首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Bovine articular chondrocytes were maintained in high density pellet cultures with and without serum and nucleotide triphosphates for different periods of time. Despite half-lives in culture of about 3 h, adenosine triphosphate and uridine triphosphate in the presence of serum increased sulphated glycosaminoglycan and collagen deposition above control levels. In the presence of serum a single dose of uridine triphosphate on the first day of culture was sufficient to induce significant increases in subsequent proteoglycan and collagen deposition. We conclude that both adenine triphosphate and uridine triphosphate are anabolic for articular chondrocytes, and that this effect on the chondrocyte is long-term.  相似文献   

2.
3.
Regulated differentiation of chondrocytes is essential for both normal skeletal development and maintenance of articular cartilage. The intracellular pathways that control these events are incompletely understood, and our ability to modulate the chondrocyte phenotype in vivo or in vitro is therefore limited. Here we examine the role played by one prominent group of intracellular signalling proteins, the Src family kinases, in regulating the chondrocyte phenotype. We show that the Src family kinase Lyn exhibits a dynamic expression pattern in the chondrogenic cell line ATDC5 and in a mixed population of embryonic mouse chondrocytes in high-density monolayer culture. Inhibition of Src kinase activity using the pharmacological compound PP2 (4-Amino-5-(4-chlorophenyl)-7-(t-butyl)pyrazolo [3,4-d]pyrimidine) strongly reduced the number of primary mouse chondrocytes. In parallel, PP2 treatment increased the expression of both early markers (such as Sox9, collagen type II, aggrecan and xylosyltransferases) and late markers (collagen type X, Indian hedgehog and p57) markers of chondrocyte differentiation. Interestingly, PP2 repressed the expression of the Src family members Lyn, Frk and Hck. It also reversed morphological de-differentiation of chondrocytes in monolayer culture and induced rounding of chondrocytes, and reduced stress fibre formation and focal adhesion kinase phosphorylation. We conclude that the Src kinase inhibitor PP2 promotes chondrogenic gene expression and morphology in monolayer culture. Strategies to block Src activity might therefore be useful both in tissue engineering of cartilage and in the maintenance of the chondrocyte phenotype in diseases such as osteoarthritis.  相似文献   

4.
Rabbit articular cartilage slices were grown in organ culture for 9 weeks. Eightfold increases in the synthesis of both glycosaminoglycan and collagen were observed at 1 and 3 weeks, respectively. These levels of synthesis gradually declined in parallel to fourfold at 9 weeks. DNA synthesis was stimulated more than 30-fold at 3 weeks and then declined to sevenfold at 9 weeks. In contrast, the content of glycosaminoglycans and collagen per milligram of original wet slices did not vary significantly, while the number of cells increased 1.7-fold by the end of the study. The collagen phenotype of these cultures was determined by sodium dodecyl sulfate electrophoresis of recently synthesized, [3H]proline-labeled intact collagen chains and CNBr peptides. Throughout the study the major collagen synthesized was type II, ranging from 95 to 68% of the collagen synthesized at 0 and 5 weeks, respectively. Increases in the proportions of X2Y and type III collagen were first observed at 3 weeks in culture. The synthesis of type I collagen was detected only after 5 weeks in culture and never represented more than 11% of the total collagen synthesized. The synthesis of type I trimer could not be verified at any time. This study demonstrates that in vitro organ culture of articular cartilage slices allows chondrocytes to maintain the normal chondrocyte collagen phenotype of predominantly type II synthesis while stimulating their proliferation and matrix synthesis.  相似文献   

5.
Summary Collagen types II and X mRNAs have been demonstrated simultaneously in newly formed hypertrophic chondrocytes of embryonic chick vertebral cartilage using a double-fluorescence in situ hybridization technique. Digoxigenin- and biotin-labelled type-specific collagen II and X cDNA probes were used. In the embryonic chick vertebra at stage 45, two different fluorescence signals (Fluorescein isothiocyanate and Rhodamine) - one for collagen type II mRNA, the other for type X mRNA - showed differential distribution of the two collagen mRNAs in the proliferating and hypertrophic chondrocyte zones. Several layers of newly formed hypertrophic chondrocytes expressing both collagen types II and X genes were identified in the same section as two different fluorescent colour signals. Low levels of fluorescent signals for collagen type II mRNA were also detected in the hypertrophic chondrocyte zone. Cytological identification of maturing chondrocyte phenotypes, expressing collagen mRNAs, is easier in sections processed by non-radioactive in situ hybridization than in those subjected to radioactive in situ hybridization using 3H-labelled cDNA probes.This study demonstrates that double-fluorescence in situ hybridization is a useful tool for simultaneously detecting the expression of two collagen genes in the same chondrocyte population.  相似文献   

6.
Abstract

Context: During osteoarthritis (OA), chondrocytes undergo de-differentiation, resulting in the acquisition of a fibroblast-like morphology, decreased expression of collagen type II (colII) and aggrecan, and increased expression of collagen type I (colI), metalloproteinase 13 (MMP13) and nitric oxide synthase (eNOS). Notch signaling plays a crucial role during embryogenesis. Several studies showed that Notch is expressed in adulthood. Objective: The aim of our study was to confirm the involvement of Notch signaling in human OA at in vitro and ex vivo levels. Materials and methods: Normal human articular chondrocytes were cultured during four passages either treated or not with a Notch inhibitor: DAPT. Human OA cartilage was cultured with DAPT for five days. Chondrocytes secreted markers and some Notch pathway components were analyzed using Western blotting and qPCR. Results: Passaging chondrocytes induced a decrease in the cartilage markers: colII and aggrecan. DAPT-treated chondrocytes and OA cartilage showed a significant increase in healthy cartilage markers. De-differentiation markers, colI, MMP13 and eNOS, were significantly reduced in DAPT-treated chondrocytes and OA cartilage. Notch1 expression was proportional to colI, MMP13 and eNOS expression and inversely proportional to colII and aggrecan expression in nontreated cultured chondrocytes. Notch ligand: Jagged1 increased in chondrocytes culture. DAPT treatment resulted in reduced Jagged1 expression. Notch target gene HES1 increased during chondrocyte culture and was reduced when treated with DAPT. Conclusion: Targeting Notch signaling during OA might lead to the restitution of the typical chondrocyte phenotype and even to chondrocyte redifferentiation during the pathology.  相似文献   

7.
Paul D. Benya  Joy D. Shaffer 《Cell》1982,30(1):215-224
The differentiated phenotype of rabbit articular chondrocytes consists primarily of type II collagen and cartilage-specific proteoglycan. During serial monolayer culture this phenotype is lost and replaced by a complex collagen phenotype consisting predominately of type I collagen and a low level of proteoglycan synthesis. Such dedifferentiated chondrocytes reexpress the differentiated phenotype during suspension culture in firm gels of 0.5% low Tm agarose. Approximately 80% of the cells survive this transition from the flattened morphology of anchorage-dependent culture to the spherical morphology of anchorage-independent culture and then deposit characteristic proteoglycan matrix domains. The rates of proteoglycan and collagen synthesis return to those of primary chondrocytes. Using SDS-polyacrylamide gel electrophoresis of intact collagen chains and two-dimensional cyanogen bromide peptide mapping, we demonstrated a complete return to the differentiated collagen phenotype. These results emphasize the primary role of cell shape in the modulation of the chondrocyte phenotype and demonstrate a reversible system for the study of gene expression.  相似文献   

8.
BackgroundCurrent tissue engineering methods are insufficient for total joint resurfacing, and chondrocytes undergo de-differentiation when expanded on tissue culture plastic. De-differentiated chondrocytes show poor re-differentiation in culture, giving reduced glycosaminoglycan (GAG) and collagen matrix accumulation. To address this, porcine synoviocyte-derived extracellular matrix and low (5%) oxygen tension were assessed for their ability to enhance human articular chondrocyte expansion and maintain re-differentiation potential.MethodsPorcine synoviocyte matrices were devitalized using 3 non-detergent methods. These devitalized synoviocyte matrices were compared against tissue culture plastic for their ability to support human chondrocyte expansion. Expansion was further compared at both low (5%), and atmospheric (20%) oxygen tension on all surfaces. Expanded cells then underwent chondrogenic re-differentiation in aggregate culture at both low and atmospheric oxygen tension. Aggregates were assessed for their GAG and collagen content both biochemically and histologically.ResultsHuman chondrocytes expanded twice as fast on devitalized synoviocyte matrix vs. tissue culture plastic, and cells retained their re-differentiation capacity for twice the number of population doublings. There was no significant difference in growth rate between low and atmospheric oxygen tension. There was significantly less collagen type I, collagen type II, aggrecan and more MMP13 expression in cells expanded on synoviocyte matrix vs. tissue culture plastic. There were also significant effects due to oxygen tension on gene expression, wherein there was greater collagen type I, collagen type II, SOX9 and less MMP13 expression on tissue culture plastic compared to synoviocyte matrix. There was a significant increase in GAG, but not collagen, accumulation in chondrocyte aggregates re-differentiated at low oxygen tension over that achieved in atmospheric oxygen conditions.ConclusionsSynoviocyte-derived matrix supports enhanced expansion of human chondrocytes such that the chondrocytes are maintained in a state from which they can re-differentiate into a cartilage phenotype after significantly more population doublings. Also, low oxygen tension supports GAG, but not collagen, accumulation. These findings are a step towards the production of a more functional, tissue engineered cartilage.  相似文献   

9.
10.
Collagenase secretion was studied in cultures of rabbit articular chondrocytes. Differentiation of the cells was assessed by characterizing the type of 3H-labelled collagen produced during treatment with (1) conditioned media from rabbit peritoneal macrophages and human blood mononuclear cells, and (2) with retinol, a potent cartilage resorbing agent in tissue culture. Conditioned media stimulated collagenase secretion. Total collagen synthesis was reduced due to a decrease of synthesis of α1 chains; the amount of α2 chains synthesized was unchanged. This is thought to be due to a reduction in type II synthesis. Retinol did not stimulate collagenase secretion. Total collagen synthesis was reduced by retinol. α2 chain synthesis, however, was significantly increased, suggesting a switch of collagen synthesis in favor of type I collagen and, therefore, dedifferentiation. These results demonstrate that dedifferentiation of chondrocytes with respect to collagen synthesis is not necessarily associated with a stimulation of collagenase secretion.  相似文献   

11.
Induced pluripotent stem cells (iPSC) hold tremendous potential for personalized cell‐based repair strategies to treat musculoskeletal disorders. To establish human iPSCs as a potential source of viable chondroprogenitors for articular cartilage repair, we assessed the in vitro chondrogenic potential of the pluripotent population versus an iPSC‐derived mesenchymal‐like progenitor population. We found the direct plating of undifferentiated iPSCs into high‐density micromass cultures in the presence of BMP‐2 promoted chondrogenic differentiation, however these conditions resulted in a mixed population of cells resembling the phenotype of articular cartilage, transient cartilage, and fibrocartilage. The progenitor cells derived from human iPSCs exhibited immunophenotypic features of mesenchymal stem cells (MSCs) and developed along multiple mesenchymal lineages, including osteoblasts, adipocytes, and chondrocytes in vitro. The data indicate the derivation of a mesenchymal stem cell population from human iPSCs is necessary to limit culture heterogeneity as well as chondrocyte maturation in the differentiated progeny. Moreover, as compared to pellet culture differentiation, BMP‐2 treatment of iPSC‐derived MSC‐like (iPSC–MSC) micromass cultures resulted in a phenotype more typical of articular chondrocytes, characterized by the enrichment of cartilage‐specific type II collagen (Col2a1), decreased expression of type I collagen (Col1a1) as well as lack of chondrocyte hypertrophy. These studies represent a first step toward identifying the most suitable iPSC progeny for developing cell‐based approaches to repair joint cartilage damage. J. Cell. Biochem. 114: 480–490, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

12.
Rabbit chondrocytes were cultivated in vitro using the collagen/hyaluronan membrane. The membrane did not show any adverse effects on chondrocyte viability during in vitro cultivation. The inoculated cells grew without any negative changes. According to the histochemical analyses: (i) hematoxylin and eosin; (ii) safranin O; and (iii) rabbit anti-human collagen type II staining, the rabbit chondrocytes maintained their morphology and phenotype during in vitro cultivation. The collagen/hyaluronan membrane became more stable and stiffer after long time cultivation. The proliferation of the chondrocytes stabilised the structure of the membrane. The collagen/hyaluronan membrane is suitable material for the chondrocyte growth and could provide functional tissue-engineered scaffold for cartilage repair.  相似文献   

13.
Chondrocytes, the only cell type present in articular cartilage, regulate tissue homeostasis by a fine balance of metabolism that includes both anabolic and catabolic activities. Therefore, the biology of chondrocytes is critical for understanding cartilage metabolism. One major limitation when studying primary chondrocytes in culture is their loss of phenotype. To overcome this hurdle, limited attempts have been made to develop human chondrocyte cell lines that retain the phenotype for use as a good surrogate model. In this study, we report a novel approach to the establishment and characterization of human articular cartilage‐derived chondrocyte cell lines. Adenoviral infection followed by culture of chondrocytes in 3‐dimensional matrix within 48 h post‐infection maintained the phenotype prior to clonal selection. Cells were then placed in culture either as monolayer, or in 3‐dimensional matrix of alginate or agarose. The clones were characterized by their basal gene expression profile of chondrocyte markers. Based on type II collagen expression, 21 clones were analyzed for gene expression following treatment with IL‐1 or BMP‐7 and compared to similarly stimulated primary chondrocytes. This resulted in selection of two clones that retained the chondrocyte phenotype as evidenced by expression of type II collagen and other extra‐cellular matrix molecules. In addition, one clone (AL‐4‐17) showed similar responses as primary chondrocytes when treated with IL‐1 or BMP‐7. In summary, this report provides a novel procedure to develop human articular cartilage‐derived chondrocyte cell lines, which preserve important characteristics of articular chondrocytes and represent a useful model to study chondrocyte biology. J. Cell. Physiol. 222: 695–702, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

14.
Loss of cartilaginous phenotype during in vitro expansion culture of chondrocytes is a major barrier to the application of chondrocytes for tissue engineering. In previous study, we showed that dedifferentiation of chondrocytes during the passage culture was delayed by matrices formed by primary chondrocytes (P0‐ECM). In this study, we investigated bovine chondrocyte functions when being cultured on isolated extracellular matrix (ECM) protein‐coated substrata and P0‐ECM. Low chondrocyte attachment was observed on aggrecan‐coated substratum and P0‐ECM. Cell proliferation on aggrecan‐ and type II collagen/aggrecan‐coated substrata and P0‐ECM was lower than that on the other ECM protein (type I collagen and type II collagen)‐coated substrata. When chondrocytes were subcultured on aggrecan‐coated substratum, decline of cartilaginous gene expression was delayed, which was similar to the cells subcultured on P0‐ECM. These results indicate that aggrecan plays an important role in the regulation of chondrocyte functions and P0‐ECM may be a good experimental control for investigating the role of each ECM protein in cartilage ECM. © 2013 American Institute of Chemical Engineers Biotechnol. Prog., 29:1331–1336, 2013  相似文献   

15.
This is a study of the regulation of human articular chondrocyte proliferation by transforming growth factor β (TGFβ) and interleukin-1β (IL-1β) in vitro. Human articular chondrocytes were cultured at different cell densities on plastic and on a collagen substratum, in the presence and absence of serum. The effects TGFβ amd IL-1β on proliferation of chondrocytes, as determined by [3H]thymidine incorporation, under these conditions of culture were examined. TGFβ was found to have both stimulatory and inhibitory effects on chondrocytes in vitro. Interactions between TGFβ and growth factors present in serum influence the modulation of chondrocyte proliferation by TGFβ. IL-1β caused a significant reduction of the TGFβ-stimulated increase in chondrocyte proliferation. The complex inter-relationships between TGFβ and IL-1β on chondrocytes have implications for cartilage repair.  相似文献   

16.
The in vitro phenotype of bovine articular chondrocytes is described. Chondrocytes plated at high density in roller-bottle and dish cultures were maintained in vitro. The major matrix macromolecules, collagen and proteoglycan, synthesized by these cells were characterized during the course of the culture period. The chondrocytes synthesized mainly Type II collagen, which was found predominantly in the cell-associated matrix. The media contained a mixture of Type II and Type III collagens. Type I collagen was detectable in neither the medium nor the cell-associated matrix. The proteoglycan monomers found in media and cell-associated matrix had the same hydrodynamic sizes as monomers synthesized by cartilage slices or those extracted from adult articular cartilage. The majority of proteoglycans synthesized by the cells were found in high molecular weight aggregates which were readily recovered from the media and were extractable from cell-associated matrix with low ionic strength buffers. The results demonstrate the long-term in vitro phenotypic stability of the bovine articular chondrocytes. The advantages of the in vitro system as a model for studying the effects of external agents, such as drugs and vitamins, are discussed.  相似文献   

17.
The effects of the sulfate- and FCS concentration on the rate of synthesis and the biochemical properties of glycosaminoglycans, synthesized in bovine articular cartilage in vitro, were studied. 20% FCS in the culture medium stimulated the rate of synthesis. In media without FCS, the rate of synthesis decends from day 0 on. The differences in incorporation rates of [35S]-sodium sulfate and 1,6-[3H]-glucosamine-HCl into glycosaminoglycans in serum free media containing 9 microM and 900 microM sulfate were used to discuss the inorganic sulfate concentration in cartilage. In 9 microM sulfate medium, the newly synthesized glycosaminoglycans contain higher levels of unsulfated disaccharides than the endogenous glycosaminoglycans. In each culture medium, the ratio 6-sulfated disaccharides to 4-sulfated disaccharides of the newly synthesized glycosaminoglycans becomes higher after 3 days in culture. The glycosaminoglycan synthesis is underestimated, when chondrocytes are cultured in media containing less than 200 microM sulfate.  相似文献   

18.
19.
Normal chondrocytes are targets for natural killer (NK) cells. Since the mechanism of this phenomenon remains unknown, the present study was aimed at testing whether it is associated with chondrocyte-specific phenotype defined as ability of cartilage cells to produce sulfated glycosaminoglycans (GAG) and express collagen II and aggrecan mRNA. Lysis of rat epiphyseal chondrocytes by syngeneic spleen mononuclear cells (SMCs) was evaluated by 51Cr-release assay. Loss of chondrocyte phenotype following long-term culture resulted in their decreased susceptibility to lysis. Similar effect was also observed after suppression of chondrocyte phenotype by TNF. On the other hand, stimulation of cartilage-specific matrix component synthesis by IGF-1 resulted in increased chondrocyte killing and exogenous chondroitin sulfate A stimulated NK cell-mediated cytotoxicity against chondrocytes and human K562 cells. This suggests that chondrocyte susceptibility to lysis by NK cells depends on chondrocyte-specific phenotype, especially sulfated GAG production.  相似文献   

20.
Mutations in the SO42−/Cl/OH exchanger Slc26a2 cause the disease diastrophic dysplasia (DTD), resulting in aberrant bone development and, therefore, skeletal deformities. DTD is commonly attributed to a lack of chondrocyte SO42− uptake and proteoglycan sulfation. However, the skeletal phenotype of patients with DTD is typified by reduction in cartilage and osteoporosis of the long bones. Chondrocytes of patients with DTD are irregular in size and have a reduced capacity for proliferation and terminal differentiation. This raises the possibility of additional roles for Slc26a2 in chondrocyte function. Here, we examined the roles of Slc26a2 in chondrocyte biology using two distinct systems: mouse progenitor mesenchymal cells differentiated to chondrocytes and freshly isolated mouse articular chondrocytes differentiated into hypertrophic chondrocytes. Slc26a2 expression was manipulated acutely by delivery of Slc26a2 or shSlc26a2 with lentiviral vectors. We demonstrate that slc26a2 is essential for chondrocyte proliferation and differentiation and for proteoglycan synthesis. Slc26a2 also regulates the terminal stage of chondrocyte cell size expansion. These findings reveal multiple roles for Slc26a2 in chondrocyte biology and emphasize the importance of Slc26a2-mediated protein sulfation in cell signaling, which may account for the complex phenotype of DTD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号