首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background  

The cytoplasmic ribosomal small subunit (SSU, 18S) ribosomal RNA (rRNA) is the most frequently-used gene for molecular phylogenetic studies. However, information regarding its secondary structure is neglected in most phylogenetic analyses. Incorporation of this information is essential in order to apply specific rRNA evolutionary models to overcome the problem of co-evolution of paired sites, which violates the basic assumption of the independent evolution of sites made by most phylogenetic methods. Information about secondary structure also supports the process of aligning rRNA sequences across taxa. Both aspects have been shown to increase the accuracy of phylogenetic reconstructions within various taxa.  相似文献   

2.
3.
Lin YH  Chang BC  Chiang PW  Tang SL 《Gene》2008,416(1-2):44-47
According to recent reports, many ribosomal RNA gene annotations are still questionable, and the use of inappropriate tools for annotation has been blamed. However, we believe that the abundant 16S rRNA partial sequence in the databases, mainly created by culture-independent PCR methods, is another main cause of the ambiguous annotations of 16S rRNA. To examine the current status of 16S rRNA gene annotations in complete microbial genomes, we used as a criterion the conserved anti-SD sequence, located at the 3′ end of the 16S rRNA gene, which is commonly overlooked by culture-independent PCR methods. In our large survey, 859 16S rRNA gene sequences from 252 different species of the microbial complete genomes were inspected. 67 species (234 genes) were detected with ambiguous annotations. The common anti-SD sequence and other conserved 16S rRNA sequence features could be detected in the downstream-intergenic regions for almost every questionable sequence, indicating that many of the 16S rRNA genes were annotated incorrectly. Furthermore, we found that more than 91.5% of the 93,716 sequences of the available 16S rRNA in the main databases are partial sequences. We also performed BLAST analysis for every questionable rRNA sequence, and most of the best hits in the analysis were rRNA partial sequences. This result indicates that partial sequences are prevalent in the databases, and that these sequences have significantly affected the accuracy of microbial genomic annotation. We suggest that the annotation of 16S rRNA genes in newly complete microbial genomes must be done in more detail, and that revision of questionable rRNA annotations should commence as soon as possible.  相似文献   

4.

Background  

Availability of high-resolution RNA crystal structures for the 30S and 50S ribosomal subunits and the subsequent validation of comparative secondary structure models have prompted the biologists to use three-dimensional structure of ribosomal RNA (rRNA) for evaluating sequence alignments of rRNA genes. Furthermore, the secondary and tertiary structural features of rRNA are highly useful and successfully employed in designing rRNA targeted oligonucleotide probes intended for in situ hybridization experiments. RNA3D, a program to combine sequence alignment information with three-dimensional structure of rRNA was developed. Integration into ARB software package, which is used extensively by the scientific community for phylogenetic analysis and molecular probe designing, has substantially extended the functionality of ARB software suite with 3D environment.  相似文献   

5.
Although it is well known that there is no long range colinearity in gene order in bacterial genomes, it is thought that there are several regions that are under strong structural constraints during evolution, in which gene order is extremely conserved. One such region is the str locus, containing the S10-spc-alpha operons. These operons contain genes coding for ribosomal proteins and for a number of housekeeping genes. We compared the organisation of these gene clusters in 111 sequenced prokaryotic genomes (99 bacterial and 12 archaeal genomes). We also compared the organisation to the phylogeny based on 16S ribosomal RNA gene sequences and the sequences of the ribosomal proteins L22, L16 and S14. Our data indicate that there is much variation in gene order and content in these gene clusters, both in bacterial as well as in archaeal genomes. Our data indicate that differential gene loss has occurred on multiple occasions during evolution. We also noted several discrepancies between phylogenetic trees based on 16S rRNA gene sequences and sequences of ribosomal proteins L16, L22 and S14, suggesting that horizontal gene transfer did play a significant role in the evolution of the S10-spc-alpha gene clusters.  相似文献   

6.

Background  

For more than two decades microbiologists have used a highly conserved microbial gene as a phylogenetic marker for bacteria and archaea. The small-subunit ribosomal RNA gene, also known as 16 S rRNA, is encoded by ribosomal DNA, 16 S rDNA, and has provided a powerful comparative tool to microbial ecologists. Over time, the microbial ecology field has matured from small-scale studies in a select number of environments to massive collections of sequence data that are paired with dozens of corresponding collection variables. As the complexity of data and tool sets have grown, the need for flexible automation and maintenance of the core processes of 16 S rDNA sequence analysis has increased correspondingly.  相似文献   

7.
Tourova  T. P. 《Microbiology》2003,72(4):389-402
Different aspects of the presence of multiple copies of ribosomal operons in prokaryotic genomes are reviewed. The structure of prokaryotic ribosomal operons is briefly described. The available data are summarized regarding the copy number of ribosomal genes in various prokaryotic genomes, the degree of polymorphism of their individual copies, and physiological and evolutional aspects of the presence of the multiple copies of ribosomal genes. The review also considers the influence of the presence of multiple copies of ribosomal genes on the results of identification of prokaryotic isolates and of the studies of prokaryotic diversity in environmental samples based on phylogenetic analysis of 16S rRNA gene sequences.  相似文献   

8.
Turova TP 《Mikrobiologiia》2003,72(4):437-452
Different aspects of the presence of multiple copies of ribosomal operons in prokaryotic genomes are reviewed. Structure of prokaryotic ribosomal operons is briefly described. The available data are summarized regarding the copy number of ribosomal genes in various prokaryotic genomes, the degree of polymorphism of their individual copies, physiological and evolutionary aspects of the presence of the multiple copies of ribosomal genes. The review also considers the influence of the presence of multiple copies of ribosomal genes on the results of identification of prokaryotic isolates and of the studies of prokaryotic diversity in environmental samples based on phylogenetic analysis of 16S rRNA gene sequences.  相似文献   

9.
Makarova KS  Ponomarev VA  Koonin EV 《Genome biology》2001,2(9):research0033.1-research003314

Background

Ribosomal proteins are encoded in all genomes of cellular life forms and are, generally, well conserved during evolution. In prokaryotes, the genes for most ribosomal proteins are clustered in several highly conserved operons, which ensures efficient co-regulation of their expression. Duplications of ribosomal-protein genes are infrequent, and given their coordinated expression and functioning, it is generally assumed that ribosomal-protein genes are unlikely to undergo horizontal transfer. However, with the accumulation of numerous complete genome sequences of prokaryotes, several paralogous pairs of ribosomal protein genes have been identified. Here we analyze all such cases and attempt to reconstruct the evolutionary history of these ribosomal proteins.

Results

Complete bacterial genomes were searched for duplications of ribosomal proteins. Ribosomal proteins L36, L33, L31, S14 are each duplicated in several bacterial genomes and ribosomal proteins L11, L28, L7/L12, S1, S15, S18 are so far duplicated in only one genome each. Sequence analysis of the four ribosomal proteins, for which paralogs were detected in several genomes, two of the ribosomal proteins duplicated in one genome (L28 and S18), and the ribosomal protein L32 showed that each of them comes in two distinct versions. One form contains a predicted metal-binding Zn-ribbon that consists of four conserved cysteines (in some cases replaced by histidines), whereas, in the second form, these metal-chelating residues are completely or partially replaced. Typically, genomes containing paralogous genes for these ribosomal proteins encode both versions, designated C+ and C-, respectively. Analysis of phylogenetic trees for these seven ribosomal proteins, combined with comparison of genomic contexts for the respective genes, indicates that in most, if not all cases, their evolution involved a duplication of the ancestral C+ form early in bacterial evolution, with subsequent alternative loss of the C+ and C- forms in different lineages. Additionally, evidence was obtained for a role of horizontal gene transfer in the evolution of these ribosomal proteins, with multiple cases of gene displacement 'in situ', that is, without a change of the gene order in the recipient genome.

Conclusions

A more complex picture of evolution of bacterial ribosomal proteins than previously suspected is emerging from these results, with major contributions of lineage-specific gene loss and horizontal gene transfer. The recurrent theme of emergence and disruption of Zn-ribbons in bacterial ribosomal proteins awaits a functional interpretation.  相似文献   

10.
Harvest Mouse (Micromys minutus) has a very wide range of distribution in Asia and Europe. However, the phylogenetic relationship of M. minutus is still uncertain. In this study, we determined the complete mitochondrial (mt) genome sequences of M. minutus, and used the complete mitochondrial genome sequences constructed the phylogenetic tree of Muroidea. The size of the genome is 16,232 bp in length and has a base composition of 33.6% A, 29.1% T, 24.8% C, and 12.5% G. The mitogenome structure was similar to that of typical vertebrate and other rodents' mitochondrial genomes, includes 13 protein-coding genes, 2 rRNA genes (12S rRNA and 16S rRNA), 22 tRNA genes, and 1 control region. We suggested a new initiation codon for ND5 (NADH dehydrogenase subunit), which has been never reported in the mitochondrial genome of vertebrate. The ML and BI phylogenetic trees, which based on the combination of the 12 protein-coding genes, supported strongly that the genus Micromys was represent an early offshoot within the Muridae with high support values (BI = 1.00, ML = 100).  相似文献   

11.
12.

Background

The concept of ribosomal constraints on rRNA genes is deduced primarily based on the comparison of consensus rRNA sequences between closely related species, but recent advances in whole-genome sequencing allow evaluation of this concept within organisms with multiple rRNA operons.

Methodology/Principal Findings

Using the 23S rRNA gene as an example, we analyzed the diversity among individual rRNA genes within a genome. Of 184 prokaryotic species containing multiple 23S rRNA genes, diversity was observed in 113 (61.4%) genomes (mean 0.40%, range 0.01%–4.04%). Significant (1.17%–4.04%) intragenomic variation was found in 8 species. In 5 of the 8 species, the diversity in the primary structure had only minimal effect on the secondary structure (stem versus loop transition). In the remaining 3 species, the diversity significantly altered local secondary structure, but the alteration appears minimized through complex rearrangement. Intervening sequences (IVS), ranging between 9 and 1471 nt in size, were found in 7 species. IVS in Deinococcus radiodurans and Nostoc sp. encode transposases. T. tengcongensis was the only species in which intragenomic diversity >3% was observed among 4 paralogous 23S rRNA genes.

Conclusions/Significance

These findings indicate tight ribosomal constraints on individual 23S rRNA genes within a genome. Although classification using primary 23S rRNA sequences could be erroneous, significant diversity among paralogous 23S rRNA genes was observed only once in the 184 species analyzed, indicating little overall impact on the mainstream of 23S rRNA gene-based prokaryotic taxonomy.  相似文献   

13.

Background  

Results of microbial ecology studies using 16S rRNA sequence information can be deceiving due to differences in rRNA operon copy number and genome size of the detected organisms. It therefore will be useful for investigators to have a better understanding of how these two parameters differ in various organism types. In this study, the number of ribosomal operons and genome size were separately mapped onto a Bacterial phylogenetic tree.  相似文献   

14.
Ribosomal RNAs (rRNAs) (16S, 23S, 5S) encoded by the rrn operons and ribosomal proteins play a very important role in the formation of ribosomes and in the control of translation. Five copies of the rrn operon were reported by hybridization studies in Brevibacterium (Corynebacterium) lactofermentum but the genome sequence of Corynebacterium glutamicum provided evidence for six rrn copies. All six copies of the C. glutamicum 16S rRNA have a size of 1523 bp and each of the six copies of the 5S contain 120 bp whereas size differences are found between the six copies of the 23S rRNA. The anti-Shine-Dalgarno sequence at the 3'-end of the 16S rRNA was 5'-CCUCCUUUC-3'. Each rrn operon is transcribed as a large precursor rRNA (pre-rRNA) that is processed by RNaseIII and other RNases at specific cleavage boxes that have been identified in the C. glutamicum pre-rRNA. A secondary structure of the C. glutamicum 16S rRNA is proposed. The 16S rRNA sequence has been used as a molecular evolution clock allowing the deduction of a phylogenetic tree of all Corynebacterium species. In C. glutamicum, there are 11 ribosomal protein gene clusters encoding 42 ribosomal proteins. The organization of some of the ribosomal protein gene cluster is identical to that of Escherichia coli whereas in other clusters the organization of the genes is rather different. Some specific ribosomal protein genes are located in a different cluster in C. glutamicum when compared with E. coli, indicating that the control of expression of these genes is different in E. coli and C. glutamicum.  相似文献   

15.

Background  

Tropheryma whipplei, the agent of Whipple's disease (WD), has been recently isolated and the genomes of two isolates have been fully sequenced. Previous diagnosis tools for the diagnosis of the disease used sequence analysis of the 16S rRNA gene. Using this target gene, the high percentage of detection of the bacterium in saliva of healthy people was in contrast to the negative results obtained with specific target genes. The aim of our study was to compare previously published primers targeting the 16S rRNA gene to real-time PCR with Taqman* probes targeting specific repeat genes only found in the genome of T. whipplei in a series of 57 saliva from healthy people.  相似文献   

16.
The Formosan termite Coptotermes formosanus Shiraki is a well-known invasive pest that causes severe damage to wooden structures in many parts of the world. Although several studies examined its phylogeographic patterns using a few mitochondrial genes, the phylogenetic relationships among C. formosanus are poorly understood because of the small number of mutations known among its mitochondrial genes. To provide a useful genetic tool for further analyses, we analyzed the complete mitochondrial genome sequence of C. formosanus using specimens collected from three isolated islands in the Ryukyu Archipelago of Japan. The circular mitogenome of these termites consisted of genes encoding 22 transfer RNAs, two ribosomal RNAs, and 13 mitochondrial proteins, as is the case for most animal mitochondrial genomes. The G + C content was 34.1%, and the total length varied slightly between 16,234 and 16,236 base pairs. The complete mitochondrial genomes of the three populations were more than 99.9% identical to each other and showed differences at six nucleotide positions. The COII, 12S rRNA, and 16S rRNA genes that are commonly used for phylogenetic analyses revealed only one substitution or no substitutions. The mitogenome sequences determined here should contribute to the design of new molecular markers for the clarification of the historical distribution process of C. formosanus and for further phylogenetic analyses with this and related termite species.  相似文献   

17.

Background  

Previous methods of detecting the taxonomic origins of arbitrary sequence collections, with a significant impact to genome analysis and in particular metagenomics, have primarily focused on compositional features of genomes. The evolutionary patterns of phylogenetic distribution of genes or proteins, represented by phylogenetic profiles, provide an alternative approach for the detection of taxonomic origins, but typically suffer from low accuracy. Herein, we present rank-BLAST, a novel approach for the assignment of protein sequences into genomic groups of the same taxonomic origin, based on the ranking order of phylogenetic profiles of target genes or proteins across the reference database.  相似文献   

18.
Ever since Carl Woese introduced the use of 16S rRNA genes for determining the phylogenetic relationships of prokaryotes, this method has been regarded as the “gold standard” in both microbial phylogeny and ecology studies. However, intragenomic heterogeneity within 16S rRNA genes has been reported in many investigations and is believed to bias the estimation of prokaryotic diversity. In the current study, 2,013 completely sequenced genomes of bacteria and archaea were analyzed and intragenomic heterogeneity was found in 952 genomes (585 species), with 87.5% of the divergence detected being below the 1% level. In particular, some extremophiles (thermophiles and halophiles) were found to harbor highly divergent 16S rRNA genes. Overestimation caused by 16S rRNA gene intragenomic heterogeneity was evaluated at different levels using the full-length and partial 16S rRNA genes usually chosen as targets for pyrosequencing. The result indicates that, at the unique level, full-length 16S rRNA genes can produce an overestimation of as much as 123.7%, while at the 3% level, an overestimation of 12.9% for the V6 region may be introduced. Further analysis showed that intragenomic heterogeneity tends to concentrate in specific positions, with the V1 and V6 regions suffering the most intragenomic heterogeneity and the V4 and V5 regions suffering the least intragenomic heterogeneity in bacteria. This is the most up-to-date overview of the diversity of 16S rRNA genes within prokaryotic genomes. It not only provides general guidance on how much overestimation can be introduced when applying 16S rRNA gene-based methods, due to its intragenomic heterogeneity, but also recommends that, for bacteria, this overestimation be minimized using primers targeting the V4 and V5 regions.  相似文献   

19.
Analysis of 16S rRNA gene sequences has become the primary method for determining prokaryotic phylogeny. Phylogeny is currently the basis for prokaryotic systematics. Therefore, the validity of 16S rRNA gene-based phylogenetic analyses is of fundamental importance for prokaryotic systematics. Discrepancies between 16S rRNA gene analyses and DNA-DNA hybridization and phenotypic analyses have been noted in the genus Helicobacter. To clarify these discrepancies, we sequenced the 23S rRNA genes for 55 helicobacter strains representing 41 taxa (>2,700 bases per sequence). Phylogenetic-tree construction using neighbor-joining, parsimony, and maximum likelihood methods for 23S rRNA gene sequence data yielded stable trees which were consistent with other phenotypic and genotypic methods. The 16S rRNA gene sequence-derived trees were discordant with the 23S rRNA gene trees and other data. Discrepant 16S rRNA gene sequence data for the helicobacters are consistent with the horizontal transfer of 16S rRNA gene fragments and the creation of mosaic molecules with loss of phylogenetic information. These results suggest that taxonomic decisions must be supported by other phylogenetically informative macromolecules, such as the 23S rRNA gene, when 16S rRNA gene-derived phylogeny is discordant with other credible phenotypic and genotypic methods. This study found Wolinella succinogenes to branch with the unsheathed-flagellum cluster of helicobacters by 23S rRNA gene analyses and whole-genome comparisons. This study also found intervening sequences (IVSs) in the 23S rRNA genes of strains of 12 Helicobacter species. IVSs were found in helices 10, 25, and 45, as well as between helices 31' and 27'. Simultaneous insertion of IVSs at three sites was found in H. mesocricetorum.  相似文献   

20.

Background

Pseudoscorpions are chelicerates and have historically been viewed as being most closely related to solifuges, harvestmen, and scorpions. No mitochondrial genomes of pseudoscorpions have been published, but the mitochondrial genomes of some lineages of Chelicerata possess unusual features, including short rRNA genes and tRNA genes that lack sequence to encode arms of the canonical cloverleaf-shaped tRNA. Additionally, some chelicerates possess an atypical guanine-thymine nucleotide bias on the major coding strand of their mitochondrial genomes.

Results

We sequenced the mitochondrial genomes of two divergent taxa from the chelicerate order Pseudoscorpiones. We find that these genomes possess unusually short tRNA genes that do not encode cloverleaf-shaped tRNA structures. Indeed, in one genome, all 22 tRNA genes lack sequence to encode canonical cloverleaf structures. We also find that the large ribosomal RNA genes are substantially shorter than those of most arthropods. We inferred secondary structures of the LSU rRNAs from both pseudoscorpions, and find that they have lost multiple helices. Based on comparisons with the crystal structure of the bacterial ribosome, two of these helices were likely contact points with tRNA T-arms or D-arms as they pass through the ribosome during protein synthesis. The mitochondrial gene arrangements of both pseudoscorpions differ from the ancestral chelicerate gene arrangement. One genome is rearranged with respect to the location of protein-coding genes, the small rRNA gene, and at least 8 tRNA genes. The other genome contains 6 tRNA genes in novel locations. Most chelicerates with rearranged mitochondrial genes show a genome-wide reversal of the CA nucleotide bias typical for arthropods on their major coding strand, and instead possess a GT bias. Yet despite their extensive rearrangement, these pseudoscorpion mitochondrial genomes possess a CA bias on the major coding strand. Phylogenetic analyses of all 13 mitochondrial protein-coding gene sequences consistently yield trees that place pseudoscorpions as sister to acariform mites.

Conclusion

The well-supported phylogenetic placement of pseudoscorpions as sister to Acariformes differs from some previous analyses based on morphology. However, these two lineages share multiple molecular evolutionary traits, including substantial mitochondrial genome rearrangements, extensive nucleotide substitution, and loss of helices in their inferred tRNA and rRNA structures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号