首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The success of non-native species may depend on the genetic resources maintained through the invasion process. The Coqui ( Eleutherodactylus coqui ), a frog endemic to Puerto Rico, was introduced to Hawaii in the late 1980s via the horticulture trade, and has become an aggressive invader. To explore whether genetic diversity and population structure changed with the introduction, we assessed individuals from 15 populations across the Hawaiian Islands and 13 populations across Puerto Rico using six to nine polymorphic microsatellite loci and five dorsolateral colour patterns. Allelic richness ( R T) and gene diversity were significantly higher in Puerto Rico than in Hawaii populations. Hawaii also had fewer colour patterns (two versus three to five per population) than Puerto Rico. We found no isolation by distance in the introduced range, even though it exists in the native range. Results suggest extensive mixing among frog populations across Hawaii, and that their spread has been facilitated by humans. Like previous research, our results suggest that Hawaiian Coquis were founded by individuals from sites around San Juan, but unlike previous research the colour pattern and molecular genetic data (nuclear and mtDNA) support two separate introductions, one on the island of Hawaii and one on Maui. Coquis are successful invaders in Hawaii despite the loss of genetic variation. Future introductions may increase genetic variation and potentially its range.  相似文献   

2.
3.

Invasive populations of green iguanas (Iguanidae: Iguana iguana) are widely established beyond their native Central, South American, and Lesser Antillean range in various islands of the Pacific, Florida USA, and in the Greater Caribbean Region. Although widespread, information about these invasions is scarce. Here we determine the origin of invasive populations of green iguanas in Puerto Rico, Fiji, The Caymans, Florida USA, The Dominican Republic, the US Virgin Islands (USVI) of St. Thomas and St. Croix, and a U.S.A pet store. We sampled 120 individuals from these locations and sequenced one mitochondrial (ND4) and two nuclear (PAC and NT3) loci. We also include a preliminary characterization of population structure throughout Puerto Rico using six microsatellite loci to genotype individuals across 10 sampling sites. Comparing the genealogical relationships of all our samples to published sequencing data from the native range, we found that sampled populations were largely a product of populations from Colombia and El Salvador; two countries with multiple, industrial-size pet iguana farming operations. Notably, we found that haplotypes detected exclusively in the USVI and Puerto Rico’s outlying island of Vieques are closely linked to green iguanas native to Saba and Montserrat (Lesser Antilles); a clade not reported in the pet trade. Our population genetic analyses did not reveal isolation among sampling sites in Puerto Rico, rather the evidence supported admixture across the island. This study highlights the roles of the pet trade and lack of regulation in the spread of green iguanas beyond their native range.

  相似文献   

4.
Honey bees (Apis mellifera L.) are the primary commercial pollinators across the world. The subspecies A. m. scutellata originated in Africa and was introduced to the Americas in 1956. For the last 60 years, it hybridized successfully with European subspecies, previous residents in the area. The result of this hybridization was called Africanized honey bee (AHB). AHB has spread since then, arriving to Puerto Rico (PR) in 1994. The honey bee population on the island acquired a mosaic of features from AHB or the European honey bee (EHB). AHB in Puerto Rico shows a major distinctive characteristic, docile behavior, and is called gentle Africanized honey bees (gAHB). We used 917 SNPs to examine the population structure, genetic differentiation, origin, and history of range expansion and colonization of gAHB in PR. We compared gAHB to populations that span the current distribution of A. mellifera worldwide. The gAHB population is shown to be a single population that differs genetically from the examined populations of AHB. Texas and PR groups are the closest genetically. Our results support the hypothesis that the Texas AHB population is the source of gAHB in Puerto Rico.  相似文献   

5.
The ectomycorrhizal fungus Pisolithus tinctorius has been introduced to many areas around the world as a source of inoculum for pine plantations. However, little is known about the genetic structure of fungal populations in their introduced habitats. To study the genetics of exotic P. tinctorius populations, we developed and employed seven new microsatellite markers and compared samples from Puerto Rico (exotic range) and the eastern United States (native range). Bayesian cluster analysis, neighbor joining analysis and FST values all strongly separated Puerto Rican populations from North American populations. Consistent with a founder effect, populations from Puerto Rico had reduced allelic richness when compared to samples from the United States. The genetic structure of P. tinctorius populations in Puerto Rico is weak to modest and is not correlated with geographic distance reflecting anthropogenic movement of inoculum with forestry practices.  相似文献   

6.
The introduction of Anolis cristatellus from the multiple species anole community of Puerto Rico in the Greater Antilles to the island of Dominica in the Lesser Antilles, with its solitary endemic anole, provides an example of a very recent, timed, single colonization. We investigate the geographic origin and adaptive potential of the Dominican population using a range of methods including mtDNA phylogeography, nuclear microsatellite variation and multiple paternity studies, as well as heritability estimates, common garden experiments and comparative geographic studies of quantitative scalation traits. Phylogeographic analysis of NADH2 and microsatellite studies suggests that the Dominican population arose from a set of individuals from the central west area of Puerto Rico within their endemic range. The multiple‐individual inoculation, together with sperm storage and evidence of multiple paternity indicate genetic variability and suggest the potential for adaptation by natural selection. Estimates of heritability, common garden experiments and broad sense QST/FST ratios, linked to replicated comparisons along elevational transects go some way to suggesting that the invasive populations may be adapting by natural selection, in parallel with the endemic anole, in the brief period since their introduction.  相似文献   

7.
Genetic rescue can be a successful way to restore species genetic diversity, but it can also lead to outbreeding depression (decreases in hybrid fitness) if attempted in incompatible populations. Thus, population genetic profiles and demographic history are needed to evaluate the feasibility of translocation. We used population genetic analyses and Approximate Bayesian Computation (ABC) to assess genetic rescue as an option for two populations of the yellow-shouldered blackbird (Agelaius xanthomus), an endangered Puerto Rico endemic. The candidate recipient population, a managed population in Pitahaya (southwestern Puerto Rico), had been characterized previously for its mating system and population genetics. Here, we used nine microsatellite loci to measure the genetic diversity of a candidate source population, a subspecies (A. x. monensis) on Mona Island, 66 km west of Puerto Rico. We compared genetic diversity and inferred historical and contemporary gene flow between the two populations. We found clear population structure and no migration between populations, as well as evidence that the Mona population descended from the Pitahaya population approximately 95 generations ago. Despite the historical gene flow, the degree of contemporary genetic and environmental divergence means the Mona population may not be suitable for immediate use as a source population. We recommend (a) further investigating whether the observed population structure is due to adaptive or neutral forces, (b) testing the Mona population for behavioral plasticity in different environments, and (c) evaluating other source populations in addition to the Mona population for genetic rescue.  相似文献   

8.
Reports of successful predator attacks on primates are rare. Primates from all major radiations are particularly susceptible to raptors, carnivores, and snakes. Among New World primates, reports of snake predation are limited to medium- and small-bodied species. Here, we report the first documented case of successful predation of an atelid by a snake—an adult female Purús red howler monkey, Alouatta puruensis, that was subdued by a ca. 2-m-long Boa constrictor in an arboreal setting at a height of 7.5 m above the ground. The victim belonged to a group composed of six individuals (one adult male, two adult females, two juveniles, and one infant) that inhabited a ca. 2.5-ha forest fragment in the State of Rondônia, western Brazilian Amazon. The boa applied the species’ typical hunting behavior of striking and immediately coiling around its prey and then killing it through constriction (probably in less than 5 min), but the entire restraint period lasted 38 min. The attack occurred around noon. The howler was swallowed head-first in 76 min. The only group member to respond to the distress vocalization emitted by the victim was the other adult female, which was closest to the location where the attack occurred. This female ran toward the snake, also vocalizing, and hit it with her hands several times, but the snake did not react and she moved off to a nearby tree from where she watched most of the interaction. The remaining group members stayed resting at a height approximately 15 m above the victim in a nearby tree without showing any overt signs of stress, except for a single whimper vocalization. This event indicates that even large-bodied atelids are vulnerable to predation by large snakes and suggests that B. constrictor may be a more common predator of primates.  相似文献   

9.
Iguana iguana is native to Central and South America, and was introduced into Puerto Rico in the 1970s as a result of pet trade. The invasive biology of this reptile has not been studied in Puerto Rico, where its negative effects may threaten local biodiversity. The purposes of this study were to: (1) estimate population densities of I. iguana; (2) describe some aspects of its reproductive biology; and (3) assess its potential impacts. Visual-encounter surveys were performed at Parque Lineal in San Juan and Canal Blasina in Carolina, while nesting activity data were collected at Las Cabezas de San Juan in Fajardo. Densities of I. iguana in Puerto Rico reached a maximum of 223 individuals ha−1, higher than in any known locality in its native range, and showed fluctuations related to seasonality. Our 2008–2009 observations at the nesting sites document that this population of I. iguana is a reproductively successful species, producing more than 100 egg clutches and 2,558 eggs with a 91.4% egg viability. The ability to proliferate in a low predation environment and the absence of good competitors are the major drivers of the population densities observed in Puerto Rico. We found evidence that I. iguana is threatening native biodiversity and impacting infrastructure, agriculture and human safety. Thus, a management program to control the species must soon be developed to prevent this invasive reptile from becoming more widespread and dominant in other localities around the island.  相似文献   

10.
The effects of late Quaternary climate on distributions and evolutionary dynamics of insular species are poorly understood in most tropical archipelagoes. We used ecological niche models under past and current climate to derive hypotheses regarding how stable climatic conditions shaped genetic diversity in two ecologically distinctive frogs in Puerto Rico. Whereas the mountain coquí Eleutherodactylus portoricensis is restricted to montane forest in the Cayey and Luquillo Mountains, the red‐eyed coquí E. antillensis is a habitat generalist distributed across the entire Puerto Rican Bank (Puerto Rico and the Virgin Islands, excluding St Croix). To test our hypotheses, we conducted phylogeographic and population genetic analyses based on mitochondrial and nuclear loci of each species across their range in Puerto Rico. Patterns of population differentiation in E. portoricensis, but not in E. antillensis, supported our hypotheses. For E. portoricensis, these patterns include: individuals isolated by long‐term unsuitable climate in the Río Grande de Loíza Basin in eastern Puerto Rico belong to different genetic clusters; past and current climate strongly predicted genetic differentiation; and Cayey and Luquillo Mountains populations split prior to the last interglacial. For E. antillensis, these patterns include: genetic clusters did not fully correspond to predicted long‐term unsuitable climate; and past and current climate weakly predicted patterns of genetic differentiation. Genetic signatures in E. antillensis are consistent with a recent range expansion into western Puerto Rico, possibly resulting from climate change and anthropogenic influences. As predicted, regions with a large area of long‐term suitable climate were associated with higher genetic diversity in both species, suggesting larger and more stable populations. Finally, we discussed the implications of our findings for developing evidence‐based management decisions for E. portoricensis, a taxon of special concern. Our findings illustrate the role of persistent suitable climatic conditions in promoting the persistence and diversification of tropical island organisms.  相似文献   

11.
The invasive snake Hemorrhois hippocrepis colonized the island of Ibiza (Balearic Islands) in 2003 as stowaways inside trunks of olive trees imported for gardening. It has quickly spread since 2010, posing a threat to the island’s only remaining endemic vertebrate, the Ibiza wall lizard Podarcis pityusensis. We map the yearly expansion rate of the snake and estimate via transect surveys how severely it affects the distribution and abundance of the endemic lizard. As well, we surveyed 9 of 30 small lizard populations on islets surrounding Ibiza that have been isolated since the Last Glacial Maximum. Snakes had invaded 49% of Ibiza’s land area by 2018, and censuses show a critical contrast in lizard abundance between areas with and without snakes; almost all censuses in areas without snakes show lizard presence whereas nearly all censuses in areas with H. hippocrepis lack lizard sightings. Moreover, at least one subspecies previously thriving on one of the offshore islets has become extinct, and there have been several snakes recorded swimming between Ibiza and the surrounding islets. Therefore, lizard populations have been dramatically reduced or have vanished within the range of the snake, and our results quantitatively support upgrading this species’ threat level for extinction. This study can inform to programs to manage invasive snake populations and to conservation actions to recover the endemic lizard.  相似文献   

12.
Global biodiversity is changing rapidly driven by human alteration of habitat, and nowhere this is more dramatic than in insular habitats. Yet land-cover change is a complex phenomenon that not only involves habitat destruction but also forest recovery over different time scales. Therefore, we might expect species to respond in diverse ways with likely consequences for the reorganization of regional assemblages. These changes, however, may be different in tropical islands because of their low species richness, generalist habits and high proportion of endemics. Here, we focus on the island of Puerto Rico and ask how island-wide changes in land cover and land use has influenced the large-scale organization of bird assemblages. To address this question, we combined in a Geographical Information System (GIS) the first 6 years (1997–2002) of the Puerto Rican Breeding Bird Survey (PR-BBS) with land-cover and land-use data extracted from a published digital map derived from the classification of Landsat images. A Non-metric Multidimensional Scaling (NMS) ordination based on the composition and abundance of birds, and percentage land-use types showed that land use followed by climate could explain most of the variation observed among routes in terms of species composition and abundance. Moreover, endemic and exotic species were widely distributed throughout the island, but the proportion of endemic species is higher in closed forests while exotic species are more abundant in open habitats. However, historical accounts from the early 1900s indicate that endemic species were distributed across the entire island. Today, most of the land cover transformation in Puerto Rico occurs in the lowlands which may explain the high abundance of endemic species in cloud forests and the high abundance of exotic species in open habitats in the lowlands.  相似文献   

13.
New records of pontarachnid mites (Acari: Hydrachnidia) from the Caribbean island of Puerto Rico are presented. Litarachna lopezae sp. n., from substrata collected from Bajo de Sico, a mesophotic coral reef ecosystem in Mona Passage off Puerto Rico, is described as new to science. The new species was collected from nearly 70 m depth, the greatest depth from which pontarachnid mites have been found until now. In addition, a Litarachna sp. was also found in association with the tube of the polychaete Sabellastarte magnifica (Shaw, 1800) at the shallow waters of north Puerto Rico.  相似文献   

14.
The freshwater fauna (crustaceans, molluscs, fish) of many tropical islands in the Caribbean and Pacific share an amphidromous life‐cycle, meaning their larvae need to develop in saline conditions before returning to freshwater as juveniles. This community dominates the freshwaters of much of the tropics, but is poorly known and at risk from development, in particular dam construction. Amphidromy can theoretically lead to dispersal between different freshwater areas, even to distant oceanic islands, via the sea. The extent and scale of this presumed dispersal, however, is largely unknown in the Caribbean. Recent genetic work in Puerto Rico has shown that many freshwater species have little or no population structure among different river catchments, implying high levels of connectivity within an island, whereas between‐island structure is unknown. We used genetic techniques to infer the geographic scales of population structure of amphidromous invertebrates (a gastropod and a number of crustacean species) between distant parts of the Caribbean, in particular Puerto Rico, Panama and Trinidad. We found virtually no geographic population structure across over 2000 km of open sea for these freshwater species. This implies that they are indeed moving between islands in sea currents as larvae, meaning that continued recruitment requires a continuum of healthy habitat from the freshwater to marine environment. We further discuss the role of amphidromy and suggest its ecological and biogeographic role may be more important than previously presumed.  相似文献   

15.
The aim of this research was to study the population structure of an exotic palm, Roystonea oleracea (Arecaceae), map its spatial distribution and investigate its invasive status in an Atlantic forest wetland. A total of 130 live and 7 dead standing palms ≥10 cm DBH were sampled. Data showed a trend towards population expansion, with most seedlings and saplings occurring within a radius of ~12 m from the mother plants but some larger trees (DBH >10 cm) up to 440 m from the parents. This exotic species is established and has the potential to become invasive, especially near wetlands. Its control or eradication should be undertaken and we suggest the immediate removal of reproductive individuals, and constant monitoring of young individuals leading to their future removal. Use of this species as an ornamental should be made with care to prevent or reduce possible harmful effects of this exotic and potentially invasive species in Brazilian wetlands.  相似文献   

16.
There is increasing concern regarding potential impacts of snake fungal disease (SFD), caused by Ophidiomyces ophiodiicola (Oo), on free-ranging snake populations in the eastern USA. The snake cutaneous microbiome likely serves as the first line of defense against Oo and other pathogens; however, little is known about microbial associations in snakes. The objective of this study was to better define the composition and immune function of the snake cutaneous microbiome. Eight timber rattlesnakes (Crotalus horridus) and four black racers (Coluber constrictor) were captured in Arkansas and Tennessee, with some snakes exhibiting signs of SFD. Oo was detected through real-time qPCR in five snakes. Additional histopathological techniques confirmed a diagnosis of SFD in one racer, the species’ first confirmed case of SFD in Tennessee. Fifty-eight bacterial and five fungal strains were isolated from skin swabs and identified with Sanger sequencing. Non-metric multidimensional scaling and PERMANOVA analyses indicated that the culturable microbiome does not differ between snake species. Fifteen bacterial strains isolated from rattlesnakes and a single strain isolated from a racer inhibited growth of Oo in vitro. Results shed light on the culturable cutaneous microbiome of snakes and probiotic members that may play a role in fighting an emergent disease.  相似文献   

17.
The isolated population of grass snakes, Natrix natrix (L.), on the island of Gotland in die Baltic Sea is described and illustrated. Comparisons are made with the surrounding mainland grass snake. On the basis of morphological and ecological divergence, the conclusion is drawn that the Gotland population represents a new subspecies.  相似文献   

18.
While searching for native natural enemies attacking invasive insect pests in Puerto Rico, we found four undescribed ladybug species belonging to the Caribbean ladybug genus Decadiomus Chapin. In this article, we describe the following species from Puerto Rico: Decadiomus seini n. sp., Decadiomus ramosi n. sp., Decadiomus hayuyai n. sp., and Decadiomus martorelli n. sp. Illustrations of the dorsal habitus, shape of prosternal carinae, and drawings of male and female genitalia are presented. We also present a key for Diomini of Puerto Rico and discuss their importance as potential biocontrol agents.  相似文献   

19.
Chionactis occipitalis (Western Shovel-nosed Snake) is a small colubrid snake inhabiting the arid regions of the Mojave, Sonoran, and Colorado deserts. Morphological assessments of taxonomy currently recognize four subspecies. However, these taxonomic proposals were largely based on weak morphological differentiation and inadequate geographic sampling. Our goal was to explore evolutionary relationships and boundaries among subspecies of C. occipitalis, with particular focus on individuals within the known range of C. o. klauberi (Tucson Shovel-nosed snake). Population sizes and range for C. o. klauberi have declined over the last 25 years due to habitat alteration and loss prompting a petition to list this subspecies as endangered. We examined the phylogeography, population structure, and subspecific taxonomy of C. occipitalis across its geographic range with genetic analysis of 1100 bases of mitochondrial DNA sequence and reanalysis of 14 morphological characters from 1543 museum specimens. We estimated the species gene phylogeny from 81 snakes using Bayesian inference and explored possible factors influencing genetic variation using landscape genetic analyses. Phylogenetic and population genetic analyses reveal genetic isolation and independent evolutionary trajectories for two primary clades. Our data indicate that diversification between these clades has developed as a result of both historical vicariance and environmental isolating mechanisms. Thus these two clades likely comprise ‘evolutionary significant units’ (ESUs). Neither molecular nor morphological data are concordant with the traditional C. occipitalis subspecies taxonomy. Mitochondrial sequences suggest specimens recognized as C. o. klauberi are embedded in a larger geographic clade whose range has expanded from western Arizona populations, and these data are concordant with clinal longitudinal variation in morphology.  相似文献   

20.
The exotic orchid, Spathoglottis plicata, has naturalized and spread rapidly over Puerto Rico where it is generally considered to be innocuous. It is abundant and occupies the same habitat as the native orchid, Bletia patula. The two are hosts to the same native weevil, Stethobaris polita, a specialist on orchid flowers. We ask whether the weevils mediate apparent competition between the two orchids. We monitored weevil populations, floral damage and fruit set in B. patula in the presence and absence of S. plicata. We also experimentally tested whether weevils preferred one species over the other. Finally, we modeled the distribution of both orchid species to predict the extent by which the two species may interact in Puerto Rico. We found a significantly lower number of weevils and a higher fruit set for B. patula where S. plicata is absent, indicative that apparent competition is occurring. The choice experiments show that weevils prefer flowers of S. plicata over those of B. patula, but B. patula still sustained considerable damage. The current distribution of the native B. patula is nearly limited to the northern karst region of Puerto Rico. The naturalized S. plicata has a broader range and the models predict that its distribution will strongly overlap with that of B. patula. We expect the S. plicata invasion to continue and affect native orchids through apparent competition as long as the presence of S. plicata maintains elevated weevil populations. Thus, even seemingly harmless invasive orchids can have subtle but significant negative consequences.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号