首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Jarvis SE  Zamponi GW 《Cell calcium》2005,37(5):483-488
Calcium entry through presynaptic voltage-gated calcium channels is essential for neurotransmitter release. The two major types of presynaptic calcium channels contain a synaptic protein interaction site that physically interacts with synaptic vesicle release proteins. This is thought to tighten the coupling between the sources of calcium entry and the neurotransmitter release machinery. Conversely, the binding of synaptic proteins to presynaptic calcium channels regulates calcium channel activity. Hence, presynaptic calcium channels act not only as the masters of the synaptic release process, but also as key targets for feedback inhibition.  相似文献   

2.
Increasing concentrations of nitrendipine were found to inhibit various types of muscular activation (electrical stimulation, acetylcholine, oxytocin, potassium chloride), as well as the spontaneous rhythmic activity of the isolated rat uterus. The degree of the inhibitory effect of nitrendipine depends on the type of activation. Nitrendipine showed an exceptionally high efficacy in inhibiting contractions induced by electrical stimulation and of spontaneous rhythmic activity. For inhibition of these contractions even osmolar concentrations of nitrendipine were sufficient. The relaxant effect of nitrendipine depended on the concentration of extracellular calcium and the time of incubation of nitrendipine in the bathing medium. Nitrendipine showed high selectivity for the uterine smooth muscle because in a very high concentrations is exerted an insignificant relaxation of the other isolated smooth muscles (oesophagus, urinary bladder). Our experiments indicate that nitrendipine might have a role in therapy of premature delivery and abortion because of its great selectivity for the uterine smooth muscle. Addition of calcium into the medium restores completely all types of muscular activation after the inhibitory action of nitrendipine except its depressive action on the phasic component of oxytocin-induced contractions. These findings that individual types of activation, after inhibitory action of nitrendipine, are reestablished in various degrees by the addition of calcium into the medium, are also an additional confirmation about the existence of various types of calcium channels.  相似文献   

3.
We study evoked calcium dynamics in astrocytes, a major cell type in the mammalian brain. Experimental evidence has shown that such dynamics are highly variable between different trials, cells, and cell subcompartments. Here we present a qualitative analysis of a recent mathematical model of astrocyte calcium responses. We show how the major response types are generated in the model as a result of the underlying bifurcation structure. By varying key channel parameters, mimicking blockers used by experimentalists, we manipulate this underlying bifurcation structure and predict how the distributions of responses can change. We find that store-operated calcium channels, plasma membrane bound channels with little activity during calcium transients, have a surprisingly strong effect, underscoring the importance of considering these channels in both experiments and mathematical settings. Variation in the maximum flow in different calcium channels is also shown to determine the range of stable oscillations, as well as set the range of frequencies of the oscillations. Further, by conducting a randomized search through the parameter space and recording the resulting calcium responses, we create a database that can be used by experimentalists to help estimate the underlying channel distribution of their cells.  相似文献   

4.
Calcium influxes are of fundamental importance in eukaryotic cell functions. These calcium influxes are carried by different classes of membrane proteins that allow regulated calcium entry. If in excitable cells, such as neurones or muscle, voltage-dependent calcium channels represent the main source of calcium influx, other proteins are needed to assume such a function in non-excitable cells. In these, a sustained calcium influx is observed, secondary to phospholipase C activation, IP3 synthesis and internal calcium release. The identity of proteins implicated in this second messenger calcium-driven influx, as well as the mechanisms of activation of these channels have long been debated. In recent years, genes encoding a new kind of cationic channels called TRP channels have been identified. This molecular work has set the basis for further functional studies and helped to gain crucial information on the mechanisms by which extracellular calcium can penetrate into non-excitable cells. This review will present the most recent advances obtained on the molecular diversity of TRP channels and their mode of gating.  相似文献   

5.
The membrane of the endoplasmic reticulum is, in fact, an extension of the nuclear envelope of eukaryotic cells; both these compartments can fulfill the function of intracellular calcium stores. Using a patch-clamp technique, we studied the biophysical properties of the channels expressed in the inner nuclear membrane of pyramidal neurons of the rat hippocampal CA1 area, in particular of large-conductance cationic channels and calcium channels of inositol trisphosphate receptors (the main channels in membranes of this type). As the results of the measurements showed, the activity of channels of both types demonstrates clearly pronounced voltage dependences. The probability of their open state (P o) depends on the voltage inside the nuclear envelope lumen. At positive potentials, the activity of these channels is significantly more intense than at negative potentials. Moreover, channels of both types are reversibly blocked at considerable negative potentials. We believe that this property of ion channels in the nuclear envelope is an important factor responsible for the control of calcium signals in the cell nucleus. We propose a hypothesis on the mechanism underlying termination of Ca2+ release from such intracellular stores, which is based on the specificity of the voltage dependence of ion channels of the above-mentioned types.  相似文献   

6.
Voltage-gated calcium channels   总被引:3,自引:0,他引:3  
The article concentrates on representatives of voltage-gated calcium ion channels that are present in practically all cells. Regarded is the molecular arrangement of a voltage-gated calcium channel that consists of pore forming trans-membrane alpha1 subunit and auxiliary alpha2delta-, beta-, and gamma-subunits. Under discussion are the structure and functions of each subunit. The principles of subunits interaction are considered. The research represents modern classification of voltage-gated calcium channels, draws parallels with the earlier classifications and discusses calcium currents going through various calcium channels. Considered are the problems of regulating the activity of voltage-gated channels by proteinkinases. The issues of blockers and activators of voltage-gated calcium channels are brought up. The article gives a detailed analysis of the mechanisms of voltage-gated calcium channels selectivity. The molecular organization of the selectivity filter is considered. Presented are the basic theories of permeability of voltage-gated calcium channels.  相似文献   

7.
Activation of opioid or opioid-receptor-like (ORL1 a.k.a. NOP or orphanin FQ) receptors mediates analgesia through inhibition of N-type calcium channels in dorsal root ganglion (DRG) neurons (1, 2). Unlike the three types of classical mu, delta, and kappa opioid receptors, ORL1 mediates an agonist-independent inhibition of N-type calcium channels. This is mediated via the formation of a physical protein complex between the receptor and the channel, which in turn allows the channel to effectively sense a low level of constitutive receptor activity (3). Further inhibition of N-type channel activity by activation of other G protein-coupled receptors is thus precluded. ORL1 receptors, however, also undergo agonist-induced internalization into lysosomes, and channels thereby become cointernalized in a complex with ORL1. This then results in removal of N-type channels from the plasma membrane and reduced calcium entry (4). Similar signaling complexes between N-type channels and GABA(B) receptors have been reported (5). Moreover, both L-type and P/Q-type channels appear to be able to associate with certain types of G protein-coupled receptors (6, 7). Hence, interactions between receptors and voltage-gated calcium channels may be a widely applicable means to optimize receptor channel coupling.  相似文献   

8.
Activation of opioid or opioid-receptor-like (ORL1 a.k.a. NOP or orphanin FQ) receptors mediates analgesia through inhibition of N-type calcium channels in dorsal root ganglion (DRG) neurons (). Unlike the three types of classical μ, δ, and κ opioid receptors, ORL1 mediates an agonist-independent inhibition of N-type calcium channels. This is mediated via the formation of a physical protein complex between the receptor and the channel, which in turn allows the channel to effectively sense a low level of constitutive receptor activity (). Further inhibition of N-type channel activity by activation of other G protein-coupled receptors is thus precluded. ORL1 receptors, however, also undergo agonist-induced internalization into lysosomes, and channels thereby become cointernalized in a complex with ORL1. This then results in removal of N-type channels from the plasma membrane and reduced calcium entry (). Similar signaling complexes between N-type channels and GABAB receptors have been reported (). Moreover, both L-type and P/Q-type channels appear to be able to associate with certain types of G protein-coupled receptors (). Hence, interactions between receptors and voltage-gated calcium channels may be a widely applicable means to optimize receptor channel coupling.  相似文献   

9.
Calcium signalling in glial cells   总被引:10,自引:0,他引:10  
Calcium signals are the universal way of glial responses to the various types of stimulation. Glial cells express numerous receptors and ion channels linked to the generation of complex cytoplasmic calcium responses. The glial calcium signals are able to propagate within glial cells and to create a spreading intercellular Ca2+ wave which allow information exchange within the glial networks. These propagating Ca2+ waves are primarily mediated by intracellular excitable media formed by intracellular calcium storage organelles. The glial calcium signals could be evoked by neuronal activity and vice versa they may initiate electrical and Ca2+ responses in adjacent neurones. Thus glial calcium signals could integrate glial and neuronal compartments being therefore involved in the information processing in the brain.  相似文献   

10.
Cyclic nucleotide-gated channels in non-sensory organs   总被引:1,自引:0,他引:1  
Cyclic nucleotide-gated channels represent a class of ion channels activated directly by the binding of either cyclic-GMP or cyclic-AMP. They carry both mono and divalent cations, but select calcium over sodium. In the majority of the cases studied, binding of cyclic nucleotides to the channel results in the opening of the channel and the influx of calcium. As a consequence, cytosolic free calcium levels increase leading to the modifications of calcium-dependent processes. This represents and important link in the chain of events leading to the physiological response. Cyclic nucleotide-gated channels were discovered in sensory cell types, in the retina, and in olfactory cells, and were extensively studied in those cells. However, it is becoming increasingly evident that such channels are present not only in sensory systems, but in most, if not all, cell types where cyclic nucleotides play a role in signal transduction. A hypothesis is presented here which attributes physiological importance to these channels in non-sensory organs. Four examples of such channels in non-sensory cells are discussed in detail: those in the liver, in the heart, in the brain, and in the testis with the emphasis on the possible physiological roles that these channels might have in these organs.  相似文献   

11.
12.
Calcium plays a key role in both apoptotic and necrotic cell death. Emptying of intracellular calcium stores and/or alteration in intracellular calcium levels can modulate cell death in almost all cell types. These calcium fluxes are determined by the activity of membrane channels normally under tight control. The channels may be ligand activated or voltage dependent as well as being under the control of affector molecules such as calmodulin. It has become increasingly apparent that many calcium channels are affected by reactive oxygen or reactive nitrogen species; ROS/RNS. This may be part of the normal signaling pathways in the cell or by the action of exogenously generated ROS or RNS often by toxins. This review covers the recent literature on the activity of these redox active channels as related to cell death.  相似文献   

13.
Molecular Pharmacology of High Voltage-Activated Calcium Channels   总被引:2,自引:0,他引:2  
Voltage-gated calcium channels are key sources of calcium entry into the cytosol of many excitable tissues. A number of different types of calcium channels have been identified and shown to mediate specialized cellular functions. Because of their fundamental nature, they are important targets for therapeutic intervention in disorders such as hypertension, pain, stroke, and epilepsy. Calcium channel antagonists fall into one of the following three groups: small inorganic ions, large peptide blockers, and small organic molecules. Inorganic ions nonselectively inhibit calcium entry by physical pore occlusion and are of little therapeutic value. Calcium-channel-blocking peptides isolated from various predatory animals such as spiders and cone snails are often highly selective blockers of individual types of calcium channels, either by preventing calcium flux through the pore or by antagonizing channel activation. There are many structure-activity-relation classes of small organic molecules that interact with various sites on the calcium channel protein, with actions ranging from selective high affinity block to relatively nondiscriminatory action on multiple calcium channel isoforms. Detailed interactions with the calcium channel protein are well understood for the dihydropyridine and phenylalkylamine drug classes, whereas we are only beginning to understand the molecular actions of some of the more recently discovered calcium channel blockers. Here, we provide a comprehensive review of pharmacology of high voltage-activated calcium channels.  相似文献   

14.
The importance of voltage-activated calcium channels in pain processing has been suggested by the spinal antinociceptive action of blockers of N- and P/Q-type calcium channels as well as by gene targeting of the alpha1B subunit (N-type). The accessory beta3 subunits of calcium channels are preferentially associated with the alpha1B subunit in neurones. Here we show that deletion of the beta3 subunit by gene targeting affects strongly the pain processing of mutant mice. We pinpoint this defect in the pain-related behavior and ascending pain pathways of the spinal cord in vivo and at the level of calcium channel currents and proteins in single dorsal root ganglion neurones in vitro. The pain induced by chemical inflammation is preferentially damped by deletion of beta3 subunits, whereas responses to acute thermal and mechanical harmful stimuli are reduced moderately or not at all, respectively. The defect results in a weak wind-up of spinal cord activity during intense afferent nerve stimulation. The molecular mechanism responsible for the phenotype was traced to low expression of N-type calcium channels (alpha1B) and functional alterations of calcium channel currents in neurones projecting to the spinal cord.  相似文献   

15.
Capiod T 《Biochimie》2011,93(12):2075-2079
Both increases in the basal cytosolic calcium concentration ([Ca2+]cyt) and [Ca2+]cyt transients play major roles in cell cycle progression, cell proliferation and division. Calcium transients are observed at various stages of cell cycle and more specifically during late G1 phase, before and during mitosis. These calcium transients are mainly due to calcium release and reuptake by the endoplasmic reticulum (ER) and are observed over periods of hours in oocytes and mammalian cells. Calcium entry sustains the ER Ca2+ load and thereby helps to maintain these calcium transients for such a long period. Calcium influx also controls cell growth and proliferation in several cell types. Various calcium channels are involved in this process and the tight relation between the expression and activity of cyclins and calcium channels also suggests that calcium entry may be needed only at particular stages of the cell cycle. Consistent with this idea, the expression of l-type and T-type calcium channels and SOCE amplitude fluctuate along the cell cycle. But, as calcium influx regulates several other transduction pathways, the presence of a specific connection to trigger activation of proliferation and cell division in mammalian cells will be discussed in this review.  相似文献   

16.
Voltage gated calcium channels are key mediators of depolarization induced calcium entry into electrically excitable cells. There is increasing evidence that voltage gated calcium channels, like many other types of ionic channels, do not operate in isolation, but instead forms signaling complexes with signaling molecules, G protein coupled receptors, and other types of ion channels. Furthermore, there appears to be bidirectional signaling within these protein complexes, thus allowing not only for efficient translation of calcium signals into cellular responses, but also for tight control of calcium entry per se. In this review, we will focus predominantly on signaling complexes between G protein-coupled receptors and high voltage activated calcium channels, and on complexes of voltage-gated calcium channels and members of the potassium channel superfamily.  相似文献   

17.
Voltage gated calcium channels are key mediators of depolarization induced calcium entry into electrically excitable cells. There is increasing evidence that voltage gated calcium channels, like many other types of ionic channels, do not operate in isolation, but instead forms signaling complexes with signaling molecules, G protein coupled receptors, and other types of ion channels. Furthermore, there appears to be bidirectional signaling within these protein complexes, thus allowing not only for efficient translation of calcium signals into cellular responses, but also for tight control of calcium entry per se. In this review, we will focus predominantly on signaling complexes between G protein-coupled receptors and high voltage activated calcium channels, and on complexes of voltage-gated calcium channels and members of the potassium channel superfamily.  相似文献   

18.
The β subunits of voltage-dependent calcium channels are known to modify calcium channel currents through pore-forming α1 subunits. The β3 subunit is expressed in the adrenal gland and participates in forming various calcium channel types. We performed a series of experiments in β3-null mice to determine the role of the β3 subunit in catecholamine release from the adrenal chromaffin system.Protein levels of N-type channel forming CaV2.2 and L-type forming CaV1.2 decreased. The β3-null mice showed a decreased baroreflex, suggesting decreased sympathetic tonus, whereas plasma catecholamine levels did not change. Pulse-voltage stimulation revealed significantly increased amperometrical currents in β3-null mice, while patch-clamp recordings showed a significant reduction in Ca2+-currents due to reduced L- and N-type currents, indicating facilitated exocytosis. A biochemical analysis revealed increased InsP3 production.In conclusion, our results indicate the importance of the β3 subunit in determining calcium channel characteristics and catecholamine release in adrenal chromaffin cells.  相似文献   

19.
Based on electrophysiological studies, Ca(2+)-activated K(+) channels and voltage-gated Ca(2+) channels appear to be located in close proximity in neurons. Such colocalization would ensure selective and rapid activation of K(+) channels by local increases in the cytosolic calcium concentration. The nature of the apparent coupling is not known. In the present study we report a direct coassembly of big conductance Ca(2+)-activated K(+) channels (BK) and L-type voltage-gated Ca(2+) channels in rat brain. Saturation immunoprecipitation studies were performed on membranes labeled for BK channels and precipitated with antibodies against alpha(1C) and alpha(1D) L-type Ca(2+) channels. To confirm the specificity of the interaction, precipitation experiments were carried out also in reverse order. Also, additive precipitation was performed because alpha(1C) and alpha(1D) L-type Ca(2+) channels always refer to separate ion channel complexes. Finally, immunochemical studies showed a distinct but overlapping expression pattern of the two types of ion channels investigated. BK and L-type Ca(2+) channels were colocalized in various compartments throughout the rat brain. Taken together, these results demonstrate a direct coassembly of BK channels and L-type Ca(2+) channels in certain areas of the brain.  相似文献   

20.
Following the gradual recognition of the importance of intracellular calcium stores for somatodendritic signaling in the mammalian brain, recent reports have also indicated a significant role of presynaptic calcium stores. Ryanodine-sensitive stores generate local, random calcium signals that shape spontaneous transmitter release. They amplify spike-driven calcium signals in presynaptic terminals, and consequently enhance the efficacy of transmitter release. They appear to be recruited by an association with certain types of calcium-permeant ion channels, and they induce specific forms of synaptic plasticity. Recent research also indicates a role of inositoltrisphosphate-sensitive presynaptic calcium stores in synaptic plasticity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号