首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Systems metabolic engineering faces the formidable task of rewiring microbial metabolism to cost-effectively generate high-value molecules from a variety of inexpensive feedstocks for many different applications. Because these cellular systems are still too complex to model accurately, vast collections of engineered organism variants must be systematically created and evaluated through an enormous trial-and-error process in order to identify a manufacturing-ready strain. The high-throughput screening of strains to optimize their scalable manufacturing potential requires execution of many carefully controlled, parallel, miniature fermentations, followed by high-precision analysis of the resulting complex mixtures. This review discusses strategies for the design of high-throughput, small-scale fermentation models to predict improved strain performance at large commercial scale. Established and promising approaches from industrial and academic groups are presented for both cell culture and analysis, with primary focus on microplate- and microfluidics-based screening systems.  相似文献   

2.
Miniaturizing microbial fuel cells   总被引:1,自引:0,他引:1  
Microbial fuel cells (MFCs) represent an emerging technology for electricity generation from renewable biomass. Given the demand for a better understanding of the bio/inorganic interface that plays a key role in MFC energy production, small-scale MFCs are receiving considerable attention owing to their intrinsic advantages in both fundamental studies and applications as high-throughput platforms. Here, we present a brief review centered on the development of miniature MFCs at the milliliter to microliter scale. The principles, design motifs and experimental demonstrations of representative miniature MFC devices and systems are introduced, followed by a discussion of the key challenges and opportunities for realizing the exciting potentials of miniaturized MFCs.  相似文献   

3.
This review describes a new type of label-free optical biosensor that is inexpensively manufactured from continuous sheets of plastic film and incorporated into standard format microplates to enable highly sensitive, high-throughput detection of small molecules, proteins and cells. The biosensor and associated detection instrumentation are applied to review two fundamental limiting issues for assays in proteomics research and drug discovery: requirement for quantitative measurement of protein concentration and specific activity, and measurements made with complex systems in highly parallel measurements. SRU BIosystems, Inc.'s BIND label-free detection will address these issues using data examples for hybridoma screening, epitope binning and mapping, small-molecule screening, and cell-based functional assays. The review describes several additional applications that are under development for the system, and the key issues that will drive adoption of the technology over the next 5 years.  相似文献   

4.
This review describes a new type of label-free optical biosensor that is inexpensively manufactured from continuous sheets of plastic film and incorporated into standard format microplates to enable highly sensitive, high-throughput detection of small molecules, proteins and cells. The biosensor and associated detection instrumentation are applied to review two fundamental limiting issues for assays in proteomics research and drug discovery: requirement for quantitative measurement of protein concentration and specific activity, and measurements made with complex systems in highly parallel measurements. SRU BIosystems, Inc.’s BIND? label-free detection will address these issues using data examples for hybridoma screening, epitope binning and mapping, small-molecule screening, and cell-based functional assays. The review describes several additional applications that are under development for the system, and the key issues that will drive adoption of the technology over the next 5 years.  相似文献   

5.
生物分析是生命科学研究中的重要环节,分析仪器的小型化是提高生物分析灵敏度、速度、通量和降低成本的有效途径之一.微流控技术能够方便地操纵微量样品,具有集成度高、样品耗量小、污染少等诸多其他常量流控技术难以具备的优点,适用于进行多通道样品处理和高通量分析.除广泛采用的光学和电化学检测手段外,质谱也被用作这些微流控器件的检测器,并逐渐形成了微流控器件-质谱联用技术专门研究领域,进一步促进了自动化程度好、灵敏度高、特异性强的高通量生物分析方法的迅速发展.在大量调研国内外文献的基础上,对微流控器件-质谱联用领域的研究背景和现状进行了综述,不但介绍了微流控器件的制造技术还着重介绍了微流控器件-质谱联用技术在蛋白质组学等生物质谱分析方面的应用和新近进展,评述了可能的发展趋势.  相似文献   

6.
Stem cells are promising cell sources for many biomedical applications including cell therapy, regenerative medicine, and drug discovery. However, the commonly used static tissue culture vessels can only generate a low number of cells. To provide an adequate number of stem cells for clinical applications, a scalable process based on bioreactors is needed. Stem cells can be either cultured as free cells/aggregates in suspension or as adherent cells on the solid substrates. Based on the cell property, different bioreactor configurations are developed to better expand stem cells while maintaining their differentiation capacity. In this review, several major types of bioreactor systems and their applications in stem cell engineering are discussed. Continued advancements in bioprocess and bioreactor research and development are important to engineer stem cells for their use in biomedical applications.  相似文献   

7.
Animal cells have been used extensively in therapeutic protein production. The growth of animal cells and the expression of therapeutic proteins are highly dependent on the culturing environments. A large number of experimental permutations need to be explored to identify the optimal culturing conditions. Miniaturized bioreactors are well suited for such tasks as they offer high-throughput parallel operation and reduce cost of reagents. They can also be automated and be coupled to downstream analytical units for online measurements of culture products. This review summarizes the current status of miniaturized bioreactors for animal cell cultivation based on the design categories: microtiter plates, flasks, stirred tank reactors, novel designs with active mixing, and microfluidic cell culture devices. We compare cell density and product titer, for batch or fed-batch modes for each system. Monitoring/controlling devices for engineering parameters such as pH, dissolved oxygen, and dissolved carbon dioxide, which could be applied to such systems, are summarized. Finally, mini-scale tools for process performance evaluation for animal cell cultures are discussed: total cell density, cell viability, product titer and quality, substrates, and metabolites profiles.  相似文献   

8.
High-resolution microscopy methods based on different nonlinear optical (NLO) contrast mechanisms are finding numerous applications in biology and medicine. While the basic implementations of these microscopy methods are relatively mature, an important direction of continuing technological innovation lies in improving the throughput of these systems. Throughput improvement is expected to be important for studying fast kinetic processes, for enabling clinical diagnosis and treatment, and for extending the field of image informatics. This review will provide an overview of the fundamental limitations on NLO microscopy throughput. We will further cover several important classes of high-throughput NLO microscope designs with discussions on their strengths and weaknesses and their key biomedical applications. Finally, this review will close with a perspective of potential future technological improvements in this field.  相似文献   

9.
High-resolution microscopy methods based on different nonlinear optical (NLO) contrast mechanisms are finding numerous applications in biology and medicine. While the basic implementations of these microscopy methods are relatively mature, an important direction of continuing technological innovation lies in improving the throughput of these systems. Throughput improvement is expected to be important for studying fast kinetic processes, for enabling clinical diagnosis and treatment, and for extending the field of image informatics. This review will provide an overview of the fundamental limitations on NLO microscopy throughput. We will further cover several important classes of high-throughput NLO microscope designs with discussions on their strengths and weaknesses and their key biomedical applications. Finally, this review will close with a perspective of potential future technological improvements in this field.  相似文献   

10.
This paper is designed to critically review the recent developments of membrane bio-technologies for sludge reduction and treatment by covering process fundamentals, performances (sludge reduction efficiency, membrane fouling, pollutant removal, etc.) and key operational parameters. The future perspectives of the hybrid membrane processes for sludge reduction and treatment are also discussed. For sludge reduction using membrane bioreactors (MBRs), literature review shows that biological maintenance metabolism, predation on bacteria, and uncoupling metabolism through using oxic-settling-anaerobic (OSA) process are promising ways that can be employed in full-scale applications. Development of control methods for worm proliferation is in great need of, and a good sludge reduction and MBR performance can be expected if worm growth is properly controlled. For lysis-cryptic sludge reduction method, improvement of oxidant dispersion and increase of the interaction with sludge cells can enhance the lysis efficiency. Green uncoupler development might be another research direction for uncoupling metabolism in MBRs. Aerobic hybrid membrane system can perform well for sludge thickening and digestion in small- and medium-sized wastewater treatment plants (WWTPs), and pilot-scale/full-scale applications have been reported. Anaerobic membrane digestion (AMD) process is a very competitive technology for sludge stabilization and digestion. Use of biogas recirculation for fouling control can be a powerful way to decrease the energy requirements for AMD process. Future research efforts should be dedicated to membrane preparation for high biomass applications, process optimization, and pilot-scale/full-scale tracking research in order to push forward the real and wide applications of the hybrid membrane systems for sludge minimization and treatment.  相似文献   

11.
In recent years, the importance of proteomic works, such as protein expression, detection and identification, has grown in the fields of proteomic and diagnostic research. This is because complete genome sequences of humans, and other organisms, progress as cellular processing and controlling are performed by proteins as well as DNA or RNA. However, conventional protein analyses are time-consuming; therefore, high throughput protein analysis methods, which allow fast, direct and quantitative detection, are needed. These are so-called protein microarrays or protein chips, which have been developed to fulfill the need for high-throughput protein analyses. Although protein arrays are still in their infancy, technical development in immobilizing proteins in their native conformation on arrays, and the development of more sensitive detection methods, will facilitate the rapid deployment of protein arrays as high-throughput protein assay tools in proteomics and diagnostics. This review summarizes the basic technologies that are needed in the fabrication of protein arrays and their recent applications.  相似文献   

12.
《Biotechnology advances》2017,35(4):419-442
This review discusses opportunities and bottlenecks for cell factory development of Lactic Acid Bacteria (LAB), with an emphasis on lactobacilli and pediococci, their metabolism and genetic tools. In order to enable economically feasible bio-based production of chemicals and fuels in a biorefinery, the choice of product, substrate and production organism is important. Currently, the most frequently used production hosts include Escherichia coli and Saccharomyces cerevisiae, but promising examples are available of alternative hosts such as LAB. Particularly lactobacilli and pediococci can offer benefits such as thermotolerance, an extended substrate range and increased tolerance to stresses such as low pH or high alcohol concentrations. This review will evaluate the properties and metabolism of these organisms, and provide an overview of their current biotechnological applications and metabolic engineering. We substantiate the review by including experimental results from screening various lactobacilli and pediococci for transformability, growth temperature range and ability to grow under biotechnologically relevant stress conditions. Since availability of efficient genetic engineering tools is a crucial prerequisite for industrial strain development, genetic tool development is extensively discussed. A range of genetic tools exist for Lactococcus lactis, but for other species of LAB like lactobacilli and pediococci such tools are less well developed. Whereas lactobacilli and pediococci have a long history of use in food and beverage fermentation, their use as platform organisms for production purposes is rather new. By harnessing their properties such as thermotolerance and stress resistance, and by using emerging high-throughput genetic tools, these organisms are very promising as versatile cell factories for biorefinery applications.  相似文献   

13.
14.
The yeast Saccharomyces cerevisiae is a widely used cell factory for the production of fuels and chemicals, and it is also provides a platform for the production of many heterologous proteins of medical or industrial interest. Therefore, many studies have focused on metabolic engineering S. cerevisiae to improve the recombinant protein production, and with the development of systems biology, it is interesting to see how this approach can be applied both to gain further insight into protein production and secretion and to further engineer the cell for improved production of valuable proteins. In this review, the protein post-translational modification such as folding, trafficking, and secretion, steps that are traditionally studied in isolation will here be described in the context of the whole system of protein secretion. Furthermore, examples of engineering secretion pathways, high-throughput screening and systems biology applications of studying protein production and secretion are also given to show how the protein production can be improved by different approaches. The objective of the review is to describe individual biological processes in the context of the larger, complex protein synthesis network.  相似文献   

15.
猪microRNA组学研究进展   总被引:2,自引:0,他引:2  
冉茂良  陈斌  尹杰  杨岸奇  李智  蒋明 《遗传》2014,36(10):974-984
MicroRNA(miRNA)是一类长约22 nt的非编码小RNA,广泛存在于各种生物中,调节生物体生长、发育和凋亡等过程。研究表明,miRNA在猪肌肉、脂肪、生殖系统以及免疫系统等的发育过程中发挥着重要的调控作用。此外,高通量的新一代测序技术在猪miRNA的挖掘和差异表达研究中发挥着巨大的作用。文章综述了高通量的新一代测序技术在挖掘猪miRNA中的应用以及一些miRNA在猪脂肪代谢、肌肉发育、卵母细胞成熟和B、T淋巴细胞发育中的调控作用,旨在为猪miRNA的研究提供参考,为利用miRNA调控和改善猪肉品质、生长性能、繁殖性能以及免疫机能提供理论基础和研究思路。  相似文献   

16.
Sequencing of the human genome opened the way to the exploration of the proteome and this has lead to the identification of large numbers of proteins in complex biological samples. The identification of diagnostic patterns in samples taken from patients to aid diagnosis is in the early stages of development. The solution to many of the technical challenges in proteomics and protein based molecular diagnostics will be found in new applications of nanomaterials. This review describes some of the physical and chemical principles underlying nanomaterials and devices and outlines how they can be used in proteomics; developments which are establishing nanoproteomics as a new field. Nanoproteomics will provide the platform for the discovery of next generation biomarkers. The field of molecular diagnostics will then come of age.  相似文献   

17.
Membrane fouling by soluble microbial products (SMP) remains one of the limitations for widespread applications of membrane bioreactor (MBR) systems. Over the past two decades, the characteristics and behaviors of SMP have attracted much attention, and efforts have been dedicated to clarify their role in membrane fouling in MBRs. However, to date, there are only few reviews directly relating this area, and the objective of previous reviews is to concentrate on SMP and their implications in biological treatment systems and their effluents. This brief review relating only to SMP-caused membrane fouling evaluation at the fractional level (SMP key components, sub-fractions and hydrophilic and hydrophobic fractions) and at the overall level (SMP overall roles, characteristics and factors) is presented, which could greatly help researchers and engineers to better understand SMP actual contribution to membrane fouling and adopt effective measures to avoid SMP-caused fouling in MBRs.  相似文献   

18.
The reconstruction of gene regulatory networks (GRNs) from high-throughput experimental data has been considered one of the most important issues in systems biology research. With the development of high-throughput technology and the complexity of biological problems, we need to reconstruct GRNs that contain thousands of genes. However, when many existing algorithms are used to handle these large-scale problems, they will encounter two important issues: low accuracy and high computational cost. To overcome these difficulties, the main goal of this study is to design an effective parallel algorithm to infer large-scale GRNs based on high-performance parallel computing environments. In this study, we proposed a novel asynchronous parallel framework to improve the accuracy and lower the time complexity of large-scale GRN inference by combining splitting technology and ordinary differential equation (ODE)-based optimization. The presented algorithm uses the sparsity and modularity of GRNs to split whole large-scale GRNs into many small-scale modular subnetworks. Through the ODE-based optimization of all subnetworks in parallel and their asynchronous communications, we can easily obtain the parameters of the whole network. To test the performance of the proposed approach, we used well-known benchmark datasets from Dialogue for Reverse Engineering Assessments and Methods challenge (DREAM), experimentally determined GRN of Escherichia coli and one published dataset that contains more than 10 thousand genes to compare the proposed approach with several popular algorithms on the same high-performance computing environments in terms of both accuracy and time complexity. The numerical results demonstrate that our parallel algorithm exhibits obvious superiority in inferring large-scale GRNs.  相似文献   

19.
Attenuated Total Reflection (ATR) Fourier Transform Infrared (FTIR) spectroscopy is a label-free, non-destructive analytical technique that can be used extensively to study a wide variety of different molecules in a range of different conditions. The aim of this review is to discuss and highlight the recent advances in the applications of ATR FTIR spectroscopic imaging to proteins. It briefly covers the basic principles of ATR FTIR spectroscopy and ATR FTIR spectroscopic imaging as well as their advantages to the study of proteins compared to other techniques and other forms of FTIR spectroscopy. It will then go on to examine the advances that have been made within the field over the last several years, particularly the use of ATR FTIR spectroscopy for the understanding and development of protein interaction with surfaces. Additionally, the growing potential of Surface Enhanced Infrared Spectroscopy (SEIRAS) within this area of applications will be discussed. The review includes the applications of ATR FTIR imaging to protein crystallisation and for high-throughput studies, highlighting the future potential of the technology within the field of protein structural studies and beyond.  相似文献   

20.
Environmental deterioration together with the need for water reuse and the increasingly restrictive legislation of water quality standards have led to a demand for compact, efficient and less energy consuming technologies for wastewater treatment. Aerobic granular sludge and membrane bioreactors (MBRs) are two technologies with several advantages, such as small footprint, high-microbial density and activity, ability to operate at high organic- and nitrogen-loading rates, and tolerance to toxicity. However, they also have some disadvantages. The aerobic granular sludge process generally requires post-treatment in order to fulfill effluent standards and MBRs suffer from fouling of the membranes. Integrating the two technologies could be a way of combining the advantages and addressing the main problems associated with both processes. The use of membranes to separate the aerobic granules from the treated water would ensure high-quality effluents suitable for reuse. Moreover, the use of granular sludge in MBRs has been shown to reduce fouling. Several recent studies have shown that the aerobic granular membrane bioreactor (AGMBR) is a promising hybrid process with many attractive features. However, major challenges that have to be addressed include how to achieve granulation and maintain granular stability during continuous operation of reactors. This paper aims to review the current state of research on AGMBR technology while drawing attention to relevant findings and highlight current limitations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号