首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Dux PE  Marois R 《PloS one》2008,3(10):e3330

Background

The attentional blink (AB) refers to humans'' impaired ability to detect the second of two targets (T2) in a rapid serial visual presentation (RSVP) stream of distractors if it appears within 200–600 ms of the first target (T1). Here we examined whether humans'' ability to inhibit distractors in the RSVP stream is a key determinant of individual differences in T1 performance and AB magnitude.

Methodology/Principal Findings

We presented subjects with RSVP streams (93.3 ms/item) of letters containing white distractors, a red T1 and a green T2. Subjects'' ability to suppress distractors was assessed by determining the extent to which their second target performance was primed by a preceding distractor that shared the same identity as T2. Individual subjects'' magnitude of T2 priming from this distractor was found to be negatively correlated with their T1 accuracy and positively related to their AB magnitude. In particular, subjects with attenuated ABs showed negative priming (i.e., worse T2 performance when the priming distractor appeared in the RSVP stream compared to when it was absent), whereas those with large ABs displayed positive priming (i.e., better T2 performance when the priming distractor appeared in the RSVP stream compared to when it was absent). Thus, a subject''s ability to suppress distractors, as assessed by T2 priming magnitude, predicted both their T1 performance and AB magnitude.

Conclusions/Significance

These results confirm that distractor suppression plays a key role in RSVP target selection and support the hypothesis that the AB results, at least in part, from a failure of distractor inhibition.  相似文献   

2.
When viewers search for targets in a rapid serial visual presentation (RSVP) stream, if two targets are presented within about 500 msec of each other, the first target may be easy to spot but the second is likely to be missed. This phenomenon of attentional blink (AB) has been widely studied to probe the temporal capacity of attention for detecting visual targets. However, with the typical procedure of AB experiments, it is not possible to examine how the processing of non-target items in RSVP may be affected by attention. This paper describes a novel dual task procedure combined with RSVP to test effects of AB for nontargets at varied stimulus onset asynchronies (SOAs). In an exemplar experiment, a target category was first displayed, followed by a sequence of 8 nouns. If one of the nouns belonged to the target category, participants would respond ‘yes’ at the end of the sequence, otherwise participants would respond ‘no’. Two 2-alternative forced choice memory tasks followed the response to determine if participants remembered the words immediately before or after the target, as well as a random word from another part of the sequence. In a second exemplar experiment, the same design was used, except that 1) the memory task was counterbalanced into two groups with SOAs of either 120 or 240 msec and 2) three memory tasks followed the sequence and tested remembrance for nontarget nouns in the sequence that could be anywhere from 3 items prior the target noun position to 3 items following the target noun position. Representative results from a previously published study demonstrate that our procedure can be used to examine divergent effects of attention that not only enhance targets but also suppress nontargets. Here we show results from a representative participant that replicated the previous finding.   相似文献   

3.

Background

When two targets are presented in close temporal proximity amongst a rapid serial visual stream of distractors, a period of disrupted attention and attenuated awareness lasting 200–500 ms follows identification of the first target (T1). This phenomenon is known as the “attentional blink” (AB) and is generally attributed to a failure to consolidate information in visual short-term memory due to depleted or disrupted attentional resources. Previous research has shown that items presented during the AB that fail to reach conscious awareness are still processed to relatively high levels, including the level of meaning. For example, missed word stimuli have been shown to prime later targets that are closely associated words. Although these findings have been interpreted as evidence for semantic processing during the AB, closely associated words (e.g., day-night) may also rely on specific, well-worn, lexical associative links which enhance attention to the relevant target.

Methodology/Principal Findings

We used a measure of semantic distance to create prime-target pairs that are conceptually close, but have low word associations (e.g., wagon and van) and investigated priming from a distractor stimulus presented during the AB to a subsequent target (T2). The stimuli were words (concrete nouns) in Experiment 1 and the corresponding pictures of objects in Experiment 2. In both experiments, report of T2 was facilitated when this item was preceded by a semantically-related distractor.

Conclusions/Significance

This study is the first to show conclusively that conceptual information is extracted from distractor stimuli presented during a period of attenuated awareness and that this information spreads to neighbouring concepts within a semantic network.  相似文献   

4.

Background

Alexithymia, a condition characterized by deficits in interpreting and regulating feelings, is a risk factor for a variety of psychiatric conditions. Little is known about how alexithymia influences the processing of emotions in music and speech. Appreciation of such emotional qualities in auditory material is fundamental to human experience and has profound consequences for functioning in daily life. We investigated the neural signature of such emotional processing in alexithymia by means of event-related potentials.

Methodology

Affective music and speech prosody were presented as targets following affectively congruent or incongruent visual word primes in two conditions. In two further conditions, affective music and speech prosody served as primes and visually presented words with affective connotations were presented as targets. Thirty-two participants (16 male) judged the affective valence of the targets. We tested the influence of alexithymia on cross-modal affective priming and on N400 amplitudes, indicative of individual sensitivity to an affective mismatch between words, prosody, and music. Our results indicate that the affective priming effect for prosody targets tended to be reduced with increasing scores on alexithymia, while no behavioral differences were observed for music and word targets. At the electrophysiological level, alexithymia was associated with significantly smaller N400 amplitudes in response to affectively incongruent music and speech targets, but not to incongruent word targets.

Conclusions

Our results suggest a reduced sensitivity for the emotional qualities of speech and music in alexithymia during affective categorization. This deficit becomes evident primarily in situations in which a verbalization of emotional information is required.  相似文献   

5.
It is well known that we continuously filter incoming sensory information, selectively allocating attention to what is important while suppressing distracting or irrelevant information. Yet questions remain about spatiotemporal patterns of neural processes underlying attentional biases toward emotionally significant aspects of the world. One index of affectively biased attention is an emotional variant of an attentional blink (AB) paradigm, which reveals enhanced perceptual encoding for emotionally salient over neutral stimuli under conditions of limited executive attention. The present study took advantage of the high spatial and temporal resolution of magnetoencephalography (MEG) to investigate neural activation related to emotional and neutral targets in an AB task. MEG data were collected while participants performed a rapid stimulus visual presentation task in which two target stimuli were embedded in a stream of distractor words. The first target (T1) was a number and the second (T2) either an emotionally salient or neutral word. Behavioural results replicated previous findings of greater accuracy for emotionally salient than neutral T2 words. MEG source analyses showed that activation in orbitofrontal cortex, characterized by greater power in the theta and alpha bands, and dorsolateral prefrontal activation were associated with successful perceptual encoding of emotionally salient relative to neutral words. These effects were observed between 250 and 550 ms, latencies associated with discrimination of perceived from unperceived stimuli. These data suggest that important nodes of both emotional salience and frontoparietal executive systems are associated with the emotional modulation of the attentional blink.  相似文献   

6.
Three target words (T1, T2, and T3) were embedded in a rapid serial visual presentation (RSVP) stream of non-word distractors, and participants were required to report the targets at the end of each RSVP stream. T2 and T3 were semantically related words in half of the RSVP streams, and semantically unrelated words in the other half of the RSVP streams. Using an identical design, a recent study reported distinct reflections of the T2–T3 semantic relationship on the P2 and N400 components of event-related potentials (ERPs) time-locked to T3, suggesting an early, automatic, source of P2 semantic effects and a late, controlled, source of N400 semantic effects. Here, P2 and N400 semantic effects were examined by manipulating list-wide context. Relative to participants performing in a semantically unbiased context, participants over-exposed to filler RSVP streams always including semantically related T2/T3 words reported a dilution of T3-locked P2 semantic effects and a magnification of T3-locked N400 semantic effects. Opposite effects on P2 and N400 ERP components of list-wide semantic context are discussed in relation to recent proposals on the representational status of RSVP targets at processing stages prior to consolidation in visual short-term memory.  相似文献   

7.

Background

During rapid serial visual presentation (RSVP), observers often miss the second of two targets if it appears within 500 ms of the first. This phenomenon, called the attentional blink (AB), is widely held to reflect a bottleneck in the processing of rapidly sequential stimuli that arises after initial sensory registration is complete (i.e., at a relatively late, post-perceptual stage of processing). Contrary to this view, recent fMRI studies have found that activity in the primary visual area (V1), which represents the earliest cortical stage of visual processing, is attenuated during the AB. Here we asked whether such changes in V1 activity during the AB arise in the initial feedforward sweep of stimulus input, or instead reflect the influence of feedback signals from higher cortical areas.

Methodology/Principal Findings

EEG signals were recorded while participants monitored a sequential stream of distractor letters for two target digits (T1 and T2). Neural responses associated with an irrelevant probe stimulus presented simultaneously with T2 were measured using an ERP marker – the C1 component – that reflects initial perceptual processing of visual information in V1. As expected, T2 accuracy was compromised when the inter-target interval was brief, reflecting an AB deficit. Critically, however, the magnitude of the early C1 component evoked by the probe was not reduced during the AB.

Conclusions/Significance

Our finding that early sensory processing of irrelevant probe stimuli is not suppressed during the AB is consistent with theoretical models that assume that the bottleneck underlying the AB arises at a post-perceptual stage of processing. This suggests that reduced neural activity in V1 during the AB is driven by re-entrant signals from extrastriate areas that regulate early cortical activity via feedback connections with V1.  相似文献   

8.

Background

Attention is restricted for the second of two targets when it is presented within 200–500 ms of the first target. This attentional blink (AB) phenomenon allows one to study the dynamics of temporal selective attention by varying the interval between the two targets (T1 and T2). Whereas the AB has long been considered as a robust and universal cognitive limitation, several studies have demonstrated that AB task performance greatly differs between individuals, with some individuals showing no AB whatsoever.

Methodology/Principal Findings

Here, we studied these individual differences in AB task performance in relation to differences in attentional timing. Furthermore, we investigated whether AB magnitude is predictive for the amount of attention allocated to T1. For both these purposes pupil dilation was measured, and analyzed with our recently developed deconvolution method. We found that the dynamics of temporal attention in small versus large blinkers differ in a number of ways. Individuals with a relatively small AB magnitude seem better able to preserve temporal order information. In addition, they are quicker to allocate attention to both T1 and T2 than large blinkers. Although a popular explanation of the AB is that it is caused by an unnecessary overinvestment of attention allocated to T1, a more complex picture emerged from our data, suggesting that this may depend on whether one is a small or a large blinker.

Conclusion

The use of pupil dilation deconvolution seems to be a powerful approach to study the temporal dynamics of attention, bringing us a step closer to understanding the elusive nature of the AB. We conclude that the timing of attention to targets may be more important than the amount of allocated attention in accounting for individual differences.  相似文献   

9.

Background

When two targets are presented in close temporal succession, the majority of people frequently fail to report the second target. This phenomenon, known as the ‘attentional blink’ (AB), has been a major topic in attention research for the past twenty years because it is informative about the rate at which stimuli can be encoded into consciously accessible representations. An aspect of the AB that has long been ignored, however, is individual differences.

Methodology/Principal Findings

Here we compare a group of blinkers (who show an AB) and non-blinkers (who show little or no AB), and investigate the boundary conditions of the non-blinkers'' remarkable ability. Second, we directly test the properties of temporal selection by analysing response errors, allowing us to uncover individual differences in suppression, delay, and diffusion of selective attention across time. Thirdly, we test the hypothesis that information concerning temporal order is compromised when an AB is somehow avoided. Surprisingly, compared to earlier studies, only a modest amount of suppression was found for blinkers. Non-blinkers showed no suppression, were more precise in selecting the second target, and made less order reversals than blinkers did. In contrast, non-blinkers made relatively more intrusions and showed a selection delay when the second target immediately followed the first target (at lag 1).

Conclusion/Significance

The findings shed new light on the mechanisms that may underlie individual differences in selective attention. The notable ability of non-blinkers to accurately perceive targets presented in close temporal succession might be due to a relatively faster and more precise target selection process compared to large blinkers.  相似文献   

10.

Background

Attentional blink (AB) is a phenomenon that describes the difficulty individuals have in reporting the second of two masked targets if the second target (T2) arrives 200–500 ms after the first target (T1). Recent studies explain the AB from cognitive resources limitation to distractors interference. For example, the temporary loss of control (TLC) hypothesis suggests that the AB is conduced by distractors disrupting the input filter for target processing. The inhibition models suggest that the T1+1 distractor triggers a suppression mechanism which could be beneficial for T1 processing but would suppress T2 at short T1–T2 lags. These models consider that the AB is caused by the appearance of distractors. However, in the present study, two methods were taken to help individuals to detect the distractors more effectively. An attenuated AB deficit was found when the distractors could be excluded or suppressed in time. We consider that under an appropriate condition the distractors detection and suppression have a beneficial effect on attentional blink.

Methodology/Principal Findings

Two methods were employed to help individuals to detect the distractors more effectively: enlarging the low-level-physical characteristic difference between targets and distractors (Experiment 1) and restricting the sets of distractors (Experiment 2). Attenuated AB deficits were found as using the above manipulations.

Conclusions/Significance

The present study found when the distractors are detected or identified quickly, they could be effectively suppressed, in order to reduce the interference from the targets and result in a smaller AB deficit. We suggest that the suppression mechanism for distractors have a beneficial effect on AB.  相似文献   

11.
Martens S  Kandula M  Duncan J 《PloS one》2010,5(12):e15280

Background

Most people show a remarkable deficit to report the second of two targets when presented in close temporal succession, reflecting an attentional blink (AB). An aspect of the AB that is often ignored is that there are large individual differences in the magnitude of the effect. Here we exploit these individual differences to address a long-standing question: does attention to a visual target come at a cost for attention to an auditory target (and vice versa)? More specifically, the goal of the current study was to investigate a) whether individuals with a large within-modality AB also show a large cross-modal AB, and b) whether individual differences in AB magnitude within different modalities correlate or are completely separate.

Methodology/Principal Findings

While minimizing differential task difficulty and chances for a task-switch to occur, a significant AB was observed when targets were both presented within the auditory or visual modality, and a positive correlation was found between individual within-modality AB magnitudes. However, neither a cross-modal AB nor a correlation between cross-modal and within-modality AB magnitudes was found.

Conclusion/Significance

The results provide strong evidence that a major source of attentional restriction must lie in modality-specific sensory systems rather than a central amodal system, effectively settling a long-standing debate. Individuals with a large within-modality AB may be especially committed or focused in their processing of the first target, and to some extent that tendency to focus could cross modalities, reflected in the within-modality correlation. However, what they are focusing (resource allocation, blocking of processing) is strictly within-modality as it only affects the second target on within-modality trials. The findings show that individual differences in AB magnitude can provide important information about the modular structure of human cognition.  相似文献   

12.

Background

Most people show a remarkable deficit to report the second of two targets when presented in close temporal succession, reflecting an attentional restriction known as the ‘attentional blink’ (AB). However, there are large individual differences in the magnitude of the effect, with some people showing no such attentional restrictions.

Methodology/Principal Findings

Here we present behavioral and electrophysiological evidence suggesting that these ‘non-blinkers’ can use alphanumeric category information to select targets at an early processing stage. When such information was unavailable and target selection could only be based on information that is processed relatively late (rotation), even non-blinkers show a substantial AB. Electrophysiologically, in non-blinkers this resulted in enhanced distractor-related prefrontal brain activity, as well as delayed target-related occipito-parietal activity (P3).

Conclusion/Significance

These findings shed new light on possible strategic mechanisms that may underlie individual differences in AB magnitude and provide intriguing clues as to how temporal restrictions as reflected in the AB can be overcome.  相似文献   

13.
Visser TA  Ohan JL 《PloS one》2012,7(3):e33265

Background

When observers are asked to identify two targets in rapid sequence, they often suffer profound performance deficits for the second target, even when the spatial location of the targets is known. This attentional blink (AB) is usually attributed to the time required to process a previous target, implying that a link should exist between individual differences in information processing speed and the AB.

Methodology/Principal Findings

The present work investigated this question by examining the relationship between a rapid automatized naming task typically used to assess information-processing speed and the magnitude of the AB. The results indicated that faster processing actually resulted in a greater AB, but only when targets were presented amongst high similarity distractors. When target-distractor similarity was minimal, processing speed was unrelated to the AB.

Conclusions/Significance

Our findings indicate that information-processing speed is unrelated to target processing efficiency per se, but rather to individual differences in observers'' ability to suppress distractors. This is consistent with evidence that individuals who are able to avoid distraction are more efficient at deploying temporal attention, but argues against a direct link between general processing speed and efficient information selection.  相似文献   

14.
An important property of attention is the limitation to process new information after responding to a stimulus. This property of attention can be evaluated by the Attentional Blink (AB), a phenomenon that consists of a failure to detect the second of two targets when the interval between them is 200–500 ms. The aim of the present work is to determine the possible existence of time awake (homeostatic changes) and time of day (circadian rhythm) variations in the AB. Eighteen undergraduate students, 11 men and 7 women, age = 18.06 ± 1.16 years, participated voluntarily in this research. They were recorded in a constant routine protocol during 29 h, in which rectal temperature was recorded every minute, while subjective sleepiness and responses to a Rapid Serial Visual Presentation (RSVP) task, to measure the AB, were recorded every hour. Homeostatic and circadian variations in all parameters of the RSVP task were observed, including changes in the capacity to process a new stimulus (Target 1 accuracy), a second stimulus occurring in a short interval after the first (Target 2 accuracy at lag 2, 200 ms) and to process another successive independent stimulus (Target 2 accuracy at lag 8, 800 ms). The acrophase of these parameters occurred with a phase delay of 2 h compared to the circadian rhythm of rectal temperature. The AB magnitude, an index of the AB, showed a decline with time awake, but no variations with time of day. In conclusion, there are homeostatic and circadian variations in the capacity to process any incoming information, especially in tasks with brief duration stimuli presented at a high frequency.  相似文献   

15.
Martens S  Dun M  Wyble B  Potter MC 《PloS one》2010,5(10):e13562

Background

Most people show a remarkable deficit in reporting the second of two targets (T2) when presented 200–500 ms after the first (T1), reflecting an ‘attentional blink’ (AB). However, there are large individual differences in the magnitude of the effect, with some people, referred to as ‘non-blinkers’, showing no such attentional restrictions.

Methodology/Principal Findings

Here we replicate these individual differences in a task requiring identification of two letters amongst digits, and show that the observed differences in T2 performance cannot be attributed to individual differences in T1 performance. In a second experiment, the generality of the non-blinkers'' superior performance was tested using a task containing novel pictures rather than alphanumeric stimuli. A substantial AB was obtained in non-blinkers that was equivalent to that of ‘blinkers’.

Conclusion/Significance

The results suggest that non-blinkers employ an efficient target selection strategy that relies on well-learned alphabetic and numeric category sets.  相似文献   

16.

Background

Painful facial expressions have been shown to trigger affective responses among observers. However, there is so far no clear indication about the self- or other-oriented nature of these feelings. The purpose of this study was to assess whether facial expressions of pain are unconsciously associated with other-oriented feelings (empathic concern) or with self-oriented feelings (personal distress).

Method

70 participants took part in a priming paradigm in which ambiguous facial expressions of pain were primed by words related to empathic concern, distress, negative or by neutral words. It was hypothesized that empathic concern or distress-related words might facilitate the detection of pain in ambiguous facial expressions of pain, independently of a mere effect of prime (i.e., neutral words) or an effect of valence congruency (negative primes).

Results

The results showed an effect of prime on the detection and on the reaction time to answer “pain” when confronted to ambiguous facial expressions of pain. More specifically, the detection of pain was higher and faster when preceded by distress primes relative to either neutral or negative primes.

Conclusion

The present study suggests that painful expressions are unconsciously related to self-oriented feelings of distress and that their threat value might account for this effect. These findings thus shed new light on the automatic relationship between painful expressions and the affective components of empathy.  相似文献   

17.

Background

When a second target (T2) is presented in close succession of a first target (T1), people often fail to identify T2, a phenomenon known as the attentional blink (AB). However, the AB can be reduced substantially when participants are distracted during the task, for instance by a concurrent task, without a cost for T1 performance. The goal of the current study was to investigate the electrophysiological correlates of this paradoxical effect.

Methodology/Principal Findings

Participants successively performed three tasks, while EEG was recorded. The first task (standard AB) consisted of identifying two target letters in a sequential stream of distractor digits. The second task (grey dots task) was similar to the first task with the addition of an irrelevant grey dot moving in the periphery, concurrent with the central stimulus stream. The third task (red dot task) was similar to the second task, except that detection of an occasional brief color change in the moving grey dot was required. AB magnitude in the latter task was significantly smaller, whereas behavioral performance in the standard and grey dots tasks did not differ. Using mixed effects models, electrophysiological activity was compared during trials in the grey dots and red dot tasks that differed in task instruction but not in perceptual input. In the red dot task, both target-related parietal brain activity associated with working memory updating (P3) as well as distractor-related occipital activity was significantly reduced.

Conclusions/Significance

The results support the idea that the AB might (at least partly) arise from an overinvestment of attentional resources or an overexertion of attentional control, which is reduced when a distracting secondary task is carried out. The present findings bring us a step closer in understanding why and how an AB occurs, and how these temporal restrictions in selective attention can be overcome.  相似文献   

18.

Background  

Experimental identification of microRNA (miRNA) targets is a difficult and time consuming process. As a consequence several computational prediction methods have been devised in order to predict targets for follow up experimental validation. Current computational target prediction methods use only the miRNA sequence as input. With an increasing number of experimentally validated targets becoming available, utilising this additional information in the search for further targets may help to improve the specificity of computational methods for target site prediction.  相似文献   

19.

Background  

In search of new antifungal targets of potential interest for pharmaceutical companies, we initiated a comparative genomics study to identify the most promising protein-coding genes in fungal genomes. One criterion was the protein sequence conservation between reference pathogenic genomes. A second criterion was that the corresponding gene in Saccharomyces cerevisiae should be essential. Since thiamine pyrophosphate is an essential product involved in a variety of metabolic pathways, proteins responsible for its production satisfied these two criteria.  相似文献   

20.
Kanske P  Kotz SA 《PloS one》2012,7(1):e30086

Background

The study of emotional speech perception and emotional prosody necessitates stimuli with reliable affective norms. However, ratings may be affected by the participants'' current emotional state as increased anxiety and depression have been shown to yield altered neural responding to emotional stimuli. Therefore, the present study had two aims, first to provide a database of emotional speech stimuli and second to probe the influence of depression and anxiety on the affective ratings.

Methodology/Principal Findings

We selected 120 words from the Leipzig Affective Norms for German database (LANG), which includes visual ratings of positive, negative, and neutral word stimuli. These words were spoken by a male and a female native speaker of German with the respective emotional prosody, creating a total set of 240 auditory emotional stimuli. The recordings were rated again by an independent sample of subjects for valence and arousal, yielding groups of highly arousing negative or positive stimuli and neutral stimuli low in arousal. These ratings were correlated with participants'' emotional state measured with the Depression Anxiety Stress Scales (DASS). Higher depression scores were related to more negative valence of negative and positive, but not neutral words. Anxiety scores correlated with increased arousal and more negative valence of negative words.

Conclusions/Significance

These results underscore the importance of representatively distributed depression and anxiety scores in participants of affective rating studies. The LANG-audition database, which provides well-controlled, short-duration auditory word stimuli for the experimental investigation of emotional speech is available in Supporting Information S1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号