首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Plant disease resistance gene (R gene) and defense response gene encode some conserved motifs. In the present work, a PCR strategy was used to clone resistance gene analogs (RGAs) and defense gene analogs (DGAs) from Sea-island cotton variety Hai7124 using oligonucleotide primers based on the nucleotide-binding site (NBS) and serine/threonine kinase (STK) in the R-gene and pathogenesis-related proteins of class 2 (PR2) of defense response gene. 79 NBS sequences, 21 STK sequences and 11 DGAs were cloned from disease-resistance cotton. Phylogenic analysis of 79 NBS-RGAs and NBS-RGAs nucleotide sequences of cotton already deposited in GenBank identified one new sub-cluster. The deduced amino acid sequences of NBS-RGAs and STK-RGAs were divided into two distinct groups respectively: Toll/Interleukin-1 receptor (TIR) group and non-TIR group, A group and B group. The expression of RGAs and DGAs having consecutive open reading frame (ORF) was also investigated and it was found that 6 NBS-RGAs and 1 STK-RGA were induced, and 1 DGA was up-regulated by infection of Verticillium dahliae strain VD8. 4 TIR-NBS-RGAs and 4 non-TIR-NBS-RGAs were arbitrarily used as probes for Southern-blotting. There existed 2–10 blotted bands. In addition, since three non-TIR-NBS-RGAs have the same hybridization pattern, we conjecture that these three RGAs form a cluster distribution in the genome.  相似文献   

2.
Plant disease resistance gene (R gene) and defense response gene encode some con-served motifs. In the present work,a PCR strategy was used to clone resistance gene analogs (RGAs) and defense gene analogs (DGAs) from Sea-island cotton variety Hai7124 using oligonucleotide primers based on the nucleotide-binding site (NBS) and serine/threonine kinase (STK) in the R-gene and pathogenesis-related proteins of class 2 (PR2) of defense response gene. 79 NBS sequences,21 STK sequences and 11 DGAs were cloned from disease-resistance cotton. Phylogenic analysis of 79 NBS-RGAs and NBS-RGAs nucleotide sequences of cotton already deposited in GenBank identified one new sub-cluster. The deduced amino acid sequences of NBS-RGAs and STK-RGAs were divided into two distinct groups respectively: Toll/Interleukin-1 receptor (TIR) group and non-TIR group,A group and B group. The expression of RGAs and DGAs having consecutive open reading frame (ORF) was also investigated and it was found that 6 NBS-RGAs and 1 STK-RGA were induced,and 1 DGA was up-regulated by infection of Verticillium dahliae strain VD8. 4 TIR-NBS-RGAs and 4 non-TIR-NBS-RGAs were arbitrarily used as probes for Southern-blotting. There existed 2-10 blotted bands. In addition,since three non-TIR-NBS-RGAs have the same hybridization pattern,we conjecture that these three RGAs form a cluster distribution in the genome.  相似文献   

3.
为研究云南野生蔷薇属中的NBS类抗病基因,根据已知抗病基因NBS LRR序列中的保守区域设计简并引物,利用RT PCR技术从云南悬钩子蔷薇中进行体外扩增,获得了对应区域的cDNA片段,回收、克隆这些特异片段,测序分析,共得到4个含有NBS LRR保守结构域的抗病基因同源序列(RGAs),分别命名为AC9、AC39、AC50和AC68。它们与已报道的11个NBS类抗病基因相应区段的氨基酸序列相似性为5.4%~79.2%,其中这4个RGAs片段与Mi、RPS2、Pib和RPM1基因聚为一类。表明这4条RGAs序列可进一步用作悬钩子蔷薇抗病候选基因的分子筛选及遗传图谱的构建。  相似文献   

4.
为研究云南野生蔷薇属中的NBS类抗病基因,根据已知抗病基因NBSLRR序列中的保守区域设计简并引物,利用RTPCR技术从云南悬钩子蔷薇中进行体外扩增,获得了对应区域的cDNA片段,回收、克隆这些特异片段,测序分析,共得到4个含有NBSLRR保守结构域的抗病基因同源序列(RGAs),分别命名为AC9、AC39、AC50和AC68。它们与已报道的11个NBS类抗病基因相应区段的氨基酸序列相似性为5.4%~79.2%,其中这4个RGAs片段与Mi、RPS2、Pib和RPM1基因聚为一类。表明这4条RGAs序列可进一步用作悬钩子蔷薇抗病候选基因的分子筛选及遗传图谱的构建。  相似文献   

5.
Disease resistance and defence gene analog (RGA/DGA) sequences were isolated in cocoa using a PCR approach with degenerate primers designed from conserved domains of plant resistance and defence genes: the NBS (nucleotide binding site) motif present in a number of resistance genes such as the tobacco N, sub-domains of plant serine/threonine kinases such as the Pto tomato gene, and conserved domains of two defence gene families: pathogenesis-related proteins (PR) of classes 2 and 5. Nucleotide identity between thirty six sequences isolated from cocoa and known resistance or defence genes varied from 58 to 80%. Amino acid sequences translated from corresponding coding sequences produced sequences without stop codons, except for one NBS –like sequence. Most of the RGAs could be mapped on the cocoa genome and three clusters of genes could be observed : NBS-like sequences clustered in two regions located on chromosomes 7 and 10, Pto-like sequences mapped in five genome regions of which one, located on chromosome 4, corresponded to a cluster of five different sequences. PR2-like sequences mapped in two regions located on chromosome 5 and 9 respectively. An enrichment of the genetic map with microsatellite markers allowed us to identify several co-localisations of RGAs, DGAs and QTL for resistance to Phytophthora detected in several progenies, particularly on chromosome 4 where a cluster of Pto-like sequences and 4 QTL for resistance to Phytophthora were observed. Many other serious diseases affect cocoa and the candidate genes, isolated in this study, could be of broader interest in cocoa disease management.  相似文献   

6.
Western white pine (Pinus monticola Dougl. ex. D. Don., WWP) shows genetic variation in disease resistance to white pine blister rust (Cronartium ribicola). Most plant disease resistance (R) genes encode proteins that belong to a superfamily with nucleotide-binding site domains (NBS) and C-terminal leucine-rich repeats (LRR). In this work a PCR strategy was used to clone R gene analogs (RGAs) from WWP using oligonucleotide primers based on the conserved sequence motifs in the NBS domain of angiosperm NBS-LRR genes. Sixty-seven NBS sequences were cloned from disease-resistant trees. BLAST searches in GenBank revealed that they shared significant identity to well-characterized R genes from angiosperms, including L and M genes from flax, the tobacco N gene and the soybean gene LM6. Sequence alignments revealed that the RGAs from WWP contained the conserved motifs identified in angiosperm NBS domains, especially those motifs specific for TIR-NBS-LRR proteins. Phylogenic analysis of plant R genes and RGAs indicated that all cloned WWP RGAs can be grouped into one major branch together with well-known R proteins carrying a TIR domain, suggesting they belong to the subfamily of TIR-NBS-LRR genes. In one phylogenic tree, WWP RGAs were further subdivided into fourteen clusters with an amino acid sequence identity threshold of 75%. cDNA cloning and RT-PCR analysis with gene-specific primers demonstrated that members of 10 of the 14 RGA classes were expressed in foliage tissues, suggesting that a large and diverse NBS-LRR gene family may be functional in conifers. These results provide evidence for the hypothesis that conifer RGAs share a common origin with R genes from angiosperms, and some of them may play important roles in defense mechanisms that confer disease resistance in western white pine. Ratios of non-synonymous to synonymous nucleotide substitutions (Ka/Ks) in the WWP NBS domains were greater than 1 or close to 1, indicating that diversifying selection and/or neutral selection operate on the NBS domains of the WWP RGA family.Communicated by R. Hagemann  相似文献   

7.
植物抗病基因同源序列及其在抗病基因克隆与定位中的应用   总被引:37,自引:0,他引:37  
近10年来已有20多个植物抗病基因被克隆,测序,这些抗病基因所编码的蛋白中大多含有核苷酸结合位点,富含亮氨酸重复序列,蛋白激酶,亮氨酸拉链结构,跨膜结构域,Toll白介素-1区域等保守结构域。利用这些保守结构域合成PCR引物,已扩增出大量的植物抗病基因同源序列(RGA)。对RGA与抗病基因的关系进行了分析,讨论了RGA在研究抗病基因进化中的作用,指出RGA在抗病基因定位和转基因中具有重要意义。  相似文献   

8.
In crop improvement, the isolation, cloning and transfer of disease resistance genes (R-genes) is an ultimate goal usually starting from tentative R-gene analogs (RGAs) that are identified on the basis of their structure. For bread wheat, recent advances in genome sequencing are supporting the efforts of wheat geneticists worldwide. Among wheat R-genes, nucleotide-binding site (NBS)-encoding ones represent a major class. In this study, we have used a polymerase chain reaction-based approach to amplify and clone NBS-type RGAs from a bread wheat cultivar, ‘Salambo 80.’ Four novel complete ORF sequences showing similarities to previously reported R-genes/RGAs were used for in silico analyses. In a first step, where analyses were focused on the NBS domain, these sequences were phylogenetically assigned to two distinct groups: a first group close to leaf rust Lr21 resistance proteins; and a second one similar to cyst nematode resistance proteins. In a second step, sequences were used as initial seeds to walk up and downstream the NBS domain. This procedure enabled identifying 8 loci ranging in size between 2,115 and 7,653 bp. Ab initio gene prediction identified 8 gene models, among which two had complete ORFs. While GenBank survey confirmed the belonging of sequences to two groups, subsequent characterization using IWGSC genomic and proteomic data showed that the 8 gene models, reported in this study, were unique and their loci matched scaffolds on chromosome arms 1AS, 1BS, 4BS and 1DS. The gene model located on 1DS is a pseudo-Lr21 that was shown to have an NBS-LRR domain structure, while the potential association of the RGAs, here reported, is discussed. This study has produced novel R-gene-like loci and models in the wheat genome and provides the first steps toward further elucidation of their role in wheat disease resistance.  相似文献   

9.
Primers based on the conserved motifs were used to isolate nucleotide-binding sites (NBS) type sequences in taro (Colocasia esculenta). Cloning and sequencing identified three taro NBS-type sequences called resistance gene analogues (RGAs) that depicted similarity to other cloned RGA sequences. The deduced amino acid sequences of the RGAs detected the presence of conserved domains, viz. P-loop, categorising them with the NBS–leucine-rich repeat class gene family. Phylogenetic characterisation of the taro RGAs along with RGAs of other plant species grouped them with the non-toll interleukin receptor subclasses of the NBS sequences. The isolation and characterisation of taro RGAs have been reported for the first time in this study. This will provide a starting point towards characterisation of candidate resistance genes in taro and can act as a reference guide for future studies.  相似文献   

10.
Conserved domains or motifs shared by most known resistance (R) genes have been extensively exploited to identify unknown R-gene analogs (RGAs). In an attempt to isolate all potential RGAs from the maize genome, we adopted the following three methods: modified amplified fragment length polymorphism (AFLP), modified rapid amplification of cDNA ends (RACE), and data mining. The first two methods involved PCR-based isolations of RGAs with degenerate primers designed based on the conserved NBS domain; while the third method involved mining of RGAs from the maize EST database using full-length R-gene sequences. A total of 23 and 12 RGAs were obtained from the modified AFLP and RACE methods, respectively; while, as many as 109 unigenes and 77 singletons with high homology to known R-genes were recovered via data-mining. Moreover, R-gene-like ESTs (or RGAs) identified from the data-mining method could cover all RACE-derived RGAs and nearly half AFLP-derived RGAs. Totally, the three methods resulted in 199 non-redundant RGAs. Of them, at least 186 were derived from putative expressed R-genes. RGA-tagged markers were developed for 55 unique RGAs, including 16 STS and 39 CAPS markers.  相似文献   

11.
Nucleotide Binding Site/Leucine-Rich Repeat (NBS-LRR) and Serine/Threonine Kinase (STK) genes are two of the known classes of resistance (R-) genes in plants, and occur in large multigene families. Systematic identification of genes for NBS-LRRs and STKs provides a means of access to genomic regions that may be involved in disease resistance. Here we present a picture of these two families of R-gene analogs (RGAs) in grape with the aim of developing a set of resistance-related sequence-tagged-site (STS) markers. One hundred and three NBS-LRR sequences were isolated. They included members of the CC (coiled-coil) and TIR (Toll-interleukin receptor) sub-classes. A comparative analysis with other angiosperm NBSs is provided. Fifty-three genes for receptor-like kinases (RLKs) with serine/threonine specificity were identified. RLK sequences formed a putative monophyletic group within the kinase superfamily. They were similar to both cytoplasmic RLKs, such as Pto, and RLKs with LRR, S-locus, lectin-like and thaumatin-like extracellular binding-domains. The latter resembled the products of the R-related genes Xa21, FLS2, Rlk10, SFR2, and PR5K. Forty-five reference RGAs were converted into STSs by using appropriately designed specific primers. RGA-STSs were present in diverse grape genotypes, and >85% of the primers were capable of amplifying the STSs across the taxa Vitis and Muscadinia. DNA sequence polymorphism among these RGAs was assessed by SSCP (single-strand conformation polymorphism) analysis in over 20 Vitis spp. Finally, 45 universal primers for grape RGAs are proposed that should permit tagging of R-related regions in any grape genome.Communicated by R. Hagemann  相似文献   

12.
Plant R genes confer resistance to pathogens in a gene-for-gene mode. Seventy-five putative resistance gene analogs (RGAs) containing conserved domains were cloned from Rubus idaeus L. cv. ‘Latham’ using degenerate primers based on RGAs identified in Rosaceae species. The sequences were compared to 195 RGA sequences identified from five Rosaceae family genera. Multiple sequence alignments showed high similarity at multiple nucleotide-binding site (NBS) motifs with homology to Drosophila Toll and mammalian interleukin-1 receptor (TIR) and non-TIR RNBSA-A motifs. The TIR sequences clustered separately from the non-TIR sequences with a bootstrap value of 76%. There were 11 clusters each of TIR and non-TIR type sequences of multiple genera with bootstrap values of more than 50%, including nine with values of more than 75% and seven of more than 90%. Polymorphic sequence characterized amplified region and cleaved amplified polymorphic sequence markers were developed for nine Rubus RGA sequences with eight placed on a red raspberry genetic linkage map. Phylogenetic analysis indicated four of the mapped sequences share sequence similarity to groupTIR I, while three others were spread in non-TIR groups. Of the 75 Rubus RGA sequences analyzed, members were placed in five TIR groups and six non-TIR groups. These group classifications closely matched those in 12 of 13 studies from which these sequences were derived. The analysis of related DNA sequences within plant families elucidates the evolutionary relationship and process involved in pest resistance development in plants. This information will aid in the understanding of R genes and their proliferation within plant genomes. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

13.
Most cloned plant disease resistance genes (R-genes) code for proteins belonging to the nucleotide binding site (NBS) leucine-rich repeat (LRR) superfamily. NBS-LRRs can be divided into two classes based on the presence of a TIR domain (Toll and interleukin receptor-like sequence) or a coiled coil motif (nonTIR) in their N-terminus. We used conserved motifs specific to nonTIR-NBS-LRR sequences in a targeted PCR approach to generate nearly 50 genomic soybean sequences with strong homology to known resistance gene analogs (RGAs) of the nonTIR class. Phylogenetic analysis classified these sequences into four main subclasses. A representative clone from each subclass was used for genetic mapping, bacterial artificial chromosome (BAC) library screening, and construction of RGA-containing BAC contigs. Of the 14 RGAs that could be mapped genetically, 12 localized to a 25-cM region of soybean linkage group F already known to contain several classical disease resistance loci. A majority of the genomic region encompassing the RGAs was physically isolated in eight BAC contigs, together spanning more than 1 Mb of genomic sequence with at least 12 RGA copies. Phylogenetic and sequence analysis, together with genetic and physical mapping, provided insights into the genome organization and evolution of this large cluster of soybean RGAs. Received: 8 May 2001 / Accepted: 30 June 2001  相似文献   

14.
小麦NBS类抗病基因同源cDNA序列的克隆与特征分析   总被引:2,自引:0,他引:2  
根据已克隆植物抗病(R)基因NBS保守结构域设计简并引物,采用RT-PCR和cDNA末端快速扩增技术(RACE),在小麦抗叶锈病近等基因系材料TcLr19中进行抗病同源基因cDNA全长的扩增。获得了1个通读的NBS类抗病同源基因S11A11cDNA序列,该序列全长2923bp,编码878个氨基酸序列。生物信息学分析结果表明,该片段含有NB-ARC保守结构域和多个LRR结构域。聚类分析表明,S11A11编码的蛋白与小麦抗叶锈病基因Lr1编码的蛋白亲缘关系较近,而与Lr10亲缘关系较远。半定量RT-PCR分析表明,该基因在小麦叶片中为低丰度组成型表达。本研究在TcLr19小麦中成功获得了抗病基因同源序列,为最终克隆小麦抗叶锈病目的基因奠定了基础。  相似文献   

15.
Oligonucleotide primers, designed to conserved regions of nucleotide binding site (NBS) motifs within previously cloned pathogen resistance genes, were used to amplify resistance gene analogs (RGAs) from grapevine. Twenty eight unique grapevine RGA sequences were identified and subdivided into 22 groups on the basis of nucleic acid sequence-identity of approximately 70% or greater. Representatives from each group were used in a bulked segregant analysis strategy to screen for restriction fragment length polymorphisms linked to the powdery mildew resistance locus, Run1, introgressed into Vitis vinifera L. from the wild grape species Muscadinia rotundifolia. Three RGA markers were found to be tightly linked to the Run1 locus. Of these markers, two (GLP1–12 and MHD145) cosegregated with the resistance phenotype in 167 progeny tested, whereas the third marker (MHD98) was mapped to a position 2.4 cM from the Run1 locus. The results demonstrate the usefulness of RGA sequences, when used in combination with bulked segregant analysis, to rapidly generate markers tightly linked to resistance loci in crop species. Received: 2 May 2001 / Accepted: 3 August 2001  相似文献   

16.
Degenerate primers based on conserved regions of the nucleotide binding site (NBS) domain (encoded by the largest group of cloned plant disease resistance genes) were used to isolate a set of 15 resistance gene analogs (RGA) from the diploid species Avena strigosa Schreb. These were grouped into seven classes on the basis of 60% or greater nucleic acid sequence identity. Representative clones were used for genetic mapping in diploid and hexaploid oats. Two RGAs were mapped at two loci of the linkage group AswBF belonging to the A. strigosa × A. wiestii Steud map, and ten RGAs were mapped at 15 loci in eight linkage groups belonging to the A. byzantina C. Koch cv. Kanota × A. sativa L. cv. Ogle map. A similar approach was used for targeting genes encoding receptor-like kinases. Three different sequences were obtained and mapped to two linkage groups of the hexaploid oat map. Associations were explored between already known disease resistance loci mapped in different populations and the RGAs. Molecular markers previously linked to crown rust and barley yellow dwarf resistance genes or quantitative trait loci were found in the Kanota × Ogle map linked to RGAs at a distance ranging from 0 cM to 20 cM. Homoeologous RGAs were found to be linked to loci either conferring resistance to different isolates of the same pathogen or to different pathogens. This suggests that these RGAs identify genome regions containing resistance gene clusters.  相似文献   

17.
18.
The resistance (R) proteins of the TIR- and non-TIR (or CC-) superfamilies possess a nucleotide binding site (NBS) domain. Within an R gene, the NBS is the region of highest conservation, suggesting an essential role in triggering R protein activity. We compared the NBS domain of functional R genes and resistance gene analogs (RGA) amplified from S. caripense genomic DNA via PCR using specific and degenerate primers with its counterpart from other plants. An overall high degree of sequence conservation was apparent throughout the P-loop, kinase-2 and kinase-3a motifs of NBS fragments from all plants. Within the non-TIR class of R genes a prominent sub-class similar to the potato R1 gene conferring resistance to late blight, was detected. All non-TIR-R1-like R gene fragments that were sequenced possessed an intact open reading frame, whereas 22% of all non-TIR-non-R1-like fragments and 59% of all TIR-NBS RGA fragments had an interrupted reading frame or contained transposon-specific sequence. The non-TIR-R1-like fragments had high similarity to Solanaceae R genes and low similarity to RGAs of other plant species including A. thaliana and the cereals. It is concluded that appearance of the non-TIR-R1-like NBS domain represents a relatively recent evolutionary development. Electronic supplementary material Supplementary material is available in the online version of this article at and is accessible for authorized users.  相似文献   

19.
Sequence analysis of plant disease resistance genes shows similarity among themselves, with the presence of conserved motifs common to the nucleotide‐binding site (NBS). Oligonucleotide degenerate primers designed from the conserved NBS motifs encoded by several plant disease resistance genes were used to amplify resistance gene analogues (RGAs) corresponding to the NBS sequences from the genomic DNA of various plant species. Using specific primers designed from the conserved NBS regions, 22 RGAs were cloned and sequenced from pearl millet (Pennisetum glaucum L. Br.). Phylogenetic analysis of the predicted amino acid sequences grouped the RGAs into nine distinct classes. GenBank database searches with the consensus protein sequences of each of the nine classes revealed their conserved NBS domains and similarity to other known R genes of various crop species. One RGA 213 was mapped onto LG1 and LG7 in the pearl millet linkage map. This is the first report of the isolation and characterization of RGAs from pearl millet, which will facilitate the improvement of marker‐assisted breeding strategies.  相似文献   

20.
Isolation and mapping of genome-wide resistance (R) gene analogs (RGAs) is of importance in identifying candidate(s) for a particular resistance gene/QTL. Here we reported our result in mapping totally 228 genome-wide RGAs in maize. By developing RGA-tagged markers and subsequent genotyping a population consisting of 294 recombinant inbred lines (RILs), 67 RGAs were genetically mapped on maize genome. Meanwhile, in silico mapping was conducted to anchor 113 RGAs by comparing all 228 RGAs to those anchored EST and BAC/BAC-end sequences via tblastx search (E-value < 10−20). All RGAs from different mapping efforts were integrated into the existing SSR linkage map. After accounting for redundancy, the resultant RGA linkage map was composed of 153 RGAs that were mapped onto 172 loci on maize genome, and the mapped RGAs accounted for approximate three quarters of the genome-wide RGAs in maize. The extensive co-localizations were observed between mapped RGAs and resistance gene/QTL loci, implying the usefulness of this RGA linkage map in R gene cloning via candidate gene approach. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users. Wenkai Xiao, Jing Zhao and Shengci Fan have contributed equally to this research.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号