首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
SUMMARY: Insertional mutagenesis is a powerful method for gene discovery. To identify the location of insertion sites in the genome linker based polymerase chain reaction (PCR) methods (such as splinkerette-PCR) may be employed. We have developed a web application called iMapper (Insertional Mutagenesis Mapping and Analysis Tool) for the efficient analysis of insertion site sequence reads against vertebrate and invertebrate Ensembl genomes. Taking linker based sequences as input, iMapper scans and trims the sequence to remove the linker and sequences derived from the insertional mutagen. The software then identifies and removes contaminating sequences derived from chimeric genomic fragments, vector or the transposon concatamer and then presents the clipped sequence reads to a sequence mapping server which aligns them to an Ensembl genome. Insertion sites can then be navigated in Ensembl in the context of genomic features such as gene structures. iMapper also generates test-based format for nucleic acid or protein sequences (FASTA) and generic file format (GFF) files of the clipped sequence reads and provides a graphical overview of the mapped insertion sites against a karyotype. iMapper is designed for high-throughput applications and can efficiently process thousands of DNA sequence reads. AVAILABILITY: iMapper is web based and can be accessed at http://www.sanger.ac.uk/cgi-bin/teams/team113/imapper.cgi.  相似文献   

3.
Kinetics of intermolecular cleavage by hammerhead ribozymes.   总被引:30,自引:0,他引:30  
M J Fedor  O C Uhlenbeck 《Biochemistry》1992,31(48):12042-12054
The hammerhead catalytic RNA effects cleavage of the phosphodiester backbone of RNA through a transesterification mechanism that generates products with 2'-3'-cyclic phosphate and 5'-hydroxyl termini. A minimal kinetic mechanism for the intermolecular hammerhead cleavage reaction includes substrate binding, cleavage, and product release. Elemental rate constants for these steps were measured with six hammerhead sequences. Changes in substrate length and sequence had little effect on the rate of the cleavage step, but dramatic differences were observed in the substrate dissociation and product release steps that require helix-coil transitions. Rates of substrate binding and product dissociation correlated well with predictions based on the behavior of simple RNA duplexes, but substrate dissociation rates were significantly faster than expected. Ribozyme and substrate alterations that eliminated catalytic activity increased the stability of the hammerhead complex. These results suggest that substrate destabilization may play a role in hammerhead catalysis.  相似文献   

4.
The hammerhead ribozyme is a small, intensively studied catalytic RNA, and has been used as a prototype for understanding how RNA catalysis works. In 2003, the importance of a set of tertiary contacts that appear in natural sequences of the hammerhead RNA was finally understood. The presence of these contact regions in stems I and II in 'full-length hammerhead ribozymes' is accompanied by an up to 1000-fold catalytic rate enhancement, indicating a profound structural effect upon the active site. Although the new structure resolved most of what appeared to be irreconcilable differences with mechanistic studies in solution, it did so in a way that is simultaneously reconcilable with earlier crystallographic mechanistic studies, within the limits imposed by the truncated sequence of the minimal hammerhead. Here we present an analysis of the correspondence between the full-length and minimal hammerhead crystal structures, using adiabatic morphing calculations that for the first time test the hypothesis that the minimal hammerhead structure occasionally visits the active conformation, both in solution and in the crystalline state in a sterically allowed manner, and argue that this is the simplest hypothesis that consistently explains all of the experimental observations.  相似文献   

5.
A new class of ribozymes produce 2',3'-cyclic phosphate upon self-catalyzed cleavage of RNA molecules, similar to those observed during enzymatic (RNase-catalyzed) as well as non-enzymatic hydrolyses of RNAs. This product suggests that the reaction intermediate/transition state is a pentacoordinated oxyphosphorane. In order to elucidate the energetics of these RNA cleaving reactions, the reaction coordinate has been simulated and a pentacoordinated intermediate has been characterized via ab initio molecular orbital calculations utilizing the dianionic hydrolysis-intermediate of methyl ethylene phosphate as a model compound. The calculated reaction coordinate indicates that the transition state for the P-O(2') bond cleavage is lower in energy than that for the P-O(5') bond cleavage under uncatalyzed conditions. Thus, the dianionic pentacoordinated phosphorus intermediate tends to revert back to the starting RNA by cleaving the P-O(2') bond rather than productively cleaving the P-O(5') bond. In order for ribozymes to effectively cleave RNA molecules, it is therefore mandatory to stabilize the leaving 5'-oxygen, e.g. by means of a divalent magnesium ion.  相似文献   

6.
In Phaseolus vulgaris L. (French bean) glutamine synthetase (GS) is encoded by four closely-related genes termed gln-alpha, gln-beta, gln-gamma and gln-delta. We have constructed and characterised in vitro a number of hammerhead ribozymes designed to cleave individual RNAs encoded by these genes. The three ribozymes, termed J1, J2 and J3, were targeted to cleave RNA at the start of the gamma and beta, and the middle of the gamma, GS open reading frames respectively. All three ribozymes successfully discriminated between the four (alpha, beta, gamma and delta) highly homologous sequences, even though the targeted sites of cleavage shared up to 18 out of 22 identical bases with other gene family members. The ribozyme-mediated cleavage reactions were Mg2+ dependent and enhanced at higher temperatures, although the J1 ribozyme retained considerable activity at physiological temperatures. Both J1 and J2 demonstrated a time-dependent cleavage of their targeted GS RNAs, although these two ribozymes differed markedly in their ability to cleave multiple substrate molecules. The rate of cleavage by J1 was found to be reduced in the presence of related GS RNAs and by total leaf poly(A) RNAs. The implications of these results for ribozyme activity in vivo are discussed.  相似文献   

7.
8.
9.
Recently, hammerhead ribozyme-mediated cleavage was analyzed as a function of the concentration of La3+ ions in the presence of a fixed concentration of Mg2+ ions so that the role could be monitored of metal ions that are directly involved in the cleavage reaction. The resultant bell-shaped curve for activation of cleavage was used to support the proposed double-metal-ion mechanism of catalysis. However, other studies demonstrated that binding of a metal ion to the pro-Rp oxygen (P9 oxygen) of the phosphate moiety of nucleotide A9 and N7 of nucleotide G10.1 is critical for efficient catalysis. In order to clarify the effect of this metal ion, we chemically synthesized hammerhead ribozyme (7-deaza-R34) that included a minimal modification, namely, an N7-deazaguanine residue in place of G10.1.  相似文献   

10.
RNA substrates which form relatively short helices I and III with hammerhead ribozymes are generally cleaved more rapidly than substrates which create longer binding helices. We speculated that for optimum cleavage rates, one of the helices needed to be relatively weak. To identify this helix, a series of ribozymes and substrates of varying lengths were made such that in the complex, helices I and III consisted of 5 and 10 bp respectively or vice versa. In two independent systems, substrates in the complexes with the shorter helix I and longer helix III were cleaved one to two orders of magnitude more rapidly than those in the complexes with the longer helix I and shorter helix III. Similar results were obtained whether the numbers of base pairs in helices I and III were limited either by the length of the hybridizing arms of the ribozyme or the length of the substrate. The phenomenon was observed for both all-RNA and DNA armed ribozymes. Thus, a relatively short helix I is required for fast cleavage rates in pre-formed hammer-head ribozyme-substrate complexes. When helix III has 10 bp, the optimum length for helix I is approximately 5 bp.  相似文献   

11.
With the eventual goal of developing a treatment for chronic myelogenous leukemia (CML), attempts have been made to design hammerhead ribozymes that can specifically cleave BCR-ABL fusion mRNA. In the case of L6 BCR-ABL fusion mRNA (b2a2 type; BCR exon 2 is fused to ABL exon 2), which has no effective cleavage sites for conventional hammerhead ribozymes near the BCR-ABL junction, it has proved very difficult to cleave the chimeric mRNA specifically. Several hammerhead ribozymes with relatively long junction-recognition sequences have poor substrate-specificity. Therefore, we explored the possibility of using newly selected DNA enzymes that can cleave RNA molecules with high activity to cleave L6 BCR-ABL fusion (b2a2) mRNA. In contrast to the results with the conventional ribozymes, the newly designed DNA enzymes, having higher flexibility for selection of cleavage sites, were able to cleave this chimeric RNA molecule specifically at sites close to the junction. Cleavage occurred only within the abnormal BCR-ABL mRNA, without any cleavage of the normal ABL or BCR mRNA. Thus, these chemically synthesized DNA enzymes seem to be potentially useful for application in vivo , especially for the treatment of CML, if we can develop exogenous delivery strategies.  相似文献   

12.
Hormes R  Sczakiel G 《Biochimie》2002,84(9):897-903
The structure and function of small complexes formed between trans-cleaving hammerhead ribozymes and their substrates are being intensely studied in vitro. Conversely, target strands for hammerhead ribozymes in living cells are usually much longer, and cleavage kinetics in vitro of long substrates are usually approximately 100-fold slower. However, on the mechanistic level, not much is known about the influence of substrate length on cleavage kinetics. Here, we describe the influence of the length of the substrate strand on cleavage kinetics in vitro of two trans-cleaving hammerhead ribozymes. Progressive extension of the 3' end of the substrate decreases cleavage kinetics in a length-dependent manner. A six-nucleotide protruding 3' end of helix I is related to a decrease of the cleavage rate by one order of magnitude. Extension of the 5' end of the substrate shows a more complex relationship of the length-related decrease of cleavage activity. Decreased cleavage activity can be compensated by increased magnesium concentrations. An explanation of this finding does not seem to include major influences of the extended substrate on the thermal stability or the global structural arrangement of the three double-strand helices of the hammerhead structure. We hypothesize that long-range influences between the termini of the substrate strand and the catalytic centre could be responsible for decreased cleavage rates.  相似文献   

13.
Peña C  Malm T 《PloS one》2012,7(6):e39071
There is an ever growing number of molecular phylogenetic studies published, due to, in part, the advent of new techniques that allow cheap and quick DNA sequencing. Hence, the demand for relational databases with which to manage and annotate the amassing DNA sequences, genes, voucher specimens and associated biological data is increasing. In addition, a user-friendly interface is necessary for easy integration and management of the data stored in the database back-end. Available databases allow management of a wide variety of biological data. However, most database systems are not specifically constructed with the aim of being an organizational tool for researchers working in phylogenetic inference. We here report a new software facilitating easy management of voucher and sequence data, consisting of a relational database as back-end for a graphic user interface accessed via a web browser. The application, VoSeq, includes tools for creating molecular datasets of DNA or amino acid sequences ready to be used in commonly used phylogenetic software such as RAxML, TNT, MrBayes and PAUP, as well as for creating tables ready for publishing. It also has inbuilt BLAST capabilities against all DNA sequences stored in VoSeq as well as sequences in NCBI GenBank. By using mash-ups and calls to web services, VoSeq allows easy integration with public services such as Yahoo! Maps, Flickr, Encyclopedia of Life (EOL) and GBIF (by generating data-dumps that can be processed with GBIF's Integrated Publishing Toolkit).  相似文献   

14.
Self-cleaving infectious RNAs found in many plant viruses and viroids can also cleave intrans and form hammerhead type secondary structure. It has been observed that the cleavage site must contain the triplet GUC. Also, in other cases, the sequence XUY holds good where X = A, C, G, U and Y = A, C, U but not G. The high electronegative nature of guanosine holds the key to its resistance to cleavage which does not allow hybrid formation between the ribozyme and substrate strands. Guanosine resistance to cleavage might have been the starting thrust for the evolution of a translational initiation codon from XUG. A hypothesis is proposed in this regard and its evolutionary consequences are discussed briefly. Presented at the National Symposium on Evolution of Life.  相似文献   

15.
Engineered zinc-finger nucleases (ZFNs) are promising tools for genome manipulation, and determining off-target cleavage sites of these enzymes is of great interest. We developed an in vitro selection method that interrogates 10(11) DNA sequences for cleavage by active, dimeric ZFNs. The method revealed hundreds of thousands of DNA sequences, some present in the human genome, that can be cleaved in vitro by two ZFNs: CCR5-224 and VF2468, which target the endogenous human CCR5 and VEGFA genes, respectively. Analysis of identified sites in one cultured human cell line revealed CCR5-224-induced changes at nine off-target loci, though this remains to be tested in other relevant cell types. Similarly, we observed 31 off-target sites cleaved by VF2468 in cultured human cells. Our findings establish an energy compensation model of ZFN specificity in which excess binding energy contributes to off-target ZFN cleavage and suggest strategies for the improvement of future ZFN design.  相似文献   

16.
17.

Background

While next-generation sequencing technologies have made sequencing genomes faster and more affordable, deciphering the complete genome sequence of an organism remains a significant bioinformatics challenge, especially for large genomes. Low sequence coverage, repetitive elements and short read length make de novo genome assembly difficult, often resulting in sequence and/or fragment “gaps” – uncharacterized nucleotide (N) stretches of unknown or estimated lengths. Some of these gaps can be closed by re-processing latent information in the raw reads. Even though there are several tools for closing gaps, they do not easily scale up to processing billion base pair genomes.

Results

Here we describe Sealer, a tool designed to close gaps within assembly scaffolds by navigating de Bruijn graphs represented by space-efficient Bloom filter data structures. We demonstrate how it scales to successfully close 50.8 % and 13.8 % of gaps in human (3 Gbp) and white spruce (20 Gbp) draft assemblies in under 30 and 27 h, respectively – a feat that is not possible with other leading tools with the breadth of data used in our study.

Conclusion

Sealer is an automated finishing application that uses the succinct Bloom filter representation of a de Bruijn graph to close gaps in draft assemblies, including that of very large genomes. We expect Sealer to have broad utility for finishing genomes across the tree of life, from bacterial genomes to large plant genomes and beyond. Sealer is available for download at https://github.com/bcgsc/abyss/tree/sealer-release.

Electronic supplementary material

The online version of this article (doi:10.1186/s12859-015-0663-4) contains supplementary material, which is available to authorized users.  相似文献   

18.

Background

microRNAs act as regulators of gene expression interacting with their gene targets. Current bioinformatics services, such as databases of validated miRNA-target interactions and prediction tools, usually provide interactions without any information about what tissue that interaction is more likely to appear nor information about the type of interactions, causing mRNA degradation or translation inhibition respectively.

Results

In this work, we introduce miRTissue, a web application that combines validated miRNA-target interactions with statistical correlation among expression profiles of miRNAs, genes and proteins in 15 different human tissues. Validated interactions are taken from the miRTarBase database, while expression profiles are downloaded from The Cancer Genome Atlas repository. As a result, the service provides a tissue-specific characterisation of each couple of miRNA and gene together with its statistical significance (p-value). The inclusion of protein data also allows providing the type of interaction. Moreover, miRTissue offers several views for analysing interactions, focusing for example on the comparison between different cancer types or different tissue conditions. All the results are freely downloadable in the most common formats.

Conclusions

miRTissue fills a gap concerning current bioinformatics services related to miRNA-target interactions because it provides a tissue-specific context to each validated interaction and the type of interaction itself. miRTissue is easily browsable allowing the user to select miRNAs, genes, cancer types and tissue conditions. The results can be sorted according to p-values to immediately identify those interactions that are more likely to occur in a given tissue. miRTissue is available at http://tblab.pa.icar.cnr.it/mirtissue.html.
  相似文献   

19.
The effects of various metal ions on cleavage activity and global folding have been studied in the extended Schistosoma hammerhead ribozyme. Fluorescence resonance energy transfer was used to probe global folding as a function of various monovalent and divalent metal ions in this ribozyme. The divalent metals ions Ca2+, Mg2+, Mn2+, and Sr2+ have a relatively small variation (less than sixfold) in their ability to globally fold the hammerhead ribozyme, which contrasts with the very large difference (>10,000-fold) in apparent rate constants for cleavage for these divalent metal ions in single-turnover kinetic experiments. There is still a very large range (>4600-fold) in the apparent rate constants for cleavage for these divalent metal ions measured in high salt (2 M NaCl) conditions where the ribozyme is globally folded. These results demonstrate that the identity of the divalent metal ion has little effect on global folding of the Schistosoma hammerhead ribozyme, whereas it has a very large effect on the cleavage kinetics. Mechanisms by which the identity of the divalent metal ion can have such a large effect on cleavage activity in the Schistosoma hammerhead ribozyme are discussed.  相似文献   

20.

Background

Flux balance analysis (FBA) is a widely-used method for analyzing metabolic networks. However, most existing tools that implement FBA require downloading software and writing code. Furthermore, FBA generates predictions for metabolic networks with thousands of components, so meaningful changes in FBA solutions can be difficult to identify. These challenges make it difficult for beginners to learn how FBA works.

Results

To meet this need, we present Escher-FBA, a web application for interactive FBA simulations within a pathway visualization. Escher-FBA allows users to set flux bounds, knock out reactions, change objective functions, upload metabolic models, and generate high-quality figures without downloading software or writing code. We provide detailed instructions on how to use Escher-FBA to replicate several FBA simulations that generate real scientific hypotheses.

Conclusions

We designed Escher-FBA to be as intuitive as possible so that users can quickly and easily understand the core concepts of FBA. The web application can be accessed at https://sbrg.github.io/escher-fba.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号