首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Interrelationships between water and cellular metabolism inArtemia cysts   总被引:1,自引:0,他引:1  
Cysts of the crustaceanArtemia are a useful model for studies on intracellular water because they are capable of essentially complete and reversible desiccation. We have used a variety of techniques on this system, the present work being an attempt to estimate the density of intracellular water (ρw). The density of individual cysts was evaluated from sedimentation velocity. Heptane displacement methods were used to determine the volume of a known mass of cysts, from which the density was calculated. The two methods produce comparable results. It was shown that the densities and water contents of large masses of cysts accurately reflect those of individual cysts. Cyst densities (ρc) were determined over the entire range of water content from 0 to 0.63 weight fraction of water (W f), and temperature dependence was measured for 0.61W f over 2–41°C. The following refer to 25°C. No marked change was detected in ρc until the water content exceeded 0.15W f, at which ρc decreased as a linear function of Wf to maximum water content. However, the cyst does not behave ideally in the sense that the densities of the nonaqueous components and added water are not additive as a function ofW f. The partial specific volume of water in cysts at maximum hydration was estimated to be 3% larger than that of pure water. These observations are compared with density measurements on other systems, and with previous findings on the physical properties of water in this system.  相似文献   

2.
The highly thermosensitive and permeable mutants are the mutants from which intracellular contents including proteins can be released when they are incubated both in the low osmolarity water and at the nonpermissive temperature (usually 37 degrees C). After mutagenesis by using nitrosoguanidine, a highly thermosensitive and permeable mutant named Z114 was obtained from the marine yeast Cryptococcus aureus G7a. Of the total protein, 65.3% was released from the mutant cells suspended in distilled water after they were treated at 37 degrees C overnight. However, only 12.3% of the total protein was released from the mutant cells suspended in 1.0 M sorbitol solution after they were treated at 37 degrees C overnight. We found that intracellular density of the mutant treated at 37 degrees C was greatly decreased, and cell volume of the mutant treated at 37 degrees C was increased due to the increased protein release. However, no significant changes in the intracellular density and cell volume of the mutant were observed when its cells suspended in 1.0 M sorbitol solution were treated at 37 degrees C. It was found that no big changes in cell growth, protein content, vitamin C content, nucleic acid content, fatty acids, and amino acid compositions of both the mutant and its wild type were detected. Therefore, the highly thermosensitive and permeable mutant still can be a good candidate as single-cell protein. This means that the method used in this study is a simple and efficient way to release protein from the highly thermosensitive and permeable yeast mutant cells with high protein content.  相似文献   

3.
Although the soybean cyst nematode (SCN), Heterodera glycines, has been known to exist in Wisconsin for at least 14 years, relatively few growers sample for SCN or use host resistance as a means to manage this nematode. The benefit of planting the SCN-resistant cultivar Bell on a sandy soil in Wisconsin was evaluated in 1992 and 1993. A range of SCN population densities was achieved by planting 11 crops with varying degrees of susceptibility for 1 or 2 years before the evaluation. Averaged over nematode population densities, yield of ''Bell'' was 30 to 43% greater than that of the susceptible cultivars, ''Corsoy 79'' and ''BSR 101''. Counts of cysts collected the fall preceding soybean were more predictive of yield than counts taken at planting. Yields of all three cultivars were negatively related (P < 0.001) to cyst populations. Fewer (P < 0.01) eggs were produced on ''Bell'' than on the susceptible cultivars. The annual (fall to fall) change in cyst population densities was dependent on initial nematode density for all cultivars in 1992 and for the susceptible cultivars in 1993. Yield reductions induced by the SCN under the conditions of this study indicate that planting a SCN-resistant cultivar in Wisconsin can be beneficial if any cysts are detected.  相似文献   

4.
在皇甫川流域,随着林草覆盖度的增加,植被与水的矛盾日益突出,其中一个重要的问题就是植被密度与土壤水分之间的矛盾。土壤水分的降低影响了植被的生长,甚至导致了部分植被的死亡,因此对土壤水分与植被密度之间的关系进行研究非常重要,有助于合理造林密度的确定。在已有研究及实验观测的基础上,建立了柠条(Caragana intermedia)林地土壤水分动态模拟模型,模型考虑了主要的土壤、植物过程,包括土壤性状、降雨入渗、植物蒸腾、地表蒸发等;模拟了从1971至2000年,30年里各种立地条件(不同盖度、坡向和坡度)下的柠条林地土壤水分、蒸腾和蒸发等的日动态过程。通过比较不同立地条件下的土壤水分动态,研究了皇甫川流域典型柠条林地土壤水分与植被盖度、坡向和坡度之间的关系,并得出了它们之间的关系式。由得到的平地上柠条的适宜密度,同时结合上述关系式,得出了不同坡度、坡向的适宜密度。坡度小于10°时,适宜造林密度对坡度反应敏感,在10°~30°时,适宜盖度对坡度反应不敏感。对于小于10°的坡地,植被建设时要特别注意设计合理的植被密度。  相似文献   

5.
Mechanical properties of trabecular bone. Dependency on strain rate.   总被引:8,自引:1,他引:7  
The effect of strain rate (epsilon) and apparent density (rho) on stiffness (E), strength (sigma u), and ultimate strain (epsilon u) was studied in 60 human trabecular bone specimens from the proximal tibia. Testing was performed by uniaxial compression to 5% specimen strain. Six different strain rates were used: 0.0001, 0.001, 0.01, 0.1, 1, and 10 s-1. Apparent density ranged between 0.23 and 0.59 g cm-3. Linear and non-linear regression analyses using strength, stiffness and ultimate strain as dependent variables (Y) and strain rate and apparent density as independent variables were performed using the following models: Y = a rho b epsilon c, Y = rho b(a + c epsilon; Y = (a + b rho)epsilon c, Y = a rho 2 epsilon c, E = a rho 3 epsilon c. The variations of strength and stiffness were explained equally well by the linear and the power function relationship to strain rate. The exponent was 0.07 in the power function relationship between strength and strain rate and 0.05 between stiffness and strain rate. The variation of ultimate strain was explained best using a power function relationship to strain rate (exponent = 0.03). The variation of strength and stiffness was explained equally well by the linear, power function and quadratic relationship to apparent density. The cubic relationship between stiffness and apparent density showed a less good fit. Ultimate strain varied independently of apparent density.  相似文献   

6.
研究了不同温度和食用藻密度对发头裸腹潘种群动态和两性生殖的影响.结果表明:温度、食用藻密度对发头裸腹溞的种群密度、雄体密度和卵鞍数均有显著影响.高食用藻密度组的发头裸腹潘种群密度明显高于中、低食用藻密度组,其最大种群密度出现在20℃下的高食用藻密度组.在相同的温度下,发头裸腹溞的首次产幼溞数随食用藻密度的降低而减少,平均每个母潘首次产出的最大幼潘数出现在25℃下的高食用藻密度组.高食用藻密度组发头裸腹潘产生的雄体密度明显高于中、低食用藻密度组.发头裸腹溞的雄体密度与其种群密度之间存在极显著的相关性.发头裸腹溞所产的卵鞍数随食用藻密度的下降而下降,且25℃下发头裸腹溞所产的卵鞍数明显高于其他温度组.与温度相比,食用藻密度对发头裸腹潘的种群动态和两性生殖的影响更大.  相似文献   

7.
1. At 0-4 degrees C mitochondrial ribosomes (55S) dissociate into 39S and 29S subunits after exposure to 300mm-K(+) in the presence of 3.0mm-Mg(2+). When these subunits are placed in a medium containing a lower concentration of K(+) ions (25mm), approx. 75% of the subparticles recombine giving 55S monomers. 2. After negative staining the large subunits (20.3nm width) usually show a roundish profile, whereas the small subunits (12nm width) show an elongated, often bipartite, profile. The dimensions of the 55S ribosomes are 25.5nmx20.0nmx21.0nm, indicating a volume ratio of mitochondrial to cytosol ribosomes of 1:1.5. 3. The 39S and 29S subunits obtained in high-salt media at 0-4 degrees C have a buoyant density of 1.45g/cm(3); from the rRNA content calculated from buoyant density and from the rRNA molecular weights it is confirmed that the two subparticles have weights of 2.0x10(6) daltons and 1.20x10(6) daltons; the weights of the two subunits of cytosol ribosomes are 2.67x10(6) and 1.30x10(6) daltons. 4. The validity of the isodensity-equilibrium-centrifugation methods used to calculate the chemical composition of ribosomes was reinvestigated; it is confirmed that (a) reaction of ribosomal subunits with 6.0% (v/v) formaldehyde at 0 degrees C is sufficient to fix the particles, so that they remain essentially stable after exposure to dodecyl sulphate or centrifugation in CsCl, and (b) the partial specific volume of ribosomal subunits is a simple additive function of the partial specific volumes of RNA and protein. The RNA content is linearly related to buoyant density by the equation RNA (% by wt.)=349.5-(471.2x1/rho(CsCl)), where 1/rho(CsCl)=[unk](RNP) (partial specific volume of ribonucleoprotein). 5. The nucleotide compositions of the two subunit rRNA species of mitochondrial ribosomes from rodents (42% and 43% G+C) are distinctly different from those of cytoplasmic ribosomes.  相似文献   

8.
Cellular responses to extreme water loss: The water-replacement hypothesis   总被引:1,自引:0,他引:1  
The previously advanced hypothesis that desiccation resistance involves the replacement of water adjacent to intracellular surfaces with polyhydroxy compounds has been supported by experiments on cysts of the brine shrimp, Artemia, and in a model system of albumin-glycerol-water, using nuclear magnetic resonance spectroscopy, microwave dielectrics, and density measurements. We have also considered other problems that cells face when large fractions of their total water content are removed. Observations by other investigators have indicated that a variety of mammalian cells can lose roughly 50% of their water and survive; for a given cell type death occurs if its volume is reduced below a certain minimum level. Membrane damage has previously been suggested to be a major cause of dehydration damage. We have proposed some additional plausible mechanisms that might also be involved.  相似文献   

9.
The probability of spreading cysts of Globodera rostochiensis on farming equipment and potato tubers was investigated in naturally infested field plots. The number of cysts recovered from soil that adhered to equipment differed significantly between different pieces of equipment. These differences were related to initial nematode density and, in most cases, to the volume of soil that adhered to the equipment. At an initial density of 0.04 egg/cm³ of soil, significantly more cysts were recovered from a potato digger than from a potato hiller, cultivator, or plow. At an initial density of 0.90 egg/cm³ of soil, significantly more cysts were recovered from the plow than from the other equipment. Although the population density was 22 times greater, only 10 times more cysts adhered 3 to equipment used in soil with a density of 0.90 egg/cm³ of soil than when used in soil infested at 0.04 egg/cm³. The number of potato tuber samples (4.5 kg) that contained cysts with viable eggs was positively correlated with the initial densities of G. rostochiensis in soil in which they were produced. The percentage of tuber samples with cysts containing viable eggs was 10-12% for tubers harvested from soil with densities less than 1 egg/cm³ and 30-76% for tubers harvested from soil with densities greater than 4 eggs/cm³ of soil.  相似文献   

10.
We develop a statistical thermodynamic model for the phase evolution of DNA-cationic lipid complexes in aqueous solution, as a function of the ratios of charged to neutral lipid and charged lipid to DNA. The complexes consist of parallel strands of DNA intercalated in the water layers of lamellar stacks of mixed lipid bilayers, as determined by recent synchrotron x-ray measurements. Elastic deformations of the DNA and the lipid bilayers are neglected, but DNA-induced spatial inhomogeneities in the bilayer charge densities are included. The relevant nonlinear Poisson-Boltzmann equation is solved numerically, including self-consistent treatment of the boundary conditions at the polarized membrane surfaces. For a wide range of lipid compositions, the phase evolution is characterized by three regions of lipid to DNA charge ratio, rho: 1) for low rho, the complexes coexist with excess DNA, and the DNA-DNA spacing in the complex, d, is constant; 2) for intermediate rho, including the isoelectric point rho = 1, all of the lipid and DNA in solution is incorporated into the complex, whose inter-DNA distance d increases linearly with rho; and 3) for high rho, the complexes coexist with excess liposomes (whose lipid composition is different from that in the complex), and their spacing d is nearly, but not completely, independent of rho. These results can be understood in terms of a simple charging model that reflects the competition between counterion entropy and inter-DNA (rho < 1) and interbilayer (rho > 1) repulsions. Finally, our approach and conclusions are compared with theoretical work by others, and with relevant experiments.  相似文献   

11.
Intravenous administration of perfluorochemicals (PFC) will alter the density (rho)B, the gravimetric specific heat (c)B, and the volumetric specific heat (rho c)B of blood. Changes in hematocrit also influence (rho c)B. The calibration constant employed in the determination of cardiac output (CO) by thermal dilution depends inversely on (rho c)B. We estimate the effect of addition of PFC and changes in hematocrit on (rho c)B. Consider blood to be a mixture of red cells, emulsified PFC particles, and plasma. This leads to the equation: (rho c)cB = 0.96 - 0.11Hct - 0.48Fct. Here Hct and Fct are the fractional volume concentrations of red blood cells and PFC, and (rho c)cB is the calculated specific heat based on the actual composition of blood. CO can be corrected for changes in (rho c)B by the equation: (CO)c = [(rho c)sB/(rho c)cB](CO)o. Here (CO)o is the observed cardiac output, (rho c)sB is the standard specific heat of blood used in the calculation of (CO)o, and (CO)c is the corrected cardiac output. We have observed laboratory situations where the correction factors have been as high as 10%.  相似文献   

12.
The effect of electroporation on Dunaliella tertiolecta at constant osmotic pressure (or water activity) was investigated. The following metabolic and physiological parameters were determined: extracellular and intracellular glycerol content, soluble protein content, photosynthetic oxygen evolution, mitochondrial oxygen uptake, cell volume and cell density. Electroporation conditions are described that released about 10% of intracellular glycerol to the external medium with minimal apparent effects on metabolism. Glycerol release originated from most cells rather than by total rupture of a small proportion of cells. Cell volume, measured on motile cells by video microscopy, reduced by 23% immediately after electroporation. Cell density did not increase. The uptake of mannitol, the major solute in the electroporation medium, was less than 20% of glycerol release. Following electroporation, the intracellular glycerol content and the cell volume both returned to pre-electroporation values after about 30min. Because the cells were maintained at constant external osmotic pressure throughout the procedure, it is concluded that the regulatory mechanism responsible for setting the intracellular glycerol content does not sense external osmotic pressure per se. These findings are consistent with a mechanism that senses a parameter linked directly to cell volume to set the intracellular glycerol content.  相似文献   

13.
The density of individualArtemia cysts has been determined by sedimentation velocity measurements at unit gravity. Dried cyst (< 0.02 g H2O/g dry weight) densities, s were obtained by successive sedimentation in two nonpenetrating organic solvents. This removes geometric terms from the equation relating density to sedimentation velocity. Hydrated cysts ( 1.68 g H2O/g dry weight) were sedimented in 0.0750 m NaCl to obtain their density ( c). Values of s, c, and their ratios were found to be independent of cyst volume; therefore, the weight fraction of water in hydrated cysts is very nearly the same in cysts of greatly different size. It can be concluded that measurement of the water content of large populations of these cysts accurately reflects the water content of individual cysts, a point which has been assumed in previous work on this system. If s does not change appreciably when dried cysts are fully hydrated then the density of their water, w, can be calculated to be 1.022 g/cm3 (±0.0011 ). That value is significantly higher than the density of pure water and is very close to estimates of w in skeletal muscle and amphibian oocytes obtained by others. However, the assumption that s is independent of hydration is open to serious criticism, for all these studies. Consequently, conclusions and interpretations derived from such measurements must be considered to be tentative and uncertain.  相似文献   

14.
Artemia cysts are composed of an inner mass of about 4000 cells surrounded by an acellular shell. This system can undergo cycles of hydration-dehydration without viability loss, and is a useful model for the study of intracellular water. We have measured the relative permittivity (ε′) of these cysts as a function of water content over the frequency range 0.8–70 GHz. Detailed analysis of the data for cysts containing close to 1 g H2O/g dry weight indicates that a significant fraction of the total water in this system exhibits dielectric behavior different from that of pure water: the distribution parameter (α) for the dispersion analyzed by the Cole-Cole equation deviates from zero, and the permittivity of cyst water appears to be significantly lower than that of pure liquid.  相似文献   

15.
The electrical membrane resistance rho(0) of the marine alga Valonia utricularis shows a marked maximum in dependence on the turgor pressure. The critical pressure, P(c), at which the maximum occurs, as well as its absolute value, rho(0) (max), are strongly volume-dependent. Both P(c) and rho(0) (max), increase with decreasing cell volume. It seems likely, that these relationships reflect the elastic properties of the cell wall, because the volumetric elastic modulus, epsilon, is also volume-dependent, increasing hyperbolically with cell volume. Both P(c) and rho(0) (max) can be affected by external application of indole-3-acetic acid at concentrations of 2.10(-7)m to 2 .10(-5)m. The critical pressure is shifted by 1.2 to 6 bars toward higher pressures and the maximum membrane resistance increased up to 5.6-fold. During the course of the experiments (up to 4 hours), however, IAA had no effect on the volumetric elastic modulus, epsilon.The maximum in membrane resistance is discussed in terms of a pressure-dependent change of potassium fluxes. The volume dependence of P(c) and rho(0) (max) suggests that not only turgor pressure but also epsilon must be considered as a regulating parameter during turgor pressure regulation. On this basis a hypothesis is presented for the transformation of both, a pressure signal and of changes in the elastic properties of the cell wall into alterations of ion fluxes. It is assumed that the combined effects of tension and compression of the membranes as well as the interaction between membrane and cell wall opposingly change the number of transport sites for K(+) providing a turgor-sensing mechanism that regulates ion fluxes. The IAA effects demonstrated are consistent with this view, suggesting that the basic mechanisms for turgor pressure regulation and growth regulation are similar.Any relation connecting growth rate with turgor pressure should be governed by two parameters, i.e. by a yielding pressure, at which cell growth starts, and by the critical pressure, at which it ceases again.  相似文献   

16.
A three-part, coupled model of cell dehydration, nucleation, and crystal growth was used to study intracellular ice formation (IIF) in cultured hepatocytes frozen in the presence of dimethyl sulfoxide (DMSO). Heterogeneous nucleation temperatures were predicted as a function of DMSO concentration and were in good agreement with experimental data. Simulated freezing protocols correctly predicted and explained experimentally observed effects of cooling rate, warming rate, and storage temperature on hepatocyte function. For cells cooled to -40 degrees C, no IIF occurred for cooling rates less than 10 degrees C/min. IIF did occur at faster cooling rates, and the predicted volume of intracellular ice increased with increasing cooling rate. Cells cooled at 5 degrees C/min to -80 degrees C were shown to undergo nucleation at -46.8 degrees C, with the consequence that storage temperatures above this value resulted in high viability independent of warming rate, whereas colder storage temperatures resulted in cell injury for slow warming rates. Cell damage correlated positively with predicted intracellular ice volume, and an upper limit for the critical ice content was estimated to be 3.7% of the isotonic water content. The power of the model was limited by difficulties in estimating the cytosol viscosity and membrane permeability as functions of DMSO concentration at low temperatures.  相似文献   

17.
Artemia larvae respond to a brief heat-shock between 28 degrees and 40 degrees C with an increase in the synthesis of two groups of proteins of Mr 68,000 and 89,000. At 40 degrees C synthesis of all other proteins is strongly repressed. Cysts, which are naturally thermotolerant, synthesise both heat-shock proteins at temperatures up to 47 degrees C but maintain normal protein synthesis. During pre-emergence development, Ap3A is present in cysts at a concentration twice that of Ap4A. The maximum level of 7.6 pmol/10(6) cells is reached shortly before hatching of the larvae. After hatching, the levels of both nucleotides decline. A 40 degrees C heat-shock produces a 1.8-fold increase in both nucleotides within 20 min in cysts and larvae. A 2.8-fold increase results from a 47 degrees C heat-shock to cysts. The rates of increase parallel but do not precede the increases in the heat-shock proteins. Since non-heat-shocked cysts possess higher levels of Ap3A and Ap4A than do heat-shocked larvae, the observed heat-induced changes in gene expression cannot be explained simply in terms of the intracellular concentrations of these nucleotides.  相似文献   

18.
杉木竞争密度效果分析   总被引:6,自引:0,他引:6  
用竞争密度(C-D)效果的倒数式分析了杉木的生长过程,随着时间的推移,C-D曲线在双对数图上向上移动,随着物理时间t的增加,生物时间被定义为逻辑斯蒂生长曲线中生长系数λ(t)的积分)倾向于增加到最大值,C-D效果倒数式中的系数A和B被求出,随着生物时间τ的增加,系数A急剧增加到最大值后下降,倾向于稳定在一个常数,而系数B呈指数下降,倾向于接近零,随林分的生长,6生长系数λ(t)倾向于下降。  相似文献   

19.
Cell ion and water balance was studied with respect to analysis of the osmotic model of apoptotic volume decrease (AVD) in rat thymocytes under dexamethasone (1 microM, 4-6 h) or etoposide (50 microM, 5 h) treatment. Intracellular water content was determined by measurement of cell buoyant density in continuous Percoll gradient, while intracellular potassium and sodium contents were determined by flame emission analysis. Apoptosis was verified by an increase in cell buoyant density, fluorescence of cells stained with Acridine orange and Ethidium bromide (flow cytometry), by changes in the cell cycle and the appearance of sub-diploid peak in the DNA histogram (flow cytometry), and by a decrease in cell size examined with light microscope. A separate fraction of dense cells with reduced size was found to appear after dexamethasone or etoposide treatment. This fraction was considered as apoptotic. An increase in buoyant density of apoptotic cells corresponded to a decrease in cell water content. In apoptotic cells vs. cells with normal buoyant density, the intracellular potassium content was lower, but sodium content was higher. The sum of potassium and sodium contents was lower in apoptotic cells. Taken into account the loss of anions, associated with the loss of cations, the bulk decrease in ions content has been sufficient to be accounted for cell volume decrease on the basis of the ion-osmotic model.  相似文献   

20.
We studied the growth of individual Xanthium strumarium plants growing at four naturally occurring local densities on a beach in Maine: (1) isolated plants, (2) pairs of plants ≤1 cm apart, (3) four plants within 4 cm of each other, and (4) discrete dense clumps of 10-39 plants. A combination of nondestructive measurements every 2 wk and parallel calibration harvests provided very good estimates of the growth in aboveground biomass of over 400 individual plants over 8 wk and afforded the opportunity to fit explicit growth models to 293 of them. There was large individual variation in growth and resultant size within the population and within all densities. Local crowding played a role in determining plant size within the population: there were significant differences in final size between all densities except pairs and quadruples, which were almost identical. Overall, plants growing at higher densities were more variable in growth and final size than plants growing at lower densities, but this was due to increased variation among groups (greater variation in local density and/or greater environmental heterogeneity), not to increased variation within groups. Thus, there was no evidence of size asymmetric competition in this population. The growth of most plants was close to exponential over the study period, but half the plants were slightly better fit by a sigmoidal (logistic) model. The proportion of plants better fit by the logistic model increased with density and with initial plant size. The use of explicit growth models over several growth intervals to describe stand development can provide more biological content and more statistical power than "growth-size" methods that analyze growth intervals separately.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号