首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Biotic resistance is commonly invoked to explain why many exotic plants fail to thrive in introduced ranges, but the role of seed predation as an invasion filter is understudied. Abiotic conditions may also influence plant populations and can interact with consumers to determine plant distributions, but how these factors jointly influence invasions is poorly understood. In central Argentina’s Caldenal savannas, we experimentally examined how seed predation and water availability influenced recruitment/establishment of nine exotic plant invaders over 2 years. We then explored how seed predation patterns related to invasion patterns. Excluding rodent seed predators dramatically increased seedling recruitment for eight of nine exotic species (by 100–300 % in most cases) and increased young/adult plant abundance for four species in one or both years. Adding water to ameliorate drought tended to increase seedling numbers for most species, but these trends were not significant. Vegetation surveys revealed that exotic plant richness was 50 % lower in matrix habitat compared with disturbed roadsides and that cover of the two most aggressive invaders, which were both strongly suppressed by seed predation, was 75–80 % lower in matrix than roadside habitats. Seed offerings indicated seed removal by rodents was 11 times greater in intact matrix habitat compared with roadsides. Rodent seed predation represents a significant source of biotic resistance to plant invasions. Ubiquitous disturbances such as road construction can disrupt this filter. The widely recognized role that disturbance plays in facilitating invasions, which is largely attributed solely to reduced plant competition, may also arise from disruption of top–down controls.  相似文献   

2.
Most introduced species apparently have little impact on native biodiversity, but the proliferation of human vectors that transport species worldwide increases the probability of a region being affected by high-impact invaders – i.e. those that cause severe declines in native species populations. Our study determined whether the number of high-impact invaders can be predicted from the total number of invaders in an area, after controlling for species–area effects. These two variables are positively correlated in a set of 16 invaded freshwater and marine systems from around the world. The relationship is a simple linear function; there is no evidence of synergistic or antagonistic effects of invaders across systems. A similar relationship is found for introduced freshwater fishes across 149 regions. In both data sets, high-impact invaders comprise approximately 10% of the total number of invaders. Although the mechanism driving this correlation is likely a sampling effect, it is not simply the proportional sampling of a constant number of repeat-offenders; in most cases, an invader is not reported to have strong impacts on native species in the majority of regions it invades. These findings link vector activity and the negative impacts of introduced species on biodiversity, and thus justify management efforts to reduce invasion rates even where numerous invasions have already occurred.  相似文献   

3.
Biological invasions are a primary threat to global biodiversity, supporting mounting calls for the development of early‐warning systems to manage existing and emerging invaders. Here, we evaluated the geographical pattern of invasion risks of currently established and potentially emerging nonnative freshwater fishes in China by jointly considering the threats of introduction and establishment under climate change. Introduction threats were estimated according to proxies of human activities and propagule pressure for two primary pathways (aquaculture or ornamental). Establishment threats for 51 current and 64 potential invaders (based on whether having established or not self‐sustaining populations) were assessed using an ensemble of species distribution models under current (1960–1990) and future [2041–2060 (2050s) and 2061–2080 (2070s)] climate scenarios. Geographical patterns of invasion risk were then assessed by overlaying the threats of introduction and establishment for each species group both in present‐day and in the future. We found that eastern China displayed the highest threat of introduction. By contrast, southeastern and northwestern regions were identified as the most suitable for the establishment of both current and potential invaders. Under a changing climate, 83 out of 115 species displayed an increase in habitat suitability, resulting in an overall increase of 4.8% by 2050s and 7.1% by 2070s in the extent of suitable habitat for nonnative freshwater fishes. Taken together, invasion risk was found to be highest in southeastern China and lowest in the Tibet Plateau. Our research highlights the importance of assessing invasion risk by integrating the threats associated with the introduction and establishment stages. In particular, our findings revealed convergent patterns of invasion risk between current and potential nonnative freshwater fishes under climate change. Geographic patterns in hotspots of existing and emerging invasions provide critical insights to guide the allocation of resources to monitor and control existing and emerging invasions in China.  相似文献   

4.
The river Rhine: a global highway for dispersal of aquatic invasive species   总被引:1,自引:0,他引:1  
The river Rhine is heavily influenced by human activities and suffers from a series of environmental constraints which hamper a complete recovery of biodiversity. These constraints comprise intensive navigation and habitat modification by hydraulic engineering. Improving water quality while these constraints remain in place has led to increased colonization by aquatic invasive species. This tendency has been accelerated by the construction of canals connecting river basins. Over the last two centuries, the total surface area of river catchments connected to the river Rhine via inland waterways has been increased by a factor 21.6. Six principal invasion corridors for aquatic species to the river Rhine are discerned. The extensive network of inland waterways has allowed macroinvertebrate species from different bio-geographical regions to mix, changing communities, affecting the food webs and forming new constraints on the recovery of the native biodiversity. From the eighteenth century onward, in the freshwater sections of the river Rhine, a total of 45 non-indigenous macroinvertebrate species have been recorded. The average number of invasions per decade shows a sharp increase from <1 to 13 species. Currently, the contribution of non-indigenous species to the total species richness of macroinvertebrates in the river Rhine is 11.3%. The Delta Rhine and Upper Rhine exhibit higher numbers of non-indigenous species than other river sections, because the sea ports in the Delta Rhine and the Main-Danube canal function as invasion gateways. Important donor areas are the Ponto-Caspian area and North America (44.4 and 26.7% of the non-indigenous macroinvertebrate species, respectively). Transport via shipping and dispersal via man made waterways are the most important dispersal vectors. Intentional and unintentional introductions are highest for the period 1950–1992. The cumulative number of non-indigenous species in time is significantly correlated with the increase in total surface area of other river catchments connected to the river Rhine by means of networks of canals. The species richness of non-indigenous macroinvertebrates is strongly dominated by crustaceans and molluscs. Invasive species often tolerate higher salt content, temperature, organic pollution and current flow than native species. Spatiotemporal analyses of distribution patterns reveal that average and maximum dispersal rates of six invasive species vary between 44–112 and 137–461 km year−1, respectively. Species arriving in upstream sections first show a shorter time lag between colonisation of the Delta and Upper Rhine than species initially arriving in downstream areas. Temporal analyses of macroinvertebrate assemblages in the littoral zones indicate that native species are displaced by non-indigenous species. However, established non-indigenous species are also displaced by more recent mass invaders.  相似文献   

5.
This study examines the invasion history of alien fish species based on exhaustive national data sets on fish invasions of two contiguous central European countries (Germany and Austria). Fifteen alien fish species are currently established in both countries, constituting 14 and 17% of the total freshwater fish fauna of Germany and Austria, respectively. In both countries, six alien species are present, but not established. The status of five alien species in Germany and three species in Austria remains unknown. Accumulation rates of alien fish species have increased in recent decades with >50% of them reported after 1971. North America and Asia were the primary sources of alien fish species in Germany and Austria up to the 1980s, whereas European species of Ponto‐Caspian origin dominate now. Fisheries (including aquaculture) and the animal trade were responsible for most earlier introductions, whereas waterways were the main pathway for recent invaders. The extent of the spatial distribution of alien species was positively correlated with residence time, i.e. the time elapsed since the first national record. Different thermal preferences of early invaders (mostly coldwater species) and new invaders (typically warmwater adapted) may benefit the latter in the face of climate change. It is concluded that new challenges for alien fish management arise and that ecosystem‐based approaches as endorsed by the E.U. Water Framework Directive (maintaining or restoring good ecological status of rivers and streams) should become the centrepiece of river management in Europe.  相似文献   

6.
We examined the introduction history of non-native freshwater fish in Okinawa-jima Island, Japan, to identify the pathway posing the greater risk for future invasions and to measure the strength of ornamental fish introductions as a vector of new invasions using all available records of freshwater fish introductions to date. At least 45 non-native freshwater fish have been introduced to Okinawa-jima Island. Of those, 22 species have successfully established in natural waters and, consequently, non-native fish species represent 76 % of the total freshwater fish fauna. The most important pathway was via the dumping of unwanted ornamental aquarium fish, which accounted for 71 % of the total introductions. The introduction of ornamental fish has occurred extensively in recent decades, and all fish introduced since the 1980s have been ornamental aquarium fish. The overall rate of establishment success was estimated at 51 %, although this is undoubtedly an overestimate because of unreported failed introductions. Establishment rates varied between stocked fish (100 %) and dumped ornamental fish (39 %), which may reflect the low propagule pressure of ornamental fish. From the observed trends in freshwater fish introductions, the dumping of ornamental fish into natural waters is expected to continue if no action is taken to reduce this most important pathway. We recommend regulations against the release of unwanted pet fish into natural waters, better programs for returning unwanted pet fish to stores or local zoos, educational programs for aquarists and retailers, and regulations against selling and trading ornamental fish that are judged to pose a high risk of causing economic or ecological harm.  相似文献   

7.
The assessment of risks associated with non-indigenous species implies a detailed knowledge of their taxonomical composition and distribution within a certain region. The northern branch of the central European ‘invasion corridor’—a series of canals connecting different watersheds—has formed an important migratory route for Ponto-Caspian fish (i.e. fish from the Black Sea, the Sea of Azov and the Caspian Sea). However, the current status of non-indigenous fish species in this region is very scarce. This article presents a comprehensive overview of recent distribution data of non-indigenous fish species in the northern branch of the central European invasion corridor. Here, extensive data are integrated based on studies performed during 2003–2014 comprising reliable published and unpublished records from the last 12 years. Altogether, ten non-indigenous fish species were currently found in the northern branch of the central European invasion corridor, constituting 19 % of its freshwater fish diversity. Three species, including the Prussian carp (Carassius gibelio), the round goby (Neogobius melanostomus), and the Chinese sleeper (Perccottus glenii), are considered invasive species. Eight species may potentially invade this region in the near future. A comparison of the history of non-indigenous fish species introduction in the inland waters of the northern branch and other countries of the central European invasion corridor revealed similar introduction trends. Potential expansion of non-indigenous fish species across the central European invasion corridor has international implications that require awareness, cooperation, and government support from each individual country. Disclosure of recently operating vectors for non-indigenous fish introductions within the central European invasion corridor will help predict and prevent their further spread and establishment in this region.  相似文献   

8.
The impact of biological invasions on local biodiversity is well established, but their impact on ecosystem functioning has only been sketchily documented. However, biological invasions may impede services provided by aquatic ecosystems, such as, for example, the decomposition of organic matter, a key process in most small streams. To address this question, we experimentally quantified the leaf litter breakdown activity of native and invasive amphipod species, which are keystone species in aquatic ecosystems. The breakdown rate of each species was used to estimate the potential leaf litter recycling in the Rhône and Meurthe Rivers in sites occupied solely by native species and sites dominated by invasive species. We found that invaders were not able to compensate for the activity of native species and that the replacement of native species led to a decrease of at least 66% in the rate of leaf litter recycling. Our approach provides empirical evidence of the functional impact of non-indigenous species on leaf litter recycling, using standard protocols and literature data.  相似文献   

9.
Protected areas (PAs) are intended to provide native biodiversity and habitats with a refuge against the impacts of global change, particularly acting as natural filters against biological invasions. In practice, however, it is unknown how effective PAs will be in shielding native species from invasions under projected climate change. Here, we investigate the current and future potential distributions of 100 of the most invasive terrestrial, freshwater, and marine species in Europe. We use this information to evaluate the combined threat posed by climate change and invasions to existing PAs and the most susceptible species they shelter. We found that only a quarter of Europe's marine and terrestrial areas protected over the last 100 years have been colonized by any of the invaders investigated, despite offering climatically suitable conditions for invasion. In addition, hotspots of invasive species and the most susceptible native species to their establishment do not match at large continental scales. Furthermore, the predicted richness of invaders is 11%–18% significantly lower inside PAs than outside them. Invasive species are rare in long‐established national parks and nature reserves, which are actively protected and often located in remote and pristine regions with very low human density. In contrast, the richness of invasive species is high in the more recently designated Natura 2000 sites, which are subject to high human accessibility. This situation may change in the future, since our models anticipate important shifts in species ranges toward the north and east of Europe at unprecedented rates of 14–55 km/decade, depending on taxonomic group and scenario. This may seriously compromise the conservation of biodiversity and ecosystem services. This study is the first comprehensive assessment of the resistance that PAs provide against biological invasions and climate change on a continental scale and illustrates their strategic value in safeguarding native biodiversity.  相似文献   

10.
The Great Lakes ecosystem is home to at least 139 non-indigenous species of fauna and flora which have become established following invasions or intentional introductions. About ten percent of the exotic species have caused economic or ecological damage to the system. A sample of this group is reviewed to determine if ecological concepts are useful in helping to predict colonization and impacts to ecosystem health. Successful colonization by most of the species reviewed was predictable from habitat requirements and behaviour. Ecosystem disturbance was a factor in the success of some of the colonists but was not an overriding ecological requirement. Perturbations to ecosystem health are more difficult to predict and in most cases were not readily apparent from knowledge about the ecology of invaders or native communities. The main damage to ecosystem health by the species reviewed resulted from competition, predation and habitat modification. Difficulties in predicting both invasions and damage from successful colonists point to the need to prevent non-indigenous species from reaching the Great Lakes basin.  相似文献   

11.
Much uncertainty remains about traits linked with successful invasion – the establishment and spread of non‐resident species into existing communities. Using a 20‐year experiment, where 50 non‐resident (but mostly native) grassland plant species were sown into savannah plots, we ask how traits linked with invasion depend on invasion stage (establishment, spread), indicator of invasion success (occupancy, relative abundance), time, environmental conditions, propagule rain, and traits of invaders and invaded communities. Trait data for 164 taxa showed that invader occupancy was primarily associated with traits of invaders, traits of recipient communities, and invader‐community interactions. Invader abundance was more strongly associated with community traits (e.g. proportion legume) and trait differences between invaders and the most similar resident species. Annuals and invaders with high‐specific leaf area were only successful early in stand development, whereas invaders with conservative carbon capture strategies persisted long‐term. Our results indicate that invasion is context‐dependent and long‐term experiments are required to comprehensively understand invasions.  相似文献   

12.
1. Preventing the introduction of species likely to become invaders is the best management option to deal with biological invasions. A data set consisting of native, introduced and species not currently present in Iberian Peninsula (n = 167 species) was used to identify freshwater fish species that are likely to be introduced and become successful invaders in the near future. 2. Principal component analysis (PCA) of species traits was used to determine species likely to be introduced, assuming that the traits of species introduced in the future will resemble those of previously introduced species. The likelihood of introduction was calculated as the proportion of neighbour species (in the space defined by the PCA) that have been introduced to the Iberian Peninsula and, together with metrics related to different stages of invasion, was used to construct a region‐specific risk index (Iberian risk index). 3. Introduced species had higher index values compared with native species or species currently absent from the region. The Iberian risk index was positively related to the results of an independent risk analysis for freshwater fish as well as to the geographical spread of species previously introduced to the Iberian Peninsula. 4. Iberian risk index values were used to establish a cut‐off value for estimating the probability of a successful invasion. This threshold value was used to construct a list of 20 species to be included in a ‘watch list’ to prevent freshwater fish invasions in the Iberian Peninsula.  相似文献   

13.
Natural habitats in human-altered landscapes are especially vulnerable to biological invasions, especially in their edges. We aim to understand the influence of landscape and local characteristics on biological invasions by exploring the level of plant invasion and alien species traits in forest edges in highly urbanized landscapes. We identified all plant species in 73 paired plots in the edge and 50 m towards the interior of the forest. We explored the association between alien species richness and similarity in species composition between edge and interior plots with landscape and local variables, using generalized linear models and variance partitioning techniques. Then, we performed Fourth-corner analyses to explore the association between alien plant traits and local and landscape variables. In contrast to native species richness, alien species richness was more affected by the surrounding landscape than by the local characteristics of the edge. Road proximity was positively associated with alien species richness and proportion and was its most important correlate, whereas disturbance was negatively associated with native species richness and was its most influential factor. Alien plant traits were also primarily associated with landscape characteristics. For instance, species of Mediterranean origin and introduced for agriculture were associated with higher agriculture use in the landscape. Our findings suggest that risk analyses of habitat vulnerability to invasion must consider the landscape context in order to successfully predict highly invaded areas and identify potentially successful invaders.  相似文献   

14.
Freshwater biodiversity is threatened by several mechanisms, of which the introduction of non-indigenous species and habitat alteration are the two most important. Exotic species act at various levels of organisation of macroinvertebrate communities, and are involved in different processes mediating their impacts on biodiversity, such as habitat modification or negative interactions with autochthonous fauna. The present work gives a list of the 43 French freshwater non-indigenous species, which represent 1.2% of the French freshwater macroinvertebrates. We provide their geographic origins, their distributions among zoological units by comparison with the native fauna and their functional characteristics according to a recent typology based on bio/ecological traits. An exponential trend of the cumulated number of non-indigenous species was evidenced, with a clumping of invaders within crustaceans and molluscs. Donor areas of non-indigenous species are in majority European, and the Ponto-Caspian basin is identified as the principal one. This pattern could be explained by a spread along waterways but its origin lies in a process of recolonisation of defaunated areas following several episodes of glaciation/deglaciation in Western Europe during the last 80,000 years. Finally, from a functional point of view, non-indigenous species exhibit a limited diversity, with two functional groups representing 80% of them.  相似文献   

15.
The Laurentian Great Lakes basin has been invaded by at least 182 non-indigenous species. A new invader is discovered every 28 weeks, which is the highest rate recorded for a freshwater ecosystem. Over the past century, invasions have occurred in phases linked to changes in the dominant vectors. The number of ship-vectored invaders recorded per decade is correlated with the intensity of vessel traffic within the basin. Ballast water release from ocean vessels is the putative vector for 65% of all invasions recorded since the opening of the St. Lawrence Seaway in 1959. As a preventive measure, ocean vessels have been required since 1993 to exchange their freshwater or estuarine ballast with highly saline ocean water prior to entering the Great Lakes. However, this procedure has not prevented ship-vectored species introductions. Most ships visiting the Great Lakes declare 'no ballast on board' (NOBOB) and are exempt from the regulation, even though they carry residual water that is discharged into the Great Lakes during their activities of off-loading inbound cargo and loading outbound cargo. Recently introduced species consist predominantly of benthic invertebrates with broad salinity tolerance. Such species are most likely to survive in a ballast tank following ballast water exchange, as well as transport in the residual water and tank sediments of NOBOB ships. Thus, the Great Lakes remain at risk of being invaded by dozens of euryhaline invertebrates that have spread into Eurasian ports from whence originates the bulk of foreign ships visiting the basin.  相似文献   

16.
Many mobile organisms exhibit resource-dependent movement in which movement rates adjust to changes in local resource densities through changes in either the probability of moving or the distance moved. Such changes may have important consequences for invasions because reductions in resources behind an invasion front may cause higher dispersal while simultaneously reducing population growth behind the front and thus lowering the number of dispersers. Intuiting how the interplay between population growth and dispersal affects invasions is difficult without mathematical models, yet most models assume dispersal rates are constant. Here we present spatial-spread models that allow for consumer-resource interactions and resource-dependent dispersal. Our results show that when resources affect the probability of dispersal, then the invasion dynamics are no different than if resources did not affect dispersal. When resources instead affect the distance dispersed, however, the invasion dynamics are strongly affected by the strength of the consumer-resource interaction, and population cycles behind the wave front lead to fluctuating rates of spread. Our results suggest that for actively dispersing invaders, invasion dynamics can be determined by species interactions. More practically, our work suggests that reducing invader densities behind the front may be a useful method of slowing an invader's rate of spread.  相似文献   

17.
The impact of invasions on local biodiversity is well established, but their impact on regional biodiversity has so far been only sketchily documented. To address this question, we studied the impact at various observation scales (ranging from the microhabitat to the whole catchment) of successive arrivals of non-native amphipods on the amphipod assemblage of the Loire River basin in France. Amphipod assemblages were studied at 225 sites covering the whole Loire catchment. Non-native species were dominant at all sites in the main channel of the Loire River, but native species were still present at most of the sites. We found that the invaders have failed to colonize most of tributaries of the Loire River. At the regional scale, we found that since the invaders first arrived 25 years ago, the global amphipod diversity has increased by 33% (from 8 to 12 species) due to the arrival of non-native species. We discuss the possibility that the lack of any loss of biodiversity may be directly linked to the presence of refuges at the microhabitat scale in the Loire channel and in the tributaries, which invasive species have been unable to colonize. The restoration of river quality could increase the number of refuges for native species, thus reducing the impact of invaders.  相似文献   

18.
Aim Biological invasions pose a major conservation threat and are occurring at an unprecedented rate. Disproportionate levels of invasion across the landscape indicate that propagule pressure and ecosystem characteristics can mediate invasion success. However, most invasion predictions relate to species’ characteristics (invasiveness) and habitat requirements. Given myriad invaders and the inability to generalize from single‐species studies, more general predictions about invasion are required. We present a simple new method for characterizing and predicting landscape susceptibility to invasion that is not species‐specific. Location Corangamite catchment (13,340 km2), south‐east Australia. Methods Using spatially referenced data on the locations of non‐native plant species, we modelled their expected proportional cover as a function of a site’s environmental conditions and geographic location. Models were built as boosted regression trees (BRTs). Results On average, the BRTs explained 38% of variation in occupancy and abundance of all exotic species and exotic forbs. Variables indicating propagule pressure, human impacts, abiotic and community characteristics were rated as the top four most influential variables in each model. Presumably reflecting higher propagule pressure and resource availability, invasion was highest near edges of vegetation fragments and areas of human activity. Sites with high vegetation cover had higher probability of occupancy but lower proportional cover of invaders, the latter trend suggesting a form of biotic resistance. Invasion patterns varied little in time despite the data spanning 34 years. Main conclusions To our knowledge, this is the first multispecies model based on occupancy and abundance data used to predict invasion risk at the landscape scale. Our approach is flexible and can be applied in different biomes, at multiple scales and for different taxonomic groups. Quantifying general patterns and processes of plant invasion will increase understanding of invasion and community ecology. Predicting invasion risk enables spatial prioritization of weed surveillance and control.  相似文献   

19.
Two related issues in studies of biological invasions are how quickly the enemy complexes of invasive species become as species-rich and efficient as those of native species and how important enemy release is for the establishment and spread of invaders. We addressed these issues for the geometrid moths Operophtera brumata and Agriopis aurantiaria, who invaded the coastal mountain birch forest of northern Norway by range expansion approximately a century and 15 years ago, respectively. This was done by comparing larval parasitoid species richness and prevalence among the invaders and the native geometrid Epirrita autumnata. We found that E. autumnata and O. brumata both hosted seven parasitoid species groups, whereas A. aurantiaria hosted only one. Several parasitoid groups were shared between two or more of the geometrids. Total larval parasitism rates were similar in all three geometrid species, and comparison with published studies on larval parasitism in Western Europe suggested that O. brumata and A. aurantiaria do not suffer lower parasitism rates in our study region than in their native ranges. Our results indicate that accumulation of larval parasitoids on invasive geometrids in coastal mountain birch forest may reach completion within a few decades to at least a century after the invasion, and that establishment and spread of such invaders is unlikely to be facilitated by release from larval parasitism. Our investigations also uncovered a high degree of spatiotemporal synchrony between the total larval parasitism rates of O. brumata and A. aurantiaria, suggesting that larval parasitism of different geometrid species in the study system is governed by some common external factor.  相似文献   

20.
A meta-analysis of biotic resistance to exotic plant invasions   总被引:12,自引:0,他引:12  
Biotic resistance describes the ability of resident species in a community to reduce the success of exotic invasions. Although resistance is a well‐accepted phenomenon, less clear are the processes that contribute most to it, and whether those processes are strong enough to completely repel invaders. Current perceptions of strong, competition‐driven biotic resistance stem from classic ecological theory, Elton's formulation of ecological resistance, and the general acceptance of the enemies‐release hypothesis. We conducted a meta‐analysis of the plant invasions literature to quantify the contribution of resident competitors, diversity, herbivores and soil fungal communities to biotic resistance. Results indicated large negative effects of all factors except fungal communities on invader establishment and performance. Contrary to predictions derived from the natural enemies hypothesis, resident herbivores reduced invasion success as effectively as resident competitors. Although biotic resistance significantly reduced the establishment of individual invaders, we found little evidence that species interactions completely repelled invasions. We conclude that ecological interactions rarely enable communities to resist invasion, but instead constrain the abundance of invasive species once they have successfully established.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号