首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Heat shock protein 90α (Hsp90α) was immobilized on aminopropyl silica via the N terminus to create the Hsp90α(NT) column or via the C terminus to create the Hsp90α(CT) column. Binding to the exposed C terminus on the Hsp90α(NT) column was characterized using frontal chromatography and the C-terminus ligands coumermycin A1 (CA1) and novobiocin (NOVO). The calculated Kd values were 220 ± 110 nM (CA1) and 100 ± 20 nM (NOVO). Nonlinear chromatography was used to determine the association and dissociation rate constants associated with the NOVO-Hsp90α complex: 22.2 ± 8.8 μM−1 s−1 and 2.7 ± 0.6 s−1, respectively. Binding to the exposed N terminus on the Hsp90α(CT) column was characterized using frontal chromatography. The Kd values of the N-terminus ligands geldanamycin (GM, 90 ± 50 nM), 17-allylamino-17-demethoxygeldanamycin (17-AAG, 210 ± 50 nM), and radicicol (RAD, 20 ± 9 nM) were consistent with previously reported values. The effect of the immobilization on ATPase activity was investigated through the determination of IC50 values for inhibition of ATPase activity on the Hsp90α(CT) column. The IC50 for GM was 2.80 ± 0.18 μM, and the relative IC50 values were 17-AAG > GM > RAD, in agreement with previously reported values and indicating that immobilization had not affected ATPase activity or sensitivity to inhibition.  相似文献   

2.
Yor1p, a Saccharomyces cerevisiae plasma membrane ABC-transporter, is associated to oligomycin resistance and to rhodamine B transport. Here, by using the overexpressing strain Superyor [A. Decottignies, A.M. Grant, J.W. Nichols, H. de Wet, D.B. McIntosh, A. Goffeau, ATPase and multidrug transport activities of the overexpressed yeast ABC protein Yor1p, J. Biol. Chem. 273 (1998) 12612-12622], we show that Yor1p also confers resistance to rhodamine 6G and to doxorubicin. In addition, Yor1p protects cells, although weakly, against tetracycline, verapamil, eosin Y and ethidium bromide. The basal ATPase activity of the overexpressed form of Yor1p was studied in membrane preparations. This activity is quenched upon addition of micromolar amounts of vanadate. Vmax and Km values of ∼ 0.8 s− 1 and 50 ± 8 μM are measured. Mutations of essential residues in the nucleotide binding domain 2 reduces the activity to that measured with a Δyor1 strain. ATP hydrolysis is strongly inhibited by the addition of potential substrates of the transporter. Covalent reaction of 8-azido-[α-32P]ATP with Yor1p is not sensitive to the presence of excess oligomycin. Thus, competition of the drug with ATP binding is unlikely. Finally, we inspect possible hypotheses accounting for substrate inhibition, rather than stimulation, of ATP hydrolysis by the membrane preparation.  相似文献   

3.
The PPARγ agonist Rosiglitazone exerts anti-hyperglycaemic effects by regulating the long-term expression of genes involved in metabolism, differentiation and inflammation. In the present study, Rosiglitazone treatment rapidly inhibited (5-30 min) the ER Ca2+ ATPase SERCA2b in monocytic cells (IC50 = 1.88 μM; p < 0.05), thereby disrupting short-term Ca2+ homeostasis (resting [Ca2+]cyto = 121.2 ± 2.9% basal within 1 h; p < 0.05). However, extended Rosiglitazone treatment (72 h) induced dose-dependent SERCA2b up-regulation, and restored calcium homeostasis, in monocytic cells (SERCA2b mRNA: 138.7 ± 5.7% basal (1 μM)/215.0 ± 30.9% basal (10 μM); resting [Ca2+]cyto = 97.3 ± 8.3% basal (10 μM)). As unfavourable cardiovascular outcomes, possibly related to disrupted cellular Ca2+ homeostasis, have been linked to Rosiglitazone, this effect may be of clinical interest. In contrast, in PPRE-luciferase reporter-gene assays, Rosiglitazone induced non-dose-dependent PPARγ-dependent effects (1 μM: 152.5 ± 4.9% basal; 10 μM: 136.1 ± 5.1% basal (p < 0.05 for 1 μM vs. 10 μM)). Thus, we conclude that Rosiglitazone can exert PPARγ-independent non-genomic effects, such as the SERCA2b inhibition seen here, but that long-term Rosiglitazone treatment did not perturb resting [Ca]cyto in this study.  相似文献   

4.
In vitro antitumour activity of the [Pt(ox)(Ln)2] (1-7) and [Pd(ox)(Ln)2] (8-14) oxalato (ox) complexes involving N6-benzyl-9-isopropyladenine-based N-donor carrier ligands (Ln) against ovarian carcinoma (A2780), cisplatin resistant ovarian carcinoma (A2780cis), malignant melanoma (G-361), lung carcinoma (A549), cervix epitheloid carcinoma (HeLa), breast adenocarcinoma (MCF7) and osteosarcoma (HOS) human cancer cell lines was studied. Some of the tested complexes were even several times more cytotoxic as compared with cisplatin employed as a positive control. The improved cytotoxic effect was demonstrated for the platinum(II) complexes 3 (IC50 = 3.2 ± 1.0 μM and 3.2 ± 0.6 μM) and 5 (IC50 = 4.0 ± 1.0 μM and 4.1 ± 1.4 μM) against A2780 and A2780cis, as compared with 11.5 ± 1.6 μM, and 30.3 ± 6.1 μM determined for cisplatin, respectively. The significant in vitro cytotoxicity against MCF7 (IC50 = 8.2 ± 3.8 μM for 12) and A2780 (IC50 = 5.4 ± 1.2 μM for 14) was evaluated for the palladium(II) oxalato complexes, which again exceeded cisplatin, whose IC50 equalled 19.6 ± 4.3 μM against the MCF7 cells. Selected complexes were also screened for their in vitro cytotoxic effect in primary cultures of human hepatocytes and they were found to be non-hepatotoxic.  相似文献   

5.
Liliya Euro 《BBA》2009,1787(8):1024-2322
Studies on the activity of Complex I from Escherichia coli in the presence of different metal cations revealed at least two high affinity metal-binding sites. Membrane-bound or isolated Complex I was activated by K+ (apparent binding constant ∼ 125 μM) and inhibited by La3+ (IC50 = 1 μM). K+ and La3+ do not occupy the same site. Possible localization of these metal-binding sites and their implication in catalysis are discussed.  相似文献   

6.
Human tissue from uninvolved liver of cancer patients was fractionated using differential centrifugation and characterized for 11βHSD enzyme activity against corticosterone, dehydrocorticosterone, 7α- and 7β-hydroxy-dehydroepiandrosterone, and 7-oxo-dehydroepiandrosterone. An enzyme activity was observed in nuclear protein fractions that utilized either NADP+ or NAD+, but not NADPH and NADH, as pyridine nucleotide cofactor with Km values of 12 ± 2 and 390 ± 2 μM, compared to the Km for microsomal 11βHSD1 of 43 ± 8 and 264 ± 24 μM, respectively. The Km for corticosterone in the NADP+-dependent nuclear oxidation reaction was 102 ± 16 nM, compared to 4.3 ± 0.8 μM for 11βHSD1. The Kcat values for nuclear activity with NADP+ was 1687 nmol/min/mg/μmol, compared to 755 nmol/min/mg/μmol for microsomal 11βHSD1 activity. Inhibitors of 11βHSD1 decreased both nuclear and microsomal enzyme activities, suggesting that the nuclear activity may be due to an enzyme similar to 11βHSD Type 1 and 2.  相似文献   

7.
8.
Six new transition metal complexes (M = Cu(II), Ni(II) and Mn(III)) of tridentate (H2L1, HL2) and/or bidentate (HL3, HL4) Schiff-base ligands, obtained from the condensation of salicylaldehyde with glycine, N-(2-aminoethyl)morpholine, 4-(2-aminoethyl)phenylic acid and 4-(2-aminoethyl)benzsulfamide, respectively, were synthesized and structurally determined by single-crystal X-ray analysis. Complexes 1-6 were evaluated for their effect on the jack bean urease and xanthine oxidase (XO). Copper(II) complexes 1-3 (IC50 = 0.43-2.25 μM) showed potent inhibitory activity against jack bean urease, comparable with acetohydroxamicacid (IC50 = 42.12 μM), which is a positive reference. And these copper(II) complexes (IC50 = 10.26-15.82 μM) also exhibited strong ability to inhibit activity of XO, comparable to allopurinol (IC50 = 10.37 μM), which was used as a positive reference. Nickel(II) and manganese(III) complexes 4-6 showed weak inhibitory activity to jack bean urease (IC50 = 4.36-8.25 μM) and no ability to inhibit XO (IC50 > 100 μM).  相似文献   

9.
Black tea is recently reported to have anti-carcinogenic effects through pro-oxidant property, but the underlying mechanisms remain unclear. Mammalian cytosolic thioredoxin reductase (TrxR1) is well -known for its anti-oxidation activity. In this study, we found that black tea extract (BTE) and theaflavins (TFs), the major black tea polyphenols, inhibited the purified TrxR1 with IC50 44 μg/ml and 21 ± 1 μg/ml, respectively. Kinetics of TFs exhibited a mixed type of competitive and non-competitive inhibition, with Kis 4 ± 1 μg/ml and Kii 26 ± 5 μg/ml against coenzyme NADPH, and with Kis 12 ± 3 μg/ml and Kii 27 ± 5 μg/ml against substrate DTNB. In addition, TFs inhibited TrxR1 in a time-dependent manner. In an equilibrium step, a reversible TrxR1-TFs complex (E * I) forms, which is followed by a slow irreversible first-order inactivation step. Rate constant of the inactivation was 0.7 min−1, and dissociation constant of E * I was 51.9 μg/ml. Treatment of NADPH-reduced TrxR1 with TFs decreased 5-(Iodoacetamido) fluorescein incorporation, a fluorescent thiol-reactive reagent, suggesting that Sec/Cys residue(s) in the active site may be involved in the binding of TFs. The inhibitory capacity of TFs depends on their structure. Among the TFs tested, gallated forms had strong inhibitory effects. The interactions between TFs and TrxR1 were investigated by molecular docking, which revealed important features of the binding mechanism of theaflavins. An inhibitory effect of BTE on viability of HeLa cells was observed with IC50 29 μg/ml. At 33 μg/ml of BTE, TrxR1 activity in HeLa cells was decreased by 73% at 22 h after BTE treatment. TFs inhibited cell viability with IC50 10 ± 4 μg/ml for HeLa cells and with IC50 20 ± 5 μg/ml for EAhy926 cells. The cell susceptibility to TFs was inversely correlated to cellular levels of TrxR1. The inhibitory actions of TFs on TrxR1 may be an important mechanism of their anti-cancer properties.  相似文献   

10.
Copper(II) complexes [Cu(satp)(L)] (1-3) of a Schiff base thiolate (salicylidene-2-aminothiophenol, H2satp) and phenanthroline bases (L), viz. 1,10-phenanthroline (phen in 1), dipyrido[3,2-d:2′,3′-f]quinoxaline (dpq in 2) and dipyrido[3,2-a:2′,3′-c]phenazine (dppz in 3), were prepared, characterized and their anaerobic DNA photocleavage activity and hypoxic photocytotoxicity studied. The redox active complexes show the Cu(II)-Cu(I) couple near − 0.5 V for 1 and near 0.0 V vs. SCE (saturated calomel electrode) for 2 and 3. The one-electron paramagnetic complexes (~ 1.85 μB) are avid DNA binders giving Kb values within 1.0 × 105 − 8.0 × 105 M− 1. Thermal melting and viscosity data along with molecular docking calculations suggest DNA groove and/or partial intercalative binding of the complexes. The complexes show anaerobic DNA cleavage activity in red light under argon via type-I pathway, while DNA photocleavage in air proceeds via hydroxyl radical pathway. The DFT (density functional theory) calculations reveal a thyil radical pathway for the anaerobic DNA photocleavage activity and suggest the possibility of generation of a transient copper(I) species due to bond breakage between the copper and sulfur to generate the thyil radical. An oxidation of the copper(I) species is likely by oxygen in an aerobic medium or by the buffer medium in an anaerobic condition. Complex 3 exhibits significant photocytotoxicity in HeLa cells (IC50 = 8.3(± 1.0) μM) in visible light, while showing lower dark toxicity (IC50 = 17.2(± 1.0) μM). A significant reduction in the dark toxicity is observed under hypoxic cellular conditions (IC50 = 30.0(± 1.0) μM in dark), while retaining its photocytotoxicity (IC50 = 8.0(± 1.0) μM).  相似文献   

11.
Two new diterpenes, lobocompactols A (1) and B (2), and five known compounds (3-7) were isolated from the methanol extract of the soft coral Lobophytum compactum using combined chromatographic methods and identified based on NMR and MS data. Each compound was evaluated for cytotoxic activity against A549 (lung) and HL-60 (acute promyelocytic leukemia) human cancer cell lines. Among them, compound 5 exhibited strong cytotoxic activity against the A549 cell line with an IC50 of 4.97 ± 0.06 μM. Compounds 3, 4, and 7 showed moderate activity with IC50 values of 23.03 ± 0.76, 31.13 ± 0.08, and 36.45 ± 0.01 μM, respectively. The cytotoxicity of 5 on the A549 cells was comparable to that of the positive control, mitoxantrone (MX). All compounds exhibited moderate cytotoxicity against the HL-60 cell line, with IC50 values ranging from 17.80 ± 1.43 to 59.06 ± 2.31 μM. Their antioxidant activity was also measured using oxygen radical absorbance capacity method, compounds 1 and 2 exhibiting moderate peroxyl radical scavenging activity of 1.4 and 1.3 μM Trolox equivalents, respectively, at a concentration of 5 μM.  相似文献   

12.
Biochemical studies to elucidate the structural basis for xyloglucan specificity among GH12 xyloglucanases are lacking. Accordingly, the substrate specificity of a GH12 xyloglucanase from Aspergillus niger (AnXEG12A) was investigated using pea xyloglucan and 12 xylogluco-oligosaccharides, and data were compared to a structural model of the enzyme. The specific activity of AnXEG12A with pea xyloglucan was 113 μmol min−1 mg−1, and apparent kcat and Km values were 49 s−1 and 0.54 mg mL−1, respectively. These values are similar to previously published results using xyloglucan from tamarind seed, and suggest that substrate fucosylation does not affect the specific activity of this enzyme. AnXEG12A preferred xylogluco-oligosaccharides containing more than six glucose units, and with xylose substitution at the −3 and +1 subsites. The specific activities of AnXEG12A on 100 μM XXXGXXXG and 100 μM XLLGXLLG were 60 ± 4 and 72 ± 9 μmol min−1 mg−1, respectively. AnXEG12A did not hydrolyze XXXXXXXG, consistent with other data that demonstrate the requirement for an unbranched glucose residue for hydrolysis by this enzyme.  相似文献   

13.
Four bis(thiosemicarbazonate)gold(III) complexes (1-4) with a general formula [Au(L)]Cl {L = L1, glyoxal-bis(N4-methylthiosemicarbazone); L2, glyoxal-bis(N4-ethylthiosemicarbazone); L3, diacetyl-bis(N4-methylthiosemicarbazone); L4, diacetyl-bis(N4-ethylthiosemicarbazone)} were synthesised and screened for activity against the human immunodeficiency virus (HIV). Complexes 1-4 were characterised using 1H-NMR and IR spectroscopy; and their purity established by micronanalysis. Complex 3 inhibited viral infection of TZM-bl cells by 98% (IC50 = 6.8 ± 0.6 μM) at a non toxic concentration of 12.5 μM while complex 4 inhibited infection of these cells by 72 and 98% (IC50 = 5.3 ± 0.4 μM) at concentrations of 6.25 and 12.5 μM respectively. The mechanism of inhibition of infection in TZM-bl cells is presumably as a result of the cytostatic or anti-proliferative activity that was observed for complex 4 in real time cell electronic sensing (RT-CES) and carboxyflourescein succinimidyl ester (CFSE) analysis. Treatment of T lymphocytes from HIV infected individuals with 4 decreased CD4+ T cell expression (p = 0.0049) as demonstrated by multi-parametric flow cytometry without suppressing cytokine production. None of the ligands (L1-L4) demonstrated anti-viral activity, supporting the importance of metal (gold) complexation in these potential drugs. Complexes 3 and 4 were shown to have ideal lipophilicity values that were similar when shake flask (0.97 ± 0.5 and 2.42 ± 0.6) and in silico prediction (0.8 and 1.5) methods were compared. The activity and drug-like properties of complexes 3 and 4 suggests that these novel metal-based compounds could be combined with virus inhibitory drugs to work as cytostatic agents in the emerging class of anti-HIV drugs known as virostatics.  相似文献   

14.
Here, we describe the first example of a cell-based myosin light chain phosphorylation assay in 96-well format that allows for the rapid screening of novel Rho-kinase inhibitors. We obtained IC50 values for the prototypic Rho-kinase inhibitors Y-27632 (1.2 ± 0.05 μM) and Fasudil (3.7 ± 1.2 μM) that were similar to those previously published utilizing electrophoresis-based methodologies. H-1152P, a Fasudil analog showed an IC50 value of 77 ± 30 nM. Data derived from a set of 21 novel Rho-kinase inhibitors correlate with those generated by a well-established cell-based phenotypic Rho-kinase inhibition assay (R2 = 0.744). These results show that imaging technology measuring changes in myosin light chain phosphorylation can be used to rapidly generate quantitative IC50 values and to screen a larger set of small molecule Rho-kinase inhibitors and suggests that this approach can be broadly applied to other cell lines and signaling pathways.  相似文献   

15.
The nonstructural protein 3 helicase (NS3h) of hepatitis C virus is a 3′-to-5′ superfamily 2 RNA and DNA helicase that is essential for the replication of hepatitis C virus. We have examined the kinetic mechanism of the translocation of NS3h along single-stranded nucleic acid with bases uridylate (rU), deoxyuridylate (dU), and deoxythymidylate (dT), and have found that the macroscopic rate of translocation is dependent on both the base moiety and the sugar moiety of the nucleic acid, with approximate macroscopic translocation rates of 3 nt s− 1 (oligo(dT)), 35 nt s− 1 (oligo(dU)), and 42 nt s− 1 (oligo(rU)), respectively. We found a strong correlation between the macroscopic translocation rates and the binding affinity of the translocating NS3h protein for the respective substrates such that weaker affinity corresponded to faster translocation. The values of K0.5 for NS3h translocation at a saturating ATP concentration are as follows: 3.3 ± 0.4 μM nucleotide (poly(dT)), 27 ± 2 μM nucleotide (poly(dU)), and 36 ± 2 μM nucleotide (poly(rU)). Furthermore, results of the isothermal titration of NS3h with these oligonucleotides suggest that differences in TΔS0 are the principal source of differences in the affinity of NS3h binding to these substrates. Interestingly, despite the differences in macroscopic translocation rates and binding affinities, the ATP coupling stoichiometries for NS3h translocation were identical for all three substrates (∼ 0.5 ATP molecule consumed per nucleotide translocated). This similar periodicity of ATP consumption implies a similar mechanism for NS3h translocation along RNA and DNA substrates.  相似文献   

16.
A non-membrane bound form of Neprilysin (NEP) with catalytic activity has the potential to cleave substrates throughout the circulation, thus leading to systemic effects of NEP. We used the endothelial cell line Ea.hy926 to identify the possible role of exosomes and A Disintegrin and Metalloprotease 17 (ADAM-17) in the production of non-membrane bound NEP. Using a bradykinin based quenched fluorescent substrate (40 μM) assay, we determined the activity of recombinant human NEP (rhNEP; 12 ng), and NEP in the media of endothelial cells (10% v/v; after 24 h incubation with cells) to be 9.35 ± 0.70 and 6.54 ± 0.41 μmols of substrate cleaved over 3 h, respectively. The presence of NEP in the media was also confirmed by Western blotting. At present there are no commercially available inhibitors specific for ADAM-17. We therefore synthesised two inhibitors TPI2155-14 and TPI2155-17, specific for ADAM-17 with IC50 values of 5.36 and 4.32 μM, respectively. Treatment of cells with TPI2155-14 (15 μM) and TPI2155-17 (4.3 μM) resulted in a significant decrease in NEP activity in media (62.37 ± 1.43 and 38.30 ± 4.70, respectively as a % of control; P < 0.0001), implicating a possible role for ADAM-17 in NEP release. However, centrifuging media (100,000g for 1 h at 4 °C) removed all NEP activity from the supernatant indicating the likely role of exosomes in the release of NEP. Our data therefore indicated for the first time that NEP is released from endothelial cells via exosomes, and that this process is dependent on ADAM-17.  相似文献   

17.
The search for a novel pharmacotherapy from medicinal plants for neurodegenerative disorders has significantly advanced. Therefore, the present study was performed to evaluate the anticholinesterase activities of one hundred medicinal plants in Korea, where Terminalia chebula (T. chebula) fruits showed significant acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) inhibitions. Further bioassay monitored phytochemical exploration led to the isolation of 1,2,3,4,6-penta-O-galloyl-β-d-glucose (compound 1), which showed significant AChE and BChE inhibitory effects with IC50 values of 29.9 ± 0.3 µM and 27.6 ± 0.2 µM, respectively. The inhibitory effect of compound 1 towards acetylcholinesterase was also evaluated using TLC and compared with tacrine as the positive control; the positive effect was confirmed. Furthermore, compound 1 also displayed strong antioxidant activity by the FRAP assay (IC50 = 4.6 ± 0.2 µM). In conclusion, compound 1 may prove to be a potential natural anti-Alzheimer source based on noteworthy AChE and BChE inhibitions, and strong antioxidant activity.  相似文献   

18.
A series of N-phenylnicotinamides (1-40) were designed and evaluated in vitro for their COX inhibitory activities. Most of the synthesized compounds were proved to be potent and selective inhibitors of COX-1. Compound 28 showed the most potent COX-1 inhibitory activity (COX-1 IC50 = 0.68 ± 0.07 μM) and good selectivity (COX-2 IC50 >100 μM). This compound may be useful as a lead compound for superior COX-1 inhibitors. On the basis of the biological results, structure-activity relationships for the COX-1-inhibitory activities of the synthesized N-phenylnicotinamides were discussed concisely.  相似文献   

19.
Cytosolic heat shock protein 90 (Hsp90) has been shown to be essential for many infectious pathogens and is considered a potential target for drug development. In this study, we have carried out biochemical characterization of Hsp90 from a poorly studied protozoan parasite of clinical importance, Entamoeba histolytica. We have shown that Entamoeba Hsp90 can bind to both ATP and its pharmacological inhibitor, 17-AAG (17-allylamino-17-demethoxygeldanamycin), with Kd values of 365.2 and 10.77 μM, respectively, and it has a weak ATPase activity with a catalytic efficiency of 4.12 × 10− 4 min− 1 μM− 1. Using inhibitor 17-AAG, we have shown dependence of Entamoeba on Hsp90 for its growth and survival. Hsp90 function is regulated by various co-chaperones. Previous studies suggest a lack of several important co-chaperones in E. histolytica. In this study, we describe the presence of a novel homologue of co-chaperone Aha1 (activator of Hsp90 ATPase), EhAha1c, lacking a canonical Aha1 N-terminal domain. We also show that EhAha1c is capable of binding and stimulating ATPase activity of EhHsp90. In addition to highlighting the potential of Hsp90 inhibitors as drugs against amoebiasis, our study highlights the importance of E. histolytica in understanding the evolution of Hsp90 and its co-chaperone repertoire.  相似文献   

20.
2,3-Dihydroxy-quinoxaline, a small molecule that promotes ATPase catalytic activity of Herpes Simplex Virus thymidine kinase (HSV-TK), was identified by virtual screening. This compound competitively inhibited HSV-TK catalyzed phosphorylation of acyclovir with Ki = 250 μM (95% CI: 106–405 μM) and dose-dependently increased the rate of the ATP hydrolysis with KM = 112 μM (95% CI: 28–195 μM). The kinetic scheme consistent with this experimental data is proposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号