首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Most cyanobacteria take up nitrate or nitrite through a multisubunit ABC transporter (ATP-binding cassette) located in the cytoplasmic membrane. Nitrate and nitrite transport activity is instantaneously blocked by the presence of ammonium in the medium. Previous biochemical studies reported the existence of phosphorylation/dephosphorylation events of the nitrate transporter (NRT) related to the presence of ammonium-sensitive kinase/phosphatase activities in plasma membranes of the cyanobacterium Synechococcus elongatus PCC 6301. In this work, we have analyzed the biochemical properties of the periplasmic nitrate/nitrite-binding subunit (NrtA) of NRT from the thermophilic nondiazotrophic cyanobacterium Phormidium laminosum. Our results show that cyanobacterial NrtA is phosphorylated in vivo. However, substrate binding activity in vitro is not affected by the phosphorylation state of the protein, ruling out the possibility that phosphorylation/dephosphorylation of NrtA is involved in the regulation of the nitrate/nitrite uptake by NRT transporter. Moreover, NrtA is present as multiple isoforms showing the same molecular mass but different isoelectric points ranging from pI 5 to 6. Mass spectrometric characterization of NrtA isoforms shows that the protein is phosphorylated at residue Tyr203, and contains several methionine sulphoxide residues which account for the observed isoforms. Both phosphorylated and non-phosphorylated forms of NrtA are active in vitro, showing comparable binding affinity for nitrate and nitrite. Both substrates behave as pure competitive inhibitors with a binding stoichiometry of one molecule of anion per NrtA monomer.  相似文献   

2.
A genomic region from the thermophilic, filamentous, nondiazotrophic cyanobacterium Phormidium laminosum including nrtC and nrtD was cloned and sequenced. These genes encode NrtC and NrtD, the ATP-binding subunits of the ABC bispecific transporter of nitrate/nitrite NRT. We report a different nrtC sequence from the one previously reported (Merchán et al., Plant Mol. Biol. 28:759-766, 1995) and we identified the presence of nrtD gene downstream nrtC in the nirA operon. Each gene was expressed in E. coli cells as a hexahistidine-tagged fusion protein. The recombinant proteins (His(6)NrtC and His(6)NrtD) were purified, and their ability to catalyze the hydrolysis of ATP and other nucleosides triphosphate was characterized. Both subunits showed its maximum ATPase activity at 45-50 degrees C and pH 8.0, and similar K(m) (0.49 and 0.43 mM) and V(max) (0.085 and 0.114 U mg(-1) protein, respectively) values were calculated. The native NrtC subunit purified from nitrogen-starved cells of P. laminosum also hydrolyzed ATP in vitro in the absence of other components of NRT. These findings indicated that NrtC and NrtD are responsible for ATP-hydrolysis to energize the active transporter NRT. The effect of some activators (Mg(2+)) and inhibitors (ADP) on the ATPase activity of the subunits was assessed as well as the effect of some potential regulatory metabolites on His(6)NrtC. The existence in vitro of homodimers of either NrtC or NrtD but not heterodimers of both subunits was confirmed by matrix assisted laser desorption ionization-time of flight mass spectrometry and/or electrophoresis in non-denaturing conditions. Finally, the existence in vivo of NrtC-NrtD heterodimers is discussed.  相似文献   

3.
Leucine-rich repeat kinase 2 gene is a key factor for Parkinson's disease and encodes for a large protein kinase LRRK2 (280 kDa) with multiple domains, including the different repeat sequences at the N-terminus such as ankyrin domain. Here, we successfully expressed and purified two kinds of LRRK2's N-terminal fragments N1 (aa12–320) and N2 (aa12–860). The purified N2 protein was identified by mass spectrometry and N1's molecular weight was determined to be 33.23 kDa. Gel filtration revealed that N1 exhibits as monomer, dimer and tetramer and N2 as oligomer in solution. N1's multiple oligomeric states were further proved by native-page and cross-linking gel experiments. Circular dichroism spectrum indicated that N1 and N2 contain both α helixes and β sheets. The polymerization character of LRRK2 N-terminal region would be speculated to relate with its biological function.  相似文献   

4.
Shin-ichiro Narita 《FEBS letters》2009,583(13):2160-2164
Seven Lpt proteins (A through G) are thought to be involved in lipopolysaccharide transport from the inner to outer membrane of Escherichia coli. LptB belongs to the ATP-binding cassette transporter superfamily. Although the lptB gene lacks neighboring genes encoding membrane subunits, bioinformatic analyses recently indicated that two distantly located consecutive genes, lptF and lptG, could encode membrane subunits. To examine this possibility, LptB was expressed with LptF and LptG. We report here that both LptF and LptG formed a complex with LptB. Furthermore, an inner membrane protein, LptC, which had been implicated in lipopolysaccharide transport, was also included in this complex.

Structured summary

MINT-7137021: lptb (uniprotkb:P0A9V1) physically interacts (MI:0914) with lptc (uniprotkb:P0ADV9), lptg (uniprotkb:P0ADC6) and lptf (uniprotkb:P0AF98) by pull down (MI:0096)MINT-7137160: lptb (uniprotkb:P0A9V1) physically interacts (MI:0914) with lptf (uniprotkb:P0AF98) and lptg (uniprotkb:P0ADC6) by pull down (MI:0096)  相似文献   

5.
Dawson RJ  Locher KP 《FEBS letters》2007,581(5):935-938
Staphylococcus aureus Sav1866 is a bacterial homolog of the human ABC transporter Mdr1 that causes multidrug resistance in cancer cells. We report the crystal structure of Sav1866 in complex with adenosine-5'-(beta,gamma-imido)triphosphate (AMP-PNP) at 3.4A resolution and compare it with the previously determined structure of Sav1866 with bound ADP. Besides differences in the ATP-binding sites, no significant conformational changes were observed. The results confirm that the ATP-bound state of multidrug ABC transporters is coupled to an outward-facing conformation of the transmembrane domains.  相似文献   

6.
7.
The chlorophyll (Chl)-containing membrane protein complexes from the green alga Scenedesmus obliquus have been isolated from the thylakoid membranes by solubilization with dodecyl-β-maltoside and fractionation using a sucrose density gradient. The Chl-containing protein fractions were characterized by absorption spectroscopy, tricine SDS PAGE, BN-PAGE, and dynamic light scattering (DLS). BN-PAGE showed the presence of seven protein complexes with molecular weights in the range of 68, 118, 157, 320, 494, 828 and 955 kDa, respectively. Furthermore, light scattering reveals the simultaneous presence of particles of different sizes in the 3-4 nm and 6.0-7.5 nm range, respectively. The smaller size is related to the hydrodynamic radius of the trimer Light Harvesting Complex (LHCII), whereas the larger size is associated with the presence of photosystem I and photosystem II reaction centers. Additionally, functional information regarding protein-protein interactions was deconvoluted using coupling 2-D BN-PAGE, MALDI-TOF MS and a detailed mapping of S. obliquus photosynthetic proteome of the solubilized thylakoid membranes is therefore presented.  相似文献   

8.
Echinococcus multilocularis is an important parasite that causes human alveolar echinococcosis. Identification and characterization of the proteins encoded by E. multilocularis metacestode might help to understand the complexity of the parasites and their interactions with the host, and to identify new candidates for immunodiagnosis and vaccine development. Here we present a proteomic analysis of E. multilocularis protoscolex (PSC) proteins. The proteins were resolved by 2-DE (pH range 3.5-10), followed by MALDI-TOF MS analysis. Fourteen known Echinococcus proteins were identified, including cytoskeletal proteins, heat shock proteins, metabolic enzymes, 14-3-3 protein, antigen P-29 and calreticulin. To construct a systematic reference map of the immunogenic proteins from E. multilocularis PSC, immunoblot analysis of PSC 2-DE maps was performed. Over 50 proteins spots were detected on immunoblots as antigens and 15 of them were defined. The results showed that cytoskeletal proteins and heat shock proteins were immunodominant antigens in alveolar echinococcosis.  相似文献   

9.
Youg R. Thaker  Yin H. Yau 《FEBS letters》2009,583(7):1090-1095
Owing to the complex nature of V1VO ATPases, identification of neighboring subunits is essential for mechanistic understanding of this enzyme. Here, we describe the links between the V1 headpiece and the VO-domain of the yeast V1VO ATPase via subunit A and d as well as the VO subunits a and d using surface plasmon resonance and fluorescence correlation spectroscopy. Binding constants of about 60 and 200 nM have been determined for the a-d and d-A assembly, respectively. The data are discussed in light of subunit a and d forming a peripheral stalk, connecting the catalytic A3B3 hexamer with VO.

Structured summary

MINT-7012054: d (uniprotkb:P32366) binds (MI:0407) to A (uniprotkb:P17255) by fluorescence correlation spectroscopy (MI:0052)MINT-7012041: d (uniprotkb:P32366) binds (MI:0407) to A (uniprotkb:P17255) by surface plasmon resonance (MI:0107)MINT-7012028: d (uniprotkb:P32366) binds (MI:0407) to a (uniprotkb:P32563) by surface plasmon resonance (MI:0107)  相似文献   

10.
11.
The envelope of Escherichia coli is a complex organelle composed of the outer membrane, periplasm-peptidoglycan layer and cytoplasmic membrane. Each compartment has a unique complement of proteins, the proteome. Determining the proteome of the envelope is essential for developing an in silico bacterial model, for determining cellular responses to environmental alterations, for determining the function of proteins encoded by genes of unknown function and for development and testing of new experimental technologies such as mass spectrometric methods for identifying and quantifying hydrophobic proteins. The availability of complete genomic information has led several groups to develop computer algorithms to predict the proteome of each part of the envelope by searching the genome for leader sequences, β-sheet motifs and stretches of α-helical hydrophobic amino acids. In addition, published experimental data has been mined directly and by machine learning approaches. In this review we examine the somewhat confusing available literature and relate published experimental data to the most recent gene annotation of E. coli to describe the predicted and experimental proteome of each compartment. The problem of characterizing integral versus membrane-associated proteins is discussed. The E. coli envelope proteome provides an excellent test bed for developing mass spectrometric techniques for identifying hydrophobic proteins that have generally been refractory to analysis. We describe the gel based and solution based proteome analysis approaches along with protein cleavage and proteolysis methods that investigators are taking to tackle this difficult problem.  相似文献   

12.
High-molecular-weight glutenin subunits (HMW-GSs) are of considerable interest, because they play a crucial role in determining dough viscoelastic properties and end-use quality of wheat flour. In this paper, ChAy/Bx, a novel chimeric HMW-GS gene from Triticum turgidum ssp. dicoccoides (AABB, 2n = 4x = 28) accession D129, was isolated and characterized. Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) analysis revealed that the electrophoretic mobility of the glutenin subunit encoded by ChAy/Bx was slightly faster than that of 1Dy12. The complete ORF of ChAy/Bx contained 1671 bp encoding a deduced polypeptide of 555 amino acid residues (or 534 amino acid residues for the mature protein), making it the smallest HMW-GS gene known from Triticum species. Sequence analysis showed that ChAy/Bx was neither a conventional x-type nor a conventional y-type subunit gene, but a novel chimeric gene. Its first 1305 nt sequence was highly homologous with the corresponding sequence of 1Ay type genes, while its final 366 nt sequence was highly homologous with the corresponding sequence of 1Bx type genes. The mature ChAy/Bx protein consisted of the N-terminus of 1Ay type subunit (the first 414 amino acid residues) and the C-terminus of 1Bx type subunit (the final 120 amino acid residues). Secondary structure prediction showed that ChAy/Bx contained some domains of 1Ay subunit and some domains of 1Bx subunit. The special structure of this HMW glutenin chimera ChAy/Bx subunit might have unique effects on the end-use quality of wheat flour. Here we propose that homoeologous recombination might be a novel pathway for allelic variation or molecular evolution of HMW-GSs.  相似文献   

13.
The INU1 gene (Accession number: JX073660) encoding exo-inulinase from Cryptococcus aureus HYA was cloned and characterized. The gene had an open reading frame (ORF) of 1653 bp long encoding an inulinase. The coding region of the gene was not interrupted by any intron. It encoded 551 amino acid residues of a protein with a putative signal peptide of 23 amino acids and the calculated molecular mass of 59.5 kDa. The protein sequence deduced from the inulinase structural gene contained the inulinase consensus sequences (WMNDPNGL), (RDP), ECP, FS and Q. It also had two conserved putative N-glycosylation sites. The inulinase from C. aureus HYA was found to be closely related to that from Kluyveromyces marxianus and Pichia guilliermondii. The inulinase gene without the signal sequence was subcloned into pPICZaA expression vector and expressed in Pichia pastoris X-33. The expressed fusion protein was analyzed by SDS-PAGE and western blotting and a specific band with molecular mass of about 60 kDa was found. Enzyme activity assay verified the recombinant protein as an inulinase. A maximum inulinase activity of 16.3 ± 0.24 U/ml was obtained from the culture supernatant of P. pastoris X-33 harboring the inulinase gene. The optimal temperature and pH for action of the enzyme were 50 °C and 5.0, respectively. A large amount of monosaccharides were detected after the hydrolysis of inulin with the purified recombinant inulinase.  相似文献   

14.
This paper identifies the first arginine/ornithine antiporter ArcD from the domain of archea. The functional role of ArcD is demonstrated by transport assays with radioactive labelled arginine, by its necessity to enable arginine fermentation under anaerobic growth conditions and by the consumption of arginine from the medium during growth. All three experimentally observables are severely disturbed when the deletion strain ΔArcD is used. The isolated protein is verified by mass spectrometry and reconstituted in vesicles. The proteoliposomes are attached to a membrane and capacitive currents are recorded which appear upon initiation of the transport process by change from arginine-free to arginine-containing buffer. This clearly demonstrates that the purified 34 kD protein is the functional unit.  相似文献   

15.
Two y-type high molecular weight glutenin subunits (HMW-GSs) 1Ay12? and 1Ay8? from the two accessions PI560720 and PI345186 of cultivated einkorn wheat (Triticum monococcum ssp. monococcum, AA, 2n = 2x = 14), were identified by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). The mobility of 1Ay12? and 1Ay8? was similar to that of 1Dy12 and 1By8 from common wheat Chinese Spring, respectively. Their ORFs respectively consisted of 1812 bp and 1935 bp, encoding 602 and 643 amino acid residues with the four typical structural domains of HMW-GS including signal peptide, conserved N-, and C-terminal and central repetitive domains. Compared with the most similar active 1Ay alleles previous published, there were a total of 15 SNPs and 2 InDels in them. Their encoding functions were confirmed by successful heterogeneous expression. The two novel 1Ay alleles were named as 1Ay12? and 1Ay8? with the accession No. JQ318694 and JQ318695 in GenBank, respectively. The two alleles were classed into the two distinct groups, Phe-type and Cys-type, which might be relevant to the differentiation of Glu-A1-2 alleles. Of which, 1Ay8? belonged to Cys-type group, and its protein possessed an additional conserved cysteine residue in central repetitive region besides the six common ones in N- and C-terminal regions of Phe-type group, and was the second longest in all the known active 1Ay alleles. These results suggested that the subunit 1Ay8? of cultivated einkorn wheat accession PI345186 might have a potential ability to strengthen the gluten polymer interactions and be a valuable genetic resource for wheat quality improvement.  相似文献   

16.
Hjerrild M  Gammeltoft S 《FEBS letters》2006,580(20):4764-4770
Protein phosphorylation is important for regulation of most biological functions and up to 50% of all proteins are thought to be modified by protein kinases. Increased knowledge about potential phosphorylation of a protein may increase our understanding of the molecular processes in which it takes part. Despite the importance of protein phosphorylation, identification of phosphoproteins and localization of phosphorylation sites is still a major challenge in proteomics. However, high-throughput methods for identification of phosphoproteins are being developed, in particular within the fields of bioinformatics and mass spectrometry. In this review, we present a toolbox of current technology applied in phosphoproteomics including computational prediction, chemical approaches and mass spectrometry-based analysis, and propose an integrated strategy for experimental phosphoproteomics.  相似文献   

17.

Background

Dienelactone hydrolases catalyze the hydrolysis of dienelactone to maleylacetate, which play a key role for the microbial degradation of chloroaromatics via chlorocatechols. Here, a thermostable dienelactone hydrolase from thermoacidophilic archaeon Sulfolobus solfataricus P1 was the first purified and characterized and then expressed in Escherichia coli.

Methods

The enzyme was purified by using several column chromatographys and characterized by determining the enzyme activity using p-nitrophenyl caprylate and dienelactones. In addition, the amino acids related to the catalytic mechanism were examined by site-directed mutagenesis using the identified gene.

Results

The enzyme, approximately 29 kDa monomeric, showed the maximal activity at 74 °C and pH 5.0, respectively. The enzyme displayed remarkable thermostability: it retained approximately 50% of its activity after 50 h of incubation at 90 °C, and showed high stability against denaturing agents, including various detergents, urea, and organic solvents. The enzyme displayed substrate specificities toward trans-dienelactone, not cis-isomer, and also carboxylesterase activity toward p-nitrophenyl esters ranging from butyrate (C4) to laurate (C12). The kcat/Km ratios for trans-dienelactone and p-nitrophenyl caprylate (C8), the best substrate, were 92.5 and 54.7 s−1 μM−1, respectively.

Conclusions

The enzyme is a typical dienelactone hydrolase belonging to α/β hydrolase family and containing a catalytic triad composed of Cys151, Asp198, and His229 in the active site.

General significance

The enzyme is the first characterized archaeal dienelactone hydrolase.  相似文献   

18.
Musca domestica (Diptera: Muscidae), the housefly, exhibits unique immune defences and can produce antimicrobial peptides upon stimulation with bacteria. Based on the cDNA library constructed using the suppression subtractive hybridization (SSH) method, a 198-bp antimicrobial peptide gene, which we named MDAP-2, was amplified by rapid amplification of cDNA ends (RACE) from M. domestica larvae stimulated with Salmonella pullorum (Enterobacteriaceae: Salmonella). In the present study, the full-length MDAP-2 gene was cloned and inserted into a His-tagged Escherichia coli prokaryotic expression system to enable production of the recombinant peptide. The recombinant MDAP-2 peptide was purified using Ni-NTA HisTrap FF crude column chromatography. The bacteriostatic activity of the recombinant purified MDAP-2 protein was assessed. The results indicated that MDAP-2 had in vitro antibacterial activity against all of the tested Gram − bacteria from clinical isolates, including E. coli (Enterobacteriaceae: Escherichia), one strain of S. pullorum (Enterobacteriaceae: Salmonella), and one strain of Pasteurella multocida. DNA sequencing and BLAST analysis showed that the MDAP-2 antimicrobial peptide gene was not homologous to any other antimicrobial peptide genes in GenBank. The antibacterial mechanisms of the newly discovered MDAP-2 peptide warrant further study.  相似文献   

19.
Zeng QY  Wang XR 《FEBS letters》2005,579(12):2657-2662
Glutathione transferases (GSTs) play important roles in stress tolerance and detoxification in plants. However, there is extremely little information on the molecular characteristics of GSTs in gymnosperms. In a previous study, we cloned a tau class GST (PtGSTU1) from a gymnosperm (Pinus tabulaeformis) for the first time. Based on the N-terminal amino acid sequence identity to the available crystal structures of plant tau GSTs, Ser13, Lys40, Ile54, Glu66 and Ser67 of PtGSTU1 were proposed as glutathione-binding (G-site) residues. The importance of Ser13 as a G-site residue was investigated previously. The functions of Lys40, Ile54, Glu66 and Ser67 of PtGSTU1 are examined in this study through site-directed mutagenesis. Enzyme assays and thermal stability measurements on the purified recombinant PtGSTU1 showed that substitution at each of these sites significantly affects the enzyme's substrate specificity and affinity for GSH, and these residues are essential for maintaining the stability of PtGSTU1. The results of protein expression and refolding analyses suggest that Ile54 is involved in the protein folding process. The findings demonstrate that the aforementioned residues are critical components of active sites that contribute to the enzyme's catalytic activity and structural stability.  相似文献   

20.
Vitamin D3 (VD3) is a fat-soluble prohormone that plays a crucial role in bone metabolism, immunity, and control of cell proliferation and cell differentiation in mammals. The actinomycete Pseudonocardia autotrophica is capable of bioconversion of VD3 into its physiologically active forms, namely, 25(OH)VD3 or 1α,25(OH)2VD3. In this study, we isolated and characterized Vdh (vitamin D3 hydroxylase), which hydroxylates VD3 from P. autotrophica NBRC 12743. The vdh gene encodes a protein containing 403 amino acids with a molecular weight of 44,368 Da. This hydroxylase was found to be homologous with the P450 belonging to CYP107 family. Vdh had the same ratio of the Vmax values for VD3 25-hydroxylation and 25(OH)VD3 1α-hydroxylation, while other enzymes showed preferential regio-specific hydroxylation on VD3. We characterized a collection of Vdh mutants obtained by random mutagenesis and obtained a Vdh-K1 mutant by the combination of four amino acid substitutions. Vdh-K1 showed one-order higher VD3 25-hydroxylase activity than the wild-type enzyme. Biotransformation of VD3 into 25(OH)VD3 was successfully accomplished with a Vdh-expressed recombinant strain of actinobacterium Rhodococcus erythropolis. Vdh may be a useful enzyme for the production of physiologically active forms of VD3 by a single cytochrome P450.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号