首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Molecular Pharmacology of High Voltage-Activated Calcium Channels   总被引:2,自引:0,他引:2  
Voltage-gated calcium channels are key sources of calcium entry into the cytosol of many excitable tissues. A number of different types of calcium channels have been identified and shown to mediate specialized cellular functions. Because of their fundamental nature, they are important targets for therapeutic intervention in disorders such as hypertension, pain, stroke, and epilepsy. Calcium channel antagonists fall into one of the following three groups: small inorganic ions, large peptide blockers, and small organic molecules. Inorganic ions nonselectively inhibit calcium entry by physical pore occlusion and are of little therapeutic value. Calcium-channel-blocking peptides isolated from various predatory animals such as spiders and cone snails are often highly selective blockers of individual types of calcium channels, either by preventing calcium flux through the pore or by antagonizing channel activation. There are many structure-activity-relation classes of small organic molecules that interact with various sites on the calcium channel protein, with actions ranging from selective high affinity block to relatively nondiscriminatory action on multiple calcium channel isoforms. Detailed interactions with the calcium channel protein are well understood for the dihydropyridine and phenylalkylamine drug classes, whereas we are only beginning to understand the molecular actions of some of the more recently discovered calcium channel blockers. Here, we provide a comprehensive review of pharmacology of high voltage-activated calcium channels.  相似文献   

2.
Maximyuk  O.  Khmyz  V.  Lozovaya  N.  Dascal  N.  Krishtal  O. 《Neurophysiology》2002,34(2-3):182-183
Experiments on isolated rat brain neurons with an elevated intracellular sodium concentration (due to tetanic stimulation) demonstrated the existence of earlier unknown negative modulation of calcium channels by intracellular sodium.  相似文献   

3.
Molecular cloning of calcium channel subunit genes has identified an unexpectedly large number of genes and splicing variants, and a central problem of calcium channel biology is to now understand the functional significance of this genetic complexity. While electrophyisological, pharmacological, and molecular cloning techniques are providing one level of understanding, a complete understanding will require many additional kinds of studies, including genetic studies done in intact animals. In this regard, an intriguing variety of episodic diseases have recently been identified that result from defects in calcium channel genes. A study of these diseases illustrates the kind of insights into calcium channel function that can be expected from this method of inquiry.  相似文献   

4.
Piperidines are a relatively novel class of calcium channel blockers which act at a unique receptor site associated with the calcium channel α1 subunit. Calcium channel blocking affinities ranging from subnanomolar to several hundred micromolar have been reported in the literature, suggesting that piperidine block is highly sensitive to the cellular environment experienced by the channel. Here, I have investigated some of the cytoplasmic determinants of haloperidol block of N-type calcium channels expressed in human embryonic kidney cells. In perforated patch clamp recordings, haloperidol blocks N-type calcium channels with an inhibition constant of 120 μM. Upon internal dialysis with chloride containing pipette solution, the blocking affinity increases by 40-fold. This effect could be attributed in part to the presence of internal chloride ions, as replacement of intracellular chloride with methanesulfonate reduced haloperidol blocking affinity by almost one order of magnitude. Tonic inhibition of N-type channels by Gβγ subunits further enhanced the blocking effects of haloperidol, suggesting the possibility of direct effects of Gβγ binding on the local environment of the piperidine receptor site. Overall, depending on the cytoplasmic environment experienced by the channel, the blocking affinity of N-type calcium channels for haloperidol may vary by more than two orders of magnitude. Thus, absolute blocking affinities at the piperidine receptor site must be interpreted cautiously and in the context of the particular experimental setting. Received: 23 July 1998/Revised: 19 October 1998  相似文献   

5.
Different types of voltage-gated Ca2+ channels exist in the plasma membrane of electrically excitable cells. By controlling depolarization-induced Ca2+ entry into cells they serve important physiological functions, such as excitation-contraction coupling, neurotransmitter and hormone secretion, and neuronal plasticity. Their function is fine-tuned by a variety of modulators, such as enzymes and G-proteins. Block of so-called L-type Ca2+ channels by drugs is exploited as a therapeutic principle to treat cardiovascular disorders, such as hypertension. More recently, block of so-called non-L-type Ca2+ channels was found to exert therapeutic effects in the treatment of severe pain and ischemic stroke. As the subunits of different Ca2+ channel types have been cloned, the modulatory sites for enzymes, G-proteins, and drugs can now be determined using molecular engineering and heterologous expression. Here we summarize recent work that has allowed us to determine the sites of action of L-type Ca2+ channel modulators. Together with previous biochemical, electrophysiological, and drug binding data these results provide exciting insight into the molecular pharmacology of this voltage-gated Ca2+ channel family.  相似文献   

6.
7.
In this study, we report the effect of pertussis toxin pretreatment on dihydropyridine modulation of voltage-sensitive calcium channels in PC12 cells. The rise in intracellular calcium concentration caused by potassium depolarization is not affected significantly by pertussis toxin pretreatment. Nicardipine, a dihydropyridine derivative, added either before or after potassium-induced depolarization, reduces the resultant elevation in cytosolic calcium level both in control and in pertussis toxin-treated cells. The dihydropyridine agonist Bay K 8644, when added before potassium, is able to enhance the potassium-induced spike of cytosolic calcium levels, an effect significantly reduced by pertussis toxin pretreatment. Moreover, the addition of Bay K 8644 after potassium holds the intracellular calcium concentration at a cytosolic sustained level during the slow inactivating phase of depolarization. This effect of Bay K 8644 is inhibited by nicardipine. Pertussis toxin pretreatment slightly weakens the effect of Bay K 8644 when added after potassium-induced depolarization, whereas it significantly reduces the nicardipine inhibition of cytosolic calcium rise stimulated by potassium and Bay K 8644, but not by potassium alone. In conclusion, our findings suggest that a pertussis toxin-sensitive guanine nucleotide regulatory protein could be involved in the interaction between dihydropyridine derivatives and voltage-dependent calcium channels.  相似文献   

8.
As is known, an increase in the concentration of Са2+ in the nuclei of nerve cells leads to activation of genes responsible for the formation of long-lasting postsynaptic changes; mechanisms of memory and learning are based on such changes. The pathways necessary for the entry of calcium into the nuclei of hippocampal pyramidal neurons remained unstudied. Using a patch-clamp technique, we studied what types of calcium channels exist in the membranes of isolated nuclei of pyramidal neurons of the hippocampal СА1 area. In the inner nuclear membrane of these cells, we, for the first time, found inositol trisphosphate receptors (IP3Rs) activated by inositol trisphosphate applied in the concentration of ≥0.1 μM. The conductivity of single channels of such receptors was, on average, 366 pS; these channels were permeable for both monovalent and bivalent cations. Our data indicate that the nuclear envelope of pyramidal neurons of the hippocampal СА1 area can play the role of the calcium store from which Са2+ enter the cell nucleus directly. Neirofiziologiya/Neurophysiology, Vol. 40, No. 4, pp. 288–292, July–August, 2008.  相似文献   

9.
Understanding the molecular basis of polarity induction in plant cells is a research aspect that extends from signal perception and transduction to morphogenesis. A gradient of cytoplasmic ion fluxes generated through ion channels plays a crucial role in subsequent events leading to polar growth. Convincing evidence is now available implicating temporal and spatial distribution of Ca2+ in cytoplasm, generated by localized activity of calcium channels, as the early biochemical events associated with polarity induction. Ion channel antagonists are common tools for studying ion channel structure and function. Coupled with a fluorescent dyes, calcium channel antagonists (phenylalkylamine and dihydropyridine), have been used to localize L-type calcium channels. Additionally, the advent of Confocal Laser Scanning Microscopy has made possible the visualization of Ca2+ channels in plant cells. Persisting problems of dye loading and their cellular compartmentation have been addressed by developing a variety of experimental protocols. Present article highlights the current state of our understanding of these concepts, methodologies and their applications in different aspects of plant development.  相似文献   

10.
The molecular cloning of calcium channel subunits has identified an unexpectedly large number of genes and splicing variants, many of whichhave complex expression patterns: a central problem of calcium channel biology is to understand the functional significance of this genetic complexity. The genetic analysis of voltage-dependent calcium channels (VDCCs) provides an approach to defining channel function that is complimentary to pharmacological, electrophysiological, and other molecular methods. By discovering or creating alleles of VDCC genes, one can gain an understanding of the VDCC function at the whole animal level. Of particular interest are mutations in the alpha1 genes that encode the pore forming subunits, as they define the specific channel subtypes. In fact, a variety of calcium channelopathies and targeted mutations have been described for these genes in the last 6 years. The mutant alleles described below illustrate how phenotype analysis of these alleles has uncovered very specific functional roles that can be localized to specific synapses or cells.  相似文献   

11.
N- and P/Q-type calcium channels are localized in high density in presynaptic nerve terminals and are crucial elements in neuronal excitation–secretion coupling. In addition to mediating Ca2+ entry to initiate transmitter release, they are thought to interact directly with proteins of the synaptic vesicle docking/fusion machinery. As outlined in the preceding article, these calcium channels can be purified from brain as a complex with SNARE proteins which are involved in exocytosis. In addition, N-type and P/Q-type calcium channels are co-localized with syntaxin in high-density clusters in nerve terminals. Here we review the role of the synaptic protein interaction (synprint) sites in the intracellular loop II–III (LII–III) of both 1B and 1A subunits of N-type and P/Q-type calcium channels, which bind to syntaxin, SNAP-25, and synaptotagmin. Calcium has a biphasic effect on the interactions of N-type calcium channels with SNARE complexes, stimulating optimal binding in the range of 10–20 M. PKC or CaM KII phosphorylation of the N-type synprint peptide inhibits interactions with native brain SNARE complexes containing syntaxin and SNAP-25. Introduction of the synprint peptides into presynaptic superior cervical ganglion neurons reversibly inhibits EPSPs from synchronous transmitter release by 42%. At physiological Ca2+ concentrations, synprint peptides cause an approximate 25% reduction in transmitter release of injected frog neuromuscular junction in cultures, consistent with detachment of 70% of the docked vesicles from calcium channels based on a theoretical model. Together, these studies suggest that presynaptic calcium channels not only provide the calcium signal required by the exocytotic machinery, but also contain structural elements that are integral to vesicle docking, priming, and fusion processes.  相似文献   

12.
L-type Ca2+ channels select for Ca2+ over sodium Na+ by an affinity-based mechanism. The prevailing model of Ca2+ channel permeation describes a multi-ion pore that requires pore occupancy by at least two Ca2+ ions to generate a Ca2+ current. At [Ca2+] < 1 μM, Ca2+ channels conduct Na+. Due to the high affinity of the intrapore binding sites for Ca2+ relative to Na+, addition of μM concentrations of Ca2+ block Na+ conductance through the channel. There is little information, however, about the potential for interaction between Na+ and Ca2+ for the second binding site in a Ca2+ channel already occupied by one Ca2+. The two simplest possibilities, (a) that Na+ and Ca2+ compete for the second binding site or (b) that full time occupancy by one Ca2+ excludes Na+ from the pore altogether, would imply considerably different mechanisms of channel permeation. We are studying permeation mechanisms in N-type Ca2+ channels. Similar to L-type Ca2+ channels, N-type channels conduct Na+ well in the absence of external Ca2+. Addition of 10 μM Ca2+ inhibited Na+ conductance by 95%, and addition of 1 mM Mg2+ inhibited Na+ conductance by 80%. At divalent ion concentrations of 2 mM, 120 mM Na+ blocked both Ca2+ and Ba2+ currents. With 2 mM Ba2+, the IC50 for block of Ba2+ currents by Na+ was 119 mM. External Li+ also blocked Ba2+ currents in a concentration-dependent manner, with an IC50 of 97 mM. Na+ block of Ba2+ currents was dependent on [Ba2+]; increasing [Ba2+] progressively reduced block with an IC50 of 2 mM. External Na+ had no effect on voltage-dependent activation or inactivation of the channel. These data suggest that at physiological concentrations, Na+ and Ca2+ compete for occupancy in a pore already occupied by a single Ca2+. Occupancy of the pore by Na+ reduced Ca2+ channel conductance, such that in physiological solutions, Ca2+ channel currents are between 50 and 70% of maximal.  相似文献   

13.
14.
A modulating action of hyperforin (an active compound of the extract from Hypericum perforatum) on a high-threshold component of the calcium current, sensitive to application of 100 nM -Aga-IVA toxin and identified as P current, was studied on freshly isolated Purkinje neurons with the use of a patch-clamp technique in the whole-cell configuration. It was shown that extracellular application of 0.8 M hyperforin caused a shift of the current-voltage (I-V) relationship of P current by -(8 ± 2) mV, slowdown of the activation kinetics, and a decrease in the amplitude of this current. The shift of the I-V relationship and slowdown of activation kinetics developed for less than 10 sec, while the P-current amplitude decreased for a much longer time (several minutes) and depended on the intracellular concentration of Ca2+ ions. -Aga-IVA toxin at the concentration of 100 nM completely blocked the recorded inward current in the presence of 0.8 M hyperforin. In experiments with intracellular perfusion of Purkinje neurons, we found that interaction of hyperforin with its binding site occurs at the external side of the cell membrane. The study of the mechanisms involved in the hyperforin-induced P-current modulation revealed that 1 mM GTPS (activating GTs proteins, as well as activating or blocking GMs proteins) or 1-2 mM GDPS (blocking GTs and GMs proteins) in the intracellular solution did not affect the hyperforin-induced modulation of P current. Hyperforin-induced Ca2+-independent shift of the I-V relationship and slowdown of the activation kinetics of P current were abolished in the presence of 0.5 M calmidazolium in the extracellular medium.  相似文献   

15.
16.
Abstract: Multiple sites on the α1 and β subunits of purified skeletal muscle calcium channels are phosphorylated by cyclic AMP-dependent protein kinase, resulting in three different tryptic phosphopeptides derived from each subunit. Phosphoprotein phosphatases dephosphorylated these sites selectively. Phosphoprotein phosphatase 1 (PP1) and phosphoprotein phosphatase 2A (PP2A) dephosphorylated both α1 and β subunits at similar rates, whereas calcineurin dephosphorylated β subunits preferentially. PP1 dephosphorylated phosphopeptides 1 and 2 of the α1 subunit more rapidly than phosphopeptide 3. In contrast, PP2A dephosphorylated phosphopeptide 3 of the α1 subunit preferentially. All three phosphoprotein phosphatases preferentially dephosphorylated phosphopeptide 1 of the β subunit and dephosphorylated phosphopeptides 2 and 3 more slowly. Mn2+ increased the rate and extent of dephosphorylation of all sites by calcineurin so that >80% dephosphorylation of both α1 and β sub-units was obtained. The results demonstrate selective dephosphorylation of different phosphorylation sites on the α1 and β subunits of skeletal muscle calcium channels by the three principal serine/threonine phosphoprotein phosphatases.  相似文献   

17.
Abstract: Identification of A1 adenosine receptors (A1Rs) in a tumor cell line derived from rat pituitary (GH4 cells) was performed by ligand binding and immunological experiments. Subsequently, the involvement of A1Rs in the regulation of calcium conductance was studied in these cells. The agonist N 6-( R )-(2-phenylisopropyl)adenosine ( R -PIA) did not modify the intracellular calcium basal levels, whereas it inhibited the increase produced by 15 m M KCl depolarization. The antagonist 1,3-dipropyl-8-cyclopentylxanthine led to the opening of voltage-dependent cell surface calcium channels in the absence of exogenous KCl. The channels were of the L type because the effect was abolished by calciseptine and by verapamil. These results suggest that endogenous adenosine exerts a tonic inhibitory effect on calcium transport. This was confirmed by the high adenosine concentration found in cell supernatants (up to 1 µ M ) and by the calcium mobilization produced by exogenously added adenosine deaminase. In depolarizing conditions, the calcium peak in the presence of adenosine deaminase was reduced when cells were preincubated with R -PIA, thus suggesting that A1R activation regulates the intensity of depolarization. These results demonstrate that adenosine is an important regulator of the physiological state of pituitary tumor cells by modulating, in an autocrine manner, the activity of L-type voltage-dependent calcium channels.  相似文献   

18.
The superficial (tonic) abdominal flexor muscles of Atya lanipes do not generate Ca2+ action potentials when depolarized and have no detectable inward Ca2+ current. These fibers, however, are strictly dependent on Ca2+ influx for contraction, suggesting that they depend on Ca2+-induced Ca2+ release for contractile activation. The nature of the communication between Ca2+ channels in the sarcolemmal/tubular membrane and Ca2+ release channels in the sarcoplasmic reticulum in this crustacean muscle was investigated. The effects of dihydropyridines on tension generation and the passive electrical response were examined in current-clamped fibers: Bay K 8644 enhanced tension about 100% but did not alter the passive electrical response; nifedipine inhibited tension by about 70%. Sr2+ and Ba2+ action potentials could be elicited in Ca2+-free solutions. The spikes generated by these divalent cations were abolished by nifedipine. As the Sr2+ or Ba2+ concentrations were increased, the amplitudes of the action potentials and their maximum rate of rise, V max , increased and tended towards saturation. Three-microelectrode voltage-clamp experiments showed that even at high (138 mm) extracellular Ca2+ concentration the channels were silent, i.e., no inward Ca2+ current was detected. In Ca2+-free solutions, inward currents carried by 138 mm Sr2+ or Ba2+ were observed. The currents activated at voltages above −40 mV and peaked at about 0 mV. This voltage-activation profile and the sensitivity of the channels to dihydropyridines indicate that they resemble L-type Ca2+ channels. Peak inward current density values were low, ca.−33 μA/cm2 for Sr2+ and −14 μA/cm2 for Ba2+, suggesting that Ca2+ channels are present at a very low density. It is concluded that Ca2+-induced Ca2+ release in this crustacean muscle operates with an unusually high gain: Ca2+ influx through the silent Ca2+ channels is too low to generate a macroscopic inward current, but increases sufficiently the local concentration of Ca2+ in the immediate vicinity of the sarcoplasmic reticulum Ca2+ release channels to trigger the highly amplified release of Ca2+ required for tension generation. Received: 5 April 1999/Revised: 15 September 1999  相似文献   

19.
Despite the progress in studies of the properties and functions of low-threshold calcium channels (LTCCs) [1], the mechanisms of their selectivity and permeability remain unstudied in detail. We performed a comparative analysis of the selectivity of three cloned pore-forming LTCC subunits (α1G, α1H, and α1I) functionally expressed in Xenopus oocytes with respect to bivalent alkaline-earth metal cations (Ba2+, Ca2+, and Sr2+. The relative conductivities (G) of these channels were determined according to the amplitudes of macroscopic currents (I) and potentials of zero currents (E). The currents were recorded after preliminary intracellular injection of a fast calcium buffer, BAPTA, in order to suppress the endogenous calcium-dependent chloride conductivity. Channels formed by α1G subunits demonstrated the following ratios of the amplitudes of macroscopic currents and potentials of zero current: I Ca:I Ba:I Sr = 1.00:0.75:1.12 and E CaE BaE Sr. For channels that were formed by α1H and α1I subunits, these ratios were as follows: I Ca:I Ba:I Sr = 1.00:1.20:1.17, E CaE BaE Sr and I Ca:I Ba:I Sr = 1.00:1.48: 1.45, E CaE BaE Sr respectively. The different macroscopic conductivities and similar potentials of zero current typical of α1G and α1I channels indicate that, probably, various bivalent cations can in a differential manner influence the stochastic parameters of functioning of these channels. At the same time, channels formed by α1H subunits are characterized by more positive potentials of zero current for Ca2+. It seems possible that the selectivity of the above channels is determined by mechanisms that mediate the selectivity of most high-threshold calcium channels (more affine binding of Ca2+ inside the pore). Neirofiziologiya/Neurophysiology, Vol. 37, No. 4, pp. 319–329, July–August, 2005.  相似文献   

20.
Nitric oxide (NO) is involved in a variety of physiological processes, such as vasoregulation and neurotransmission, and has a complex role in the regulation of pain transduction and synaptic transmission. We have shown previously that NO inhibits high voltage-activated Ca2+ channels in primary sensory neurons and excitatory synaptic transmission in the spinal dorsal horn. However, the molecular mechanism involved in this inhibitory action remains unclear. In this study, we investigated the role of S-nitrosylation in the NO regulation of high voltage-activated Ca2+ channels. The NO donor S-nitroso-N-acetyl-dl-penicillamine (SNAP) rapidly reduced N-type currents when Cav2.2 was coexpressed with the Cavβ1 or Cavβ3 subunits in HEK293 cells. In contrast, SNAP only slightly inhibited P/Q-type and L-type currents reconstituted with various Cavβ subunits. SNAP caused a depolarizing shift in voltage-dependent N-type channel activation, but it had no effect on Cav2.2 protein levels on the membrane surface. The inhibitory effect of SNAP on N-type currents was blocked by the sulfhydryl-specific modifying reagent methanethiosulfonate ethylammonium. Furthermore, the consensus motifs of S-nitrosylation were much more abundant in Cav2.2 than in Cav1.2 and Cav2.1. Site-directed mutagenesis studies showed that Cys-805, Cys-930, and Cys-1045 in the II-III intracellular loop, Cys-1835 and Cys-2145 in the C terminus of Cav2.2, and Cys-346 in the Cavβ3 subunit were nitrosylation sites mediating NO sensitivity of N-type channels. Our findings demonstrate that the consensus motifs of S-nitrosylation in cytoplasmically accessible sites are critically involved in post-translational regulation of N-type Ca2+ channels by NO. S-Nitrosylation mediates the feedback regulation of N-type channels by NO.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号