首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
摘要:【目的】研究ste7和ste15基因双敲除对依博素生物合成的影响。【方法】通过基因同源重组双交换,对ste15基因缺失突变株Streptomyces sp. 139 (ste15 -)再进行ste7基因的敲除,经Southern杂交验证,获得了ste7和ste15双基因缺失变株Streptomyces sp. 139 (ste7 - ste15 -)。对该突变株进行了基因互补。气相色谱分析ste7和ste15双基因缺失突变株及互补株产生的胞外多糖单糖组分,排阻色谱测定衍生物的重均分子量,ELISA法  相似文献   

2.
以往研究已确定链霉菌胞外多糖依博素的生物合成基因簇(ste), ste15 和ste22 分别编码葡萄糖糖基转移酶和鼠李糖糖基转移酶。现通过基因同源重组双交换,在ste15基因缺失突变株Streptomyces sp. 139 (ste15-) 基础上,再进行ste22 基因阻断,经Southern 杂交验证,得到了ste15 和ste22 双基因缺失突变株Streptomyces sp. 139 (ste15-ste22-),并对该菌株进行了基因互补研究。双基因缺失株产生的胞外多糖与依博素相比,葡萄糖与鼠李糖含量明显降低,分子量下降,生物活性明显变弱。基因互补株产生的胞外多糖中葡萄糖与鼠李糖含量基本恢复至依博素水平,生物活性也显著提高。因此,进一步阐明了ste15和ste22基因参与了依博素生物合成中葡萄糖和鼠李糖重复单元序列的形成过程,在依博素的生物合成中起重要作用,变株产生的依博素新衍生物体内外生物学活性正在深入研究中。  相似文献   

3.
Aims:  Ebosin, a novel exopolysaccharide (EPS) produced by Streptomyces sp. 139 has antagonistic activity for interleukin-1 receptor (IL-1R) in vitro and remarkable anti-rheumatic arthritis activity in vivo. Ebosin biosynthesis gene ( ste ) cluster has been identified in our laboratory. This paper reports our effort to characterize the function of ste11 gene.
Methods and Results:  After the ste11 gene was cloned and expressed in Escherichia coli BL21, the recombinant Ste11 was purified and found capable of catalyzing NAD+ and l -threonine to NADH and 2-amino-3-ketobutyrate, hence identified as a threonine dehydrogenase (TDH). To investigate its function in the biosynthesis of Ebosin, the ste11 gene was knocked out with a double crossover via homologous recombination. The monosaccharide composition of EPS produced by the mutant strain (EPS-m) was altered from that of Ebosin. The analysis of IL-1R antagonist activity for EPSs showed that the bioactivity of EPS-m was lower than Ebosin.
Conclusions:  ste11 gene encoding a TDH may function as a modifier gene of Ebosin during its biosynthesis.
Significance and Impact of the Study:  TDH encoded by ste11 is functional in Ebosin biosynthesis. It is the first characterized TDH in Streptomyces .  相似文献   

4.
Streptomyces sp. 139 produces a novel exopolysaccharide (EPS) designated Ebosin which has antagonistic activity for IL-1R in vitro and remarkable anti-rheumatic arthritis activity in vivo. We previously identified a ste (Streptomyces eps) gene cluster consisting of 27 ORFs responsible for Ebosin biosynthesis. The gene product of ste15 shows high homology to known glycosyltransferases (GTFs). To elucidate its function in Ebosin biosynthesis, the ste15 gene was knocked out with a double crossover via homologous recombination. Our analysis of monosaccharide composition for EPS-m produced by the mutant strain Streptomyces sp. 139 (ste15 ) showed that glucose was significantly diminished compared to its natural counterpart Ebosin. This derivative of Ebosin lost the antagonistic activity for IL-1R in vitro and its molecular mass was smaller than Ebosin. These results have demonstrated that the ste15 gene codes for a GTF for glucose, which is functionally involved in Ebosin biosynthesis.  相似文献   

5.
Streptomyces sp. 139 generates a novel exopolysaccharide (EPS) designated as Ebosin, which exerts an antagonistic effect on IL-1R in vitro and anti-rheumatic arthritis activity in vivo. A ste gene cluster for Ebosin biosynthesis consisting of 27 ORFs was previously identified in our laboratory. In this paper, ste16 was expressed in Escherichia coli BL21 and the recombinant protein was purified, which has the ability to catalyze the transfer of the methyl group from S-adenosylmethionine (AdoMet) to dTDP-4-keto-6-deoxy-D-glucos, which was thus identified as a methyltransferase. In order to determine the function of ste16 in Ebosin biosynthesis, the gene was disrupted with a double crossover via homologous recombination. The monosaccharide composition of EPS-m generated by the mutant strain Streptomyces sp. 139 (ste16) was found to differ from that of Ebosin. The IL-1R antagonist activity of EPS-m was markedly lower than that of Ebosin. These experimental results have shown that the ste16 gene codes for a methyltransferase which is involved in Ebosin biosynthesis. These authors contributed equally to this work.  相似文献   

6.
Ebosin, a novel exopolysaccharide produced by Streptomyces sp. 139 has antagonist activity for IL-1R in vitro and remarkable anti-rheumatic arthritis activity in vivo. Its biosynthesis gene cluster (ste) has been identified. In this study, gene ste17 was expressed in Escherichia coli BL21 and the recombinant protein was purified. With CTP and α-d-glucose-1-phosphate as substrates, the recombinant Ste17 protein was found capable of catalyzing the production of CDP-d-glucose and pyrophosphate, demonstrating its identity as an α-d-glucose-1-phosphate–cytidylyltransferase (CDP-d-glucose synthase). To investigate the function of ste17 in Ebosin biosynthesis, the gene was disrupted with a double crossover via homologous recombination. The monosaccharide composition of exopolysaccharide (EPS) produced by the mutant Streptomyces sp. 139 (ste17 ) was found significantly altered from that of Ebosin, with glucose becoming undetectable. This gene knockout also negatively affected the antagonist activity for IL-1R of EPS. These results indicate that the CDP-d-glucose synthase encoded by ste17 gene is involved in the formation of nucleotide sugar (CDP-d-glucose) as glucose precursor in Ebosin biosynthesis. Xiao-Qiang Qi and Qing-Li Sun contributed equally to this work.  相似文献   

7.
李颢  王玲燕  徐桂云  陈阳  姜蓉  李元 《遗传学报》2005,32(11):1213-1220
链霉菌139能够产生一种全新的胞外多糖——依博素(139A),该多糖体内具有显著抗类风湿性关节炎活性。其生物合成基因簇(GenBank Accession Number:AYl31229)已被鉴定约31.3kb,包含22个开放阅读框(ste1—ste22)。以pET-30a为载体,克隆并在大肠杆菌BL21(DE3)中进行了ste6基因的表达,对该基因的克隆、表达与性质进行了研究。亲和层析法证实,纯化后重组蛋白具有催化UDP-葡萄糖脱氢变成UDP-葡萄糖醛酸的活性。这表明ste6编码产物是葡萄糖脱氢酶。为了证实ste6基因与依博素生物合成的关系,采用单交换基因破坏策略构建了ste6基因阻断突变株。结果初步显示ste6和依博素生物合成相关。  相似文献   

8.
Zhang Y  Zhou J  Chang M  Bai L  Shan J  Yao C  Jiang R  Guo L  Zhang R  Wu J  Li Y 《The Biochemical journal》2012,443(3):727-734
Ebosin, a novel exopolysaccharide produced by Streptomyces sp. 139, has remarkable anti-rheumatoid arthritis activity in vivo and its biosynthesis gene cluster (ste) consists of 27 ORFs (open reading frames). The present paper reports our study of the protein product encoded by ste27. Database searching reveals the homology of Ste27 with some spermidine/spermine acetyltransferases. To confirm the prediction, the ste27 gene was cloned and expressed in Escherichia coli BL21(DE3) cells and recombinant Ste27 was purified. The following enzymatic analysis revealed its ability of transferring the acetyl group from acetyl-CoA to spermidine and spermine, with spermidine being the preferred substrate. Ste27 can acetylate the N1, N4 and N8 positions on spermidine. The Km values of Ste27 were determined for spermidine and spermine, as well as for acetyl-CoA, poly-L-lysine and glucosamine 6-phosphate. Upon gene knockout, the exopolysaccharide-27m produced by the mutant strain Streptomyces sp. 139 (ste27-), compared with Ebosin, exhibited a significantly reduced binding activity to the interleukin-1 receptor. After gene complementation, the binding activity was partially restored. This demonstrated that the ste27 gene is involved in the biosynthesis of Ebosin. Molecular modelling was also carried out to predict the binding mode of Ste27 with acetyl-CoA, spermidine or spermine.  相似文献   

9.
10.
We report the identification and characterization of the ste (Streptomyces eps) gene cluster of Streptomyces sp. 139 required for exopolysaccharide (EPS) biosynthesis. This report is the first genetic work on polysaccharide production in Streptomyces. To investigate the gene cluster involved in exopolysaccharide 139A biosynthesis, degenerate primers were designed to polymerase chain reaction amplify an internal fragment of the priming glycosyltransferase gene that catalyzes the first step in exopolysaccharide biosynthesis. Screening of a genomic library of Streptomyces sp. 139 with this polymerase chain reaction product as probe allowed the isolation of a ste gene cluster containing 22 open reading frames similar to polysaccharide biosynthesis genes of other bacterial species. Involvement of the ste gene cluster in exopolysaccharide biosynthesis was confirmed by disrupting the priming glycosyltransferase gene in Streptomyces sp. 139 to generate non-exopolysaccharide-producing mutants.  相似文献   

11.
Ebosin produced by Streptomyces sp. 139 is a novel exopolysaccharide (EPS) with medicinal activity. This paper describes the functional study of ste10, a putative Ebosin biosynthesis gene. ste10 was cloned and expressed in Escherichia coli BL21 and the purified recombinant protein characterized. Ste10 was shown to be able of catalyzing the transfer of amide nitrogen of glutamine to the side chain of aspartate to produce asparagine. Its Km, optimum temperature and pH were determined to be 0.9 mM, 37 °C and 7.38, respectively. After ste10 gene knock-out, the monosaccharide composition of EPS-m produced by the mutant Streptomyces sp. 139 (ste10) was found changed in comparison with that of Ebosin while its antagonist activity for IL-1R decreased significantly. Based on these results, it is concluded that ste10 codes for an asparagine synthetase which may function as a modificator gene of Ebosin during its biosynthesis.  相似文献   

12.
Aims: Ste15 and ste22 present in the Ebosin biosynthesis gene cluster (ste) were previously shown to function in Ebosin biosynthesis and both of the protein products are predicted to be glycosyltransferases. In this study, their biochemical activities were confirmed. Methods and Results: ste15 and ste22 were cloned and expressed in Escherichia coli. With a continuous coupled spectrophotometric assay and using the purified proteins, we now demonstrated that the protein Ste15 has the ability of catalysing the transfer of glucose specifically from UDP‐glucose to an Ebosin precursor that lacks glucose, the lipid carrier located in the cytoplasmic membrane of the gene ste15 disrupt mutant Streptomyces sp. 139 (ste15?). The protein Ste22 can catalyse the transfer of rhamnose specifically from TDP‐rhamnose to an Ebosin precursor that lacks rhamnose, a lipophilic carrier in the cytoplasmic membrane of the gene ste22 disrupt mutant Streptomyces sp. 139 (ste22?). Conclusions: The gene product of ste15 was identified to be a glucosyltransferase, and the protein encoded by ste22 was found to be a rhamnosyltransferase. Significance and Impact of the Study: Both of two enzymes play essential roles in the formation of repeating units of sugars during Ebosin biosynthesis. These are the first glucosyltransferase and rhamnosyltransferase in the biosynthesis of a Streptomyces exopolysaccharide to be characterized.  相似文献   

13.
Streptomyces sp.139 produces an exopolysaccharide (EPS) designated Ebosin with remarkable anti-rheumatic arthritis activity in vivo. The ste (Streptomyces eps) gene cluster required for Ebosin biosynthesis has been identified. According to similarities with other proteins in the database, ste22 shows high homology with glycosyltransferases originated from different microorganisms. In this study, the ste22 gene was disrupted by double crossover via homologous recombination. The EPS produced by the mutant strain Streptomyces sp.139 (ste22) has a different monosaccharide composition profile in comparison with that of Ebosin. This derivative of Ebosin retained the original antagonistic activity of IL-1R in vitro but lost the bioactivities of anti-inflammation and pain relief in vivo.  相似文献   

14.
Bai L  Chang M  Shan J  Jiang R  Zhang Y  Zhang R  Li Y 《Biochimie》2011,93(9):1401-1407
Streptomyces sp. 139 produces a novel exopolysaccharide (EPS) designated Ebosin which can bind IL-1R specifically and exhibits anti-rheumatic arthritis activity in vivo. With the Ebosin biosynthesis gene cluster (ste) consisting of 27 ORFs identified previously the focus of this study was to characterize the protein encoded by ste26 gene. After cloning and expressing ste26 in Escherichia coli BL21, we purified the recombinant Ste26 protein and revealed its ability of transferring the acetyl group from AcCoA to spermidine and spermine, with spermine being the preferred substrate. Therefore Ste26 has been determined to be a spermidine/spermine acetyltransferase which can use spermine (Km of 72.1 ± 7.4 μM), spermidine (Km of 147.2 ± 11 μM), AcCoA (Km of 45.7 ± 2.5 μM) and poly-l-lysine (Km of 99.7 ± 11 μM) as substrates. The optimum pH, temperature and time for the activity have been shown to be 7.5, 37°C and 10 min, respectively. This is the first spermidine/spermine acetyltransferase characterized in Streptomyces and its function in Ebosin biosynthesis is discussed.  相似文献   

15.
在以前的工作中,采用转座子Tn5 gusA5对野油菜黄单胞菌野油菜致病变种(Xcc)8004菌株进行诱变,获得一批胞外多糖(EPS)合成减少的突变体,对这些突变体的Tn5 gusA5的插入位点进行分析后,发现有两株突变体是wxcA基因不同插入位点的突变体。以前认为wxcA基因与脂多糖(LPS)的O-抗原合成有关而与EPS的合成无关。为明确wxc4基因的功能,对8004菌株的wxcA基因进行缺失,获得的△wxcA突变体的EPS产量与野生型菌株相比,减少了50%,并且一段PCR合成的包含wxcA基因的DNA片段能反式互补△wxcA突变体,恢复突变体的EPS产量。这证实了8004菌株的wxcA基因与EPS的合成产量有关。  相似文献   

16.
Biosynthesis of salicylic acid in plants   总被引:1,自引:0,他引:1  
Salicylic acid (SA) is an important signal molecule in plants. Two pathways of SA biosynthesis have been proposed in plants. Biochemical studies using isotope feeding have suggested that plants synthesize SA from cinnamate produced by the activity of phenylalanine ammonia lyase (PAL). Silencing of PAL genes in tobacco or chemical inhibition of PAL activity in Arabidopsis, cucumber and potato reduces pathogen-induced SA accumulation. Genetic studies, on the other hand, indicate that the bulk of SA is produced from isochorismate. In bacteria, SA is synthesized from chorismate through two reactions catalyzed by isochorismate synthase (ICS) and isochorismate pyruvate lyase (IPL). Arabidopsis contains two ICS genes but has no gene encoding proteins similar to the bacterial IPL. Thus, how SA is synthesized in plants is not fully elucidated. Two recently identified Arabidopsis genes, PBS3 and EPS1, are important for pathogen-induced SA accumulation. PBS3 encodes a member of the acyl-adenylate/thioester-forming enzyme family and EPS1 encodes a member of the BAHD acyltransferase superfamily. PBS3 and EPS1 may be directly involved in the synthesis of an important precursor or regulatory molecule for SA biosynthesis. The pathways and regulation of SA biosynthesis in plants may be more complicated than previously thought.Key words: salicylic acid biosynthesis, isochorismate synthase, phenylalanine ammonia lyase  相似文献   

17.
18.
Rhizobium leguminosarum bv. trifolii produces an acidic exopolysaccharide (EPS) that is important for the induction of nitrogen-fixing nodules on clover. Recently, three genes, pssN, pssO, and pssP, possibly involved in EPS biosynthesis and polymerization were identified. The predicted protein product of the pssP gene shows a significant sequence similarity to other proteins belonging to the PCP2a family that are involved in the synthesis of high-molecular-weight EPS. An R. leguminosarum bv. trifolii TA1 mutant with the entire coding region of pssP deleted did not produce the EPS. A pssP mutant with the 5' end of the gene disrupted produced exclusively low-molecular-weight EPS. A mutant that synthesized a functional N-terminal periplasmic domain but lacked the C-terminal part of PssP produced significantly reduced amounts of EPS with a slightly changed low to high molecular form ratio. Mutants affected in the PssP protein carrying a stable plasmid with a constitutively expressed gusA gene induced nodules on red clover that were not fully occupied by bacteria. A mutant with the entire pssP gene deleted infected only a few plant cells in the nodule. The pssP promoter-gusA reporter fusion was active in bacteroids during nodule development.  相似文献   

19.
AIMS: To determine optimal exopolysaccharide (EPS) production conditions of the mesophilic lactic acid bacterium strain Lactobacillus sakei 0-1 and to detect possible links between EPS yields and the activity of relevant enzymes. METHODS AND RESULTS: Fermentation experiments at different temperatures using either glucose or lactose were carried out. EPS production took place during the exponential growth phase. Low temperatures, applying glucose as carbohydrate source, resulted in the best bacterial growth, the highest amounts of EPS and the highest specific EPS production. Activities of 10 important enzymes involved in the EPS biosynthesis and the energy formation of Lact. sakei 0-1 were measured. The obtained results revealed that there is a clear link for some enzymes with EPS biosynthesis. It was also demonstrated clearly that the presence of rhamnose in the EPS building blocks is due to high activities of the enzymes involved in the rhamnose synthetic branch. CONCLUSION: EPS production in Lact. sakei 0-1 is growth-associated and displays primary metabolite kinetics. Glucose as carbohydrate source and low temperatures enhance the EPS production. The enzymes involved in the biosynthesis of the activated sugar nucleotides play a major role in determining the monomeric composition of the synthesized EPS. SIGNIFICANCE AND IMPACT OF THE STUDY: The proposed results contribute to a better understanding of the physiological factors influencing EPS production and the key enzymes involved in EPS biosynthesis by Lact. sakei.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号