文献
9.
10.
Hiroshi Akima Jeanne M Foley Barry M Prior Gary A Dudley Ronald A Meyer 《Journal of applied physiology》2002,92(2):679-684
This study tested the hypothesis that fatigue of a single member of musculus quadriceps femoris (QF) would alter use of the other three muscles during knee extension exercise (KEE). Six men performed KEE with the left QF at a load equal to 50% of the 4 x 10 repetitions maximum. Subsequently, electromyostimulation (EMS), intended to stimulate and fatigue the left m. vastus lateralis (VL), was applied for 30 min. Immediately after EMS, subjects repeated the KEE. Transverse relaxation time (T2)-weighted magnetic resonance images were taken before and after each bout of KEE and at 3 and 30 min of EMS to assess use and stimulation, respectively, of the QF. T2 of each of the QF muscles was increased 8-13% after the first KEE. During EMS, T2 increased (P < 0.05) even more in VL (10%), whereas it decreased (P < 0.05) to pre-KEE levels in m. vastus medials (VM) and m. rectus femoris (RF). The VL and, to some extent, the m. vastus intermedius were stimulated, whereas the VM and RF were not, thereby recovering from the first bout of KEE. Isometric torque, initially 30% of maximal voluntary, was reduced to 13% at 3 min and 7% at 30 min. T2 was greater (P < 0.05) after the second than the first bout of KEE, especially the increase for the VM and RF. These results suggest that subjects were able to perform the second bout with little contribution of the VL by greater use of the other QF muscles. The simplest explanation is increased central command to the QF such that the intended act could be accomplished despite acute fatigue of one of its synergists. 相似文献
11.
Vassilis P Vassilios B Vassilis M Athanasios JZ Vassilis T Christina K Yiannis K 《Journal of strength and conditioning research / National Strength & Conditioning Association》2008,22(4):1222-1227
The purpose of this study was to investigate whether running economy is affected by isokinetic eccentric exercise designed to cause muscle damage. Twenty-four young healthy men performed 120 maximal voluntary eccentric actions at each thigh's quadriceps muscle at an angular velocity of 60 degrees .s. The participants were then randomly divided into 2 equal groups, 1 of which exercised 24 hours later, while the other group rested. Muscle damage indicators (i.e., serum creatine kinase, delayed onset muscle soreness, and eccentric, concentric, and isometric peak torque) and running economy indicators (i.e., oxygen consumption, pulmonary ventilation, respiratory exchange ratio, respiratory rate, and heart rate during treadmill running at 2.2 and 3.3 m.s) were assessed prior to and 48 hours following the eccentric exercise. All muscle damage indicators changed significantly in both groups (p < 0.05) in a way suggestive of considerable muscle damage. Running economy indicators of the exercise group demonstrated only an elevation of respiratory rate at 48 hours (p < 0.05) and a tendency to lower economy compared to the resting group. It can be concluded that isokinetic eccentric exercise applied to the quadriceps femoris muscles did not affect running economy 48 hours later and that resting during this period tended to result in more economical running compared to exercising at 24 hours. 相似文献
12.
Knee extensor torque and quadriceps femoris EMG during perceptually-guided isometric contractions. 总被引:2,自引:0,他引:2
D M Pincivero A J Coelho R M Campy Y Salfetnikov E Suter 《Journal of electromyography and kinesiology》2003,13(2):159-167
The aim of this study was to examine superficial quadriceps femoris (QF) EMG and torque at perceived voluntary contraction efforts. Thirty subjects (15 males, 15 females) performed 9, 5 s, sub-maximal contractions at prescribed levels of perceived voluntary effort at points 1-9 on an 11-point scale (0-10), in a random order. Surface electromyograms (EMG) of the vastus medialis (VM), vastus lateralis (VL), and rectus femoris (RF) muscles, as well as QF peak torque (PT), average torque (AT), and torque coefficient of variation (C.V.), were sampled. The raw EMG signals were full-wave rectified and integrated over the middle three s of each contraction. The sampled EMG signals, and PT and AT at each perceived exertion level were normalized to the average of three maximal voluntary contractions. The normalized EMG and torque values at each perceived exertion level were then compared to equivalent percent values (i.e., 10% at a perceived level of 1). The results demonstrated that at all perceived exertion levels, with the exception of the RF at a level of 2 which was equivalent to 20%, and the VL and RF muscles at a level 1 in which activation was greater than 10%, activation was significantly less than the equivalent percent value at each point on the scale. VM EMG was found to be less than the VL and RF from contraction levels 3-9. PT was shown to be less than the equivalent percent values at contraction levels 6-9. The AT was found to be lower than the expected percent value at perceived effort levels 2-9. Torque C.V. was not found to be different across the range of perceived effort. The major findings of this study suggested that humans over-estimate voluntary QF muscle torque when guided by perceptual sensations. It is also suggested that the produced EMG signals revealed a reliance on the VL muscle for knee extensor torque generation at sub-maximal levels. 相似文献
13.
S.D. Blacker J.L. Fallowfield M.E.T. Willems 《Journal of electromyography and kinesiology》2013,23(4):886-891
The reliability of voluntary and electrically stimulated isometric contractions of m. quadriceps femoris of male participants (n = 10; age 30 ± 8 years; height 1.79 ± 0.05 m; body mass 79.4 ± 8.3 kg) was investigated using ratio limits of agreement (LoA) on a time scale common to examine recovery from muscle damaging exercise. No systematic changes in reliability occurred over time (baseline versus 2, 24, 48, and 72 h). Maximal voluntary contraction (MVC) and interpolated twitch technique (ITT) showed no mean bias (P > 0.05) with 95% LoA of ±12.7 and ±5.4, respectively. Resting twitch and potentiated doublet peak force showed no mean bias (P > 0.05). However, 95% LoA were smaller for the doublet (±13.9) than the twitch (±32.0). Twitch and doublet rates showed similar trends. Ratio of low (20 Hz) to high (50 Hz) frequency forces showed no mean bias (P > 0.05) and 95% LoA of (±9.2). However, there was significant mean bias (P < 0.05) and wider 95% LoA for peak force, contraction and relaxation parameters of the low and high frequency forces. In conclusion, MVC, ITT, potentiated doublet and the ratio of low to high frequency forces are recommended to most reliably examine functional muscle recovery between 2 and 72 h after damaging exercise. 相似文献
14.
Bilateral eccentric and concentric torque of quadriceps and hamstring muscles in females and males 总被引:2,自引:0,他引:2
E B Colliander P A Tesch 《European journal of applied physiology and occupational physiology》1989,59(3):227-232
This study assessed maximum eccentric (ECC) and concentric (CON) torque of quadriceps (QUAD) and hamstring (HAM) muscle groups in healthy females (n = 13) and males (n = 27). Peak torques (PT) of bilateral muscle actions were recorded at constant angular velocities of 0.52, 1.57 and 2.61 rad.s-1. The QUADCON and HAMCON PT decreased (p less than 0.05) with increasing angular velocity. The QUADECC and HAMECC PT increased (p less than 0.05) in females, whereas QUADECC PT decreased (p less than 0.05) and HAMECC PT showed no change in males. In general, ECC PT was higher (p less than 0.05) than CON PT and QUAD PT was higher (p less than 0.05) than HAM PT, for any given angular velocity. Males displayed higher (p less than 0.05) PT than females but when PT were adjusted for body mass the sex differences in QUADCON and HAMCON were reduced (p less than 0.05), whereas the differences in QUADECC and HAMECC were abolished. The CON and ECC PT were, on average, 60% and 41% greater, respectively, in males than in females. The corresponding differences, when adjusted for body mass, were 23% and 8%. ECC:CON PT for QUAD were higher (p less than 0.05) in females than in males. CON and ECC HAM:QUAD PT ratio increased (p less than 0.05), as a function of velocity. This study suggests, that bilateral ECC PT is higher than CON PT and CON HAM:QUAD PT ratio is higher than ECC HAM:QUAD PT ratio.(ABSTRACT TRUNCATED AT 250 WORDS) 相似文献
15.
By means of histological methods for revealing adenosine triphosphatase of myosin (pH 4.6) and succinate dehydrogenase activity, using postmortem material, development of various muscle fibers of the femoral m. quadriceps and m. soleus has been studied in human ontogenesis. The first stage of rearrangements lasts from the 5th-6th month of the uterine development up to 2 years of age and is characterized by formation (from non-differentiated) of oxidative, glycolytic and oxidative-glycolytic fibers. During the period from 2 up to 7-8 years of age the ratio in the types changes slightly, but transversal section size of the muscle fiber increases intensively. Then from 11 up to 17 years of age, together with maximal increment of the fibers transversal section, there is an essential change in the type relation. By the 17th years of age, in the femoral m. quadriceps the part of the fibers with glycolytic type of energy supply increases, while in the m. soleus the oxidative fibers become more numerous. By the 70th years of age in the femoral m. quadriceps relative amount of intermediate fibers increases. 相似文献
16.
Taija Finni Marko Havu Shantanu Sinha Jussi-Pekka Usenius Sulin Cheng 《Journal of applied physiology》2008,104(5):1320-1328
We examined the relationships between morphology and muscle-tendon dynamics of the quadriceps femoris muscle of 11 men using velocity-encoded phase-contrast magnetic resonance imaging (MRI). Thigh muscle electromyography and joint range of motion were first measured outside the MRI scanner during knee extension-flexion tasks that were performed at a rate of 40 times/min with elastic bands providing peak resistance of 5.2 kp (SD 0.4) to the extension. The same movement was repeated inside the MRI scanner bore where tissue velocities and muscle morphology were recorded. The average displacement in the proximal and distal halves of the rectus femoris and vastus intermedius aponeuroses was different (P = 0.049), reflecting shortening (1.6%), but the tensile strain along the length of the aponeuroses was uniform. The aponeurosis behavior varied among individuals, and these individual patterns were best explained by the differences in relative cross-sectional area of rectus femoris to vastus muscles (r = 0.71, P = 0.014). During dynamic contraction, considerable deformation of muscles in the axial plane caused an anatomic measure such as muscle thickness to change differently (decrease or increase) in different sites of measurement. For example, when analyzed from the axial images, the vastus lateralis thickness did not change (P = 0.946) in the frontal plane through femur but increased in a 45 degrees oblique plane between the frontal and sagittal planes (P = 0.004). The present observations of the heterogeneity and individual behavior emphasize the fact that single-point measurements do not always reflect the overall behavior of muscle-tendon unit. 相似文献
17.
Takahashi K Takahashi HE Nakadaira H Yamamoto M 《Journal of musculoskeletal & neuronal interactions》2006,6(2):201-205
Bone fractures cause disabilities that leave the elderly bedridden and strengthening the muscles of the lower limbs, especially the quadriceps femoris, is the main kinematical method of preventing falls. Recently, however, it has become clear that the psoas major is critical for walking ability. We examined changes due to aging in the size of the psoas major compared with changes in the quadriceps femoris. Bone fractures are more frequent in women than in men; our participants (n=210) were therefore exclusively women ranging in age from 20 to 79 and divided into 6 age groups (n=35 each) in 10-year increments. Cross-sectional areas of the two muscles were measured by an MR scanner for a comparative estimation of muscle size. The psoas major showed the greatest quantity in subjects in their 20s, after which it declined steadily until the 60s and dramatically in the 70s, while the area of the quadriceps femoris was preserved until the 40s and showed no dramatic later decline. Exercise beyond regular daily activities is recommended to prevent the psoas major from decreasing in volume. We also recommend the development of a method of maintaining its muscle volume which would target women younger than 40 and older than 60. 相似文献
18.
Architectural and histochemical diversity within the quadriceps femoris of the brown lemur (Lemur fulvus) 总被引:1,自引:0,他引:1
Physiologically related features of muscle morphology are considered with regard to functional adaptation for locomotor and postural behavior in the brown lemur (Lemur fulvus). Reduced physiological cross-sectional area, estimated maximum excursion of the tendon of insertion, length of tendon per muscle fasciculus, and areal fiber type composition were examined in the quadriceps femoris in order to assess the extent of a "division of labor" among four apparent synergists. Each of these four muscles in this prosimian primate displays a distinguishing constellation of morphological features that implies functional specialization during posture and normal locomotion (walk/run, galloping, leaping). Vastus medialis is best suited for rapid whole muscle recruitment and may be reserved for relatively vigorous activities such as galloping and leaping (e.g., small cross-sectional area per mass, long excursion, predominance of fast-low oxidative fibers, relatively little tendon per fasciculus). In theory, rectus femoris could be employed isometrically in order to store elastic strain energy during all phasic activities (e.g., large cross-sectional area per mass, short excursion, predominance of fast-high oxidative fibers, large amount of tendon per fasciculus). Vastus intermedius exhibits an overall morphology indicative of a typical postural muscle (e.g., substantial cross-sectional area, short excursion, predominance of slow-high oxidative fibers, large amount of tendon per fasciculus). The construction of vastus lateralis reflects an adaptation for high force, relatively high velocity, and resistance to fatigue (e.g., large cross-sectional area, long excursion, most heterogeneous distribution of fiber types, large amount of tendon per fasciculus); this muscle is probably the primary contributor to a wide range of locomotor behaviors in lemurs. Marked dramatic architectural disparity among the four bellies, coupled with relative overall fiber type heterogeneity, suggests the potential for exceptional flexibility in muscle recruitment within this mass. One interpretation of this relatively complex neuromuscular organization in the brown lemur is that it represents an adaptation for the exploitation of a three-dimensional arboreal environment by rapid quadrupedalism and leaping among irregular and spatially disordered substrates. 相似文献
19.
Proprioceptive proximo-distal relationships between the quadriceps and soleus muscles in man 总被引:1,自引:0,他引:1
Electrical stimulation of femoral nerve modulates voluntary tonic activity o of ipsilateral soleus muscle. Stimulus time-locked inhibitory and facilitatory phases can be distinguished. EMG temporal analysis suggests that early perturbations are correlated with spinal effects of centripetal electrical activity. The inhibitory effects which momentarily abolish voluntary soleus activity are thought to result from quadriceps Ib fibres recruitment. While no heteronymous activity is induced at rest, femoral nerve Ia fibres activation can produce soleus muscle reflex when soleus motor nucleus excitability is increased by voluntary command. Recurrent discharge resulting from soleus reflex response enhances inhibition initially due to quadriceps Ib volley. Secondary effects of isometric quadriceps contraction (and soleus contraction when the femoral stimulus elicits a reflex in this muscle) have their own effects later. These findings suggest that proprioceptive relationships of the two muscular groups are efficient during tonic isometric voluntary command. 相似文献
20.
Camata TV Altimari LR Bortolotti H Dantas JL Fontes EB Smirmaul BP Okano AH Chacon-Mikahil MP Moraes AC 《Journal of strength and conditioning research / National Strength & Conditioning Association》2011,25(9):2537-2543
This study compared the activation pattern and the fatigue rate among the superficial muscles of the quadriceps femoris (QF) during severe cycling exercise. Peak oxygen consumption (VO(2)peak) and maximal accumulated oxygen Deficit (MAOD) were established by 10 well-trained male cyclists (27.5 ± 4.1 years, 71.0 ± 10.3 kg, 173.4 ± 6.6 cm, mean VO(2)peak 56.7 ± 4.4 ml·kg·min(-1), mean MAOD 5.7 ± 1.1 L). Muscle activity (electromyographic [EMG] signals) was obtained during the supramaximal constant workload test (MAOD) and expressed by root mean square (RMS) and median frequency (MF slope). The RMS of the QF, vastus lateralis (VL) and vastus medialis (VM) muscles were significantly higher than at the beginning after 75% of exercise duration, whereas for the rectus femoris (RF), this was observed after 50% of exercise duration (p ≤ 0.05). The slope of the MF was significantly higher in the RF, followed by the VL and VM (-3.13 ± 0.52 vs. -2.61 ± 0.62 vs. -1.81 ±0.56, respectively; p < 0.05). We conclude that RF may play an important role in limiting performance during severe cycling exercise. 相似文献