首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The mechanism of inhibitor-tolerant respiration in Rhodotorula glutinis was studied. This inhibitor-tolerant respiratory pathway was not due to the presence of an excess of cytochrome c oxidase, nor to the operation of an inhibitor-resistant cytochrome c oxidase. Carotenoids do not appear to be involved in this respiratory chain pathway; data are also presented which show that the inhibitors penetrate into the cell. Although the initial rate of oxygen uptake by intact cells was not inhibited in the presence of cyanide or antimycin A, in the presence of these inhibitors the rate of oxygen uptake decreased significantly when the oxygen concentration fell below 100 mum. This change in rate of oxygen uptake as a function of pO(2), suggests that a respiratory chain with a low affinity for oxygen operates in the presence of inhibitors. The characteristics of this alternate pathway are described.  相似文献   

2.
The effect of antimycin, myxothiazol, 2-heptyl-4-hydroxyquinoline-N-oxide, stigmatellin and cyanide on respiration, ATP synthesis, cytochrome c reductase, and membrane potential in mitochondria isolated from dark-grown Euglena cells was determined. With L-lactate as substrate, ATP synthesis was partially inhibited by antimycin, but the other four inhibitors completely abolished the process. Cyanide also inhibited the antimycin-resistant ATP synthesis. Membrane potential was collapsed (<60 mV) by cyanide and stigmatellin. However, in the presence of antimycin, a H(+)60 mV) that sufficed to drive ATP synthesis remained. Cytochrome c reductase, with L-lactate as donor, was diminished by antimycin and myxothiazol. Cytochrome bc(1) complex activity was fully inhibited by antimycin, but it was resistant to myxothiazol. Stigmatellin inhibited both L-lactate-dependent cytochrome c reductase and cytochrome bc(1) complex activities. Respiration was partially inhibited by the five inhibitors. The cyanide-resistant respiration was strongly inhibited by diphenylamine, n-propyl-gallate, salicylhydroxamic acid and disulfiram. Based on these results, a model of the respiratory chain of Euglena mitochondria is proposed, in which a quinol-cytochrome c oxidoreductase resistant to antimycin, and a quinol oxidase resistant to antimycin and cyanide are included.  相似文献   

3.
Experiments employing electron transport inhibitors, room- and low-temperature spectroscopy, and photochemical action spectra have led to a model for the respiratory chain of Pseudomonas carboxydovorans. The chain is branched at the level of b-type cytochromes or ubiquinone. One branch (heterotrophic branch) contained cytochromes b558, c, and a1; the second branch (autotrophic branch) allowed growth in the presence of CO and contained cytochromes b561 and o (b563). Electrons from the oxidation of organic substrates were predominantly channelled into the heterotrophic branch, whereas electrons derived from the oxidation of CO or H2 could use both branches. Tetramethyl-p-phenylenediamine was oxidized via cytochromes c and a exclusively. The heterotrophic branch was sensitive to antimycin A, CO, and micromolar concentrations of cyanide. The autotrophic branch was sensitive to 2-n-heptyl-4-hydroxyquinoline-N-oxide, insensitive to CO, and inhibited only by millimolar concentrations of cyanide. The functioning of cytochrome a1 as a terminal oxidase was established by photochemical action spectra. Reoxidation experiments established the functioning of cytochrome o as an alternative CO-insensitive terminal oxidase of the autotrophic branch.  相似文献   

4.
Luciferase-dependent oxygen consumption by bioluminescent vibrios.   总被引:4,自引:2,他引:2       下载免费PDF全文
Oxygen uptake due to luciferase in two luminous Vibrio species was estimated in vivo by utilizing inhibitors having specificities for luciferase (decanol) and cytochromes (cyanide). Cyanide titration of respiration revealed a component of oxygen uptake less sensitive to cyanide which was completely inhibitable by low concentrations of decanol. From this it was estimated that in vivo luciferase is responsible for less than 12% (Vibrio harveyi) or 20% (Vibrio fischeri) of the total respiration. From these data in vivo bioluminescent quantum yields are estimated to be not lower than 1.7 and 2.6%, respectively.  相似文献   

5.
The opportunistic oral pathogen Candida albicans expresses a cyanide-insensitive alternative oxidase (AOX) upon exposure to respiratory inhibitors that act downstream from coenzyme Q, and upon ageing of cells. To investigate whether the conventional pathway is retained when the alternative pathway is induced, cells were grown in the presence of sodium cyanide, a reversible inhibitor of cytochrome oxidase. AOX expression was monitored by Western blotting and the presence of cytochromes associated with complexes III and IV of the conventional pathway was monitored by recording spectra between 500 and 650 nm at 77K. The activities of complexes III and IV were determined in polarographic and enzyme-kinetic experiments using specific respiratory substrates and inhibitors. Results indicated that complexes III and IV are constitutively expressed and are functional in cells expressing AOX. Furthermore, the enzymatic activities of complexes III and IV were similar in mitochondrial preparations from cells grown with or without cyanide. We next investigated whether both pathways are simultaneously available for electron transfer from the Q pool to molecular oxygen. Respiration was virtually completely inhibited by the combination of cyanide and salicyl hydroxamic acid (SHAM) or antimycin A and SHAM, but only partly inhibited by either of these inhibitors alone. This indicates that electrons can in principle flow either through the conventional or the alternative respiratory pathway. The availability of two electron pathways in C. albicans and the potential use of either pathway endows this pleomorphic fungus with another level at which it can rapidly adjust to altered environmental conditions.  相似文献   

6.
Usual concentrations of antimycin A, rotenone and EDTA, individally or in combination, reduced aerobic growth rate and cell yield of Candida albicans to about half its normal level and to about the levels of previously-described acetate-negative, cytochrome-complete and aa3-deficient variants which were little affected by the inhibitors. Anaerobic conditions (not affected by antimycin A) reduced growth rate and cell yield of all cultures-including that of a nonrespiring aa3, b-deficient mutant-to low, equal levels. Antimycin A but not rotenone prevented growth of the normal strain on ethanol medium. Cyanide and antimycin A blocked most of the respiration of the normal strain and cytochrome-complete variant, but did not affect that of the cytochrome aa3-deficient mutant. Rotenone and EDTA did not affect respiration of any of the cultures. SHAM blocked cyanide- and antimycin A-insensitive respiration and prolonged the lag phases of the three respiring cultures, especially in the presence of antimycin A, but alone increased oxygen-uptake rate of the cytochromecomplete cultures while curtailing that of the cytochrome aa3-deficient mutant. Resting cells, especially wild-type, grown in medium containing antimycin A exhibited lowered oxygen-uptake rate, which was increased upon the addition of cyanide or antimycin A. Antimycin A stimulated, but cyanide inhibited, respiration of cytochrome-complete cultures grown in the presence of rotenone but did not affect that of the cytochrome aa3-deficient mutant. SHAM inhibited respiration of all antimycin A- or rotenone-grown cultures. The high rate of respiration of C. albicans in the presence of inhibitors for three sites of electron transport in the conventional oxidative pathway, the inhibition of this respiration by SHAM and its loss by the absence of cytochrome b, indicate an alternate oxidative pathway in this organism which crosses the conventional one at cytochrome b.This work was supported by Public Health Service Graduate Dental Training Grant DE 00144 and the Graduate School and the Department of Microbiology, Southern Illinois University.  相似文献   

7.
Cyanide-Resistant Respiration in Neurospora crassa   总被引:41,自引:19,他引:22       下载免费PDF全文
Cell respiration in wild type and poky was studied as part of a long-term investigation of cyanide-resistant respiration in Neurospora. Respiration in wild type proceeds via a cytochrome chain which is similar to that of higher organisms; it is sensitive to antimycin A or cyanide. Poky, on the other hand, respires by means of two alternative oxidase systems. One of these is analogous to the wild-type cytochrome chain in that it can be inhibited by antimycin A or cyanide; this system accounts for as much as 15% of the respiration of poky f(-) and 34% of the respiration of poky f(+). The second oxidase system is unaffected by antimycin A or cyanide at concentrations which inhibit the cytochrome chain maximally. It can, however, be specifically inhibited by salicyl hydroxamic acid. The cyanide-resistant oxidase is not exclusive to poky, but is also present in small quantities in wild type grown under ordinary circumstances. These quantities may be greatly increased (as much as 20-fold) by growing wild type in the presence of antimycin A, cyanide, or chloramphenicol.  相似文献   

8.

1. 1. Difference spectra of whole cells and of a particulate fraction of a streptomycin-bleached strain of Euglena gracilis showed the presence of a b-type cytochrome, cytochrome b (561 Euglena), and an a-type cytochrome, cytochrome a-type (609 Euglena). The cytochromes were characterized by pyridine hemochromogen formation and were found associated with a particulate fraction enriched with mitochondria.

2. 2. Both b-type and a-type cytochromes were reduced by succinate, oxidized by oxygen and reacted with a soluble c-type cytochrome, cytochrome c-type (556 Euglena), in reversible oxidation-reduction reactions. The steady-state level of reduction for each cytochrome was 92, 22 and 5% of the anaerobic level for the b-type, c-type and a-type cytochrome, respectively.

3. 3. Oxidation of c-type and a-type cytochromes was completely inhibited by cyanide, although respiration of a particulate fraction was only 60% inhibited by the same concentration of cyanide. Antimycin A inhibited respiration by up to 70% but completely inhibited reduction of the c-type cytochrome.

4. 4. The data suggest that electron transfer in the respiratory pathway of Euglena involves the b-, c- and a-type cytochrome in a direct sequence. The cyanide and antimycin A-insensitive oxidation pathway is considered to involve a more direct oxidation of the b-type cytochrome.

Abbreviations: STE medium, 250 mM sucrose, 24 mM Tris-HCI buffer (pH 7.6) and 0.1 mM EDTA  相似文献   


9.
ABSTRACT A study of the effect of respiratory inhibitors on O2 uptake of Euglena gracilis mitochondria, isolated from cells grown in the presence of cyanide or with ethanol as carbon source, was undertaken. The contents of cytochrome c oxidase and alternative oxidase were also determined. Inhibition of respiration by antimycin and cyanide was only partial and it was dependent on the oxidizable substrate used. Succinate oxidation was the most sensitive to cyanide whereas lactate oxidation was the most resistant. Cell growth in the presence of cyanide or with ethanol as carbon source brought about an enhanced content of alternative oxidase without a concomitant increase in cytochrome aa3 content. However, a correlation between cyanide-resistant respiration and alternative oxidase content was not found. Analysis of heme types in mitochondrial membranes revealed the absence of heme O. The data suggest the presence of an inducible alternative oxidase in Euglena mitochondria which has high resistance to cyanide and contains heme B. A close relationship between Euglena alternative oxidase and bacterial quinol oxidases containing B-type heme is proposed.  相似文献   

10.
The combined action of the inhibitors antimycin A and cyanide with benzohydroxamic acid indicates the presence of a cyanide-resistant pathway of respiration in chick pea (Cicer arietinum L.) seeds. The appearance of this pathway takes place during germination. During the first 12 hours of germination, the respiration is predominantly cyanide-sensitive, showing after this time a shift to an “alternate” respiration which is sensitive to benzohydroxamic acid, reaching the maximal cyanide resistance between 72 and 96 hours of germination. The appearance of the alternate pathway is initiated by high O2 concentrations and depends on cytoplasmic protein synthesis, since its appearance is inhibited by cycloheximide but not by chloramphenicol. Actinomycin D has no effect on the appearance of the alternate pathway. Our results indicate, in agreement with other authors, that the branching point is located between the flavoproteins and cytochromes b, probably at the level of ubiquinone, but the possibility of more than one branching point of the electron flow is also considered.  相似文献   

11.
The involvement of a quinone in the antimycin A-insensitive electron transfer from NADH-dehydrogenase to cytochrome c via the alternative respiratory chain of Candida parapsilosis, by-passing complex II, has been studied. After a partial extraction of quinones, the residual respiration was fully antimycin-A-sensitive, but reincorporation of the organic extract partially restored an antimycin A-insensitive respiration. Analysis of quinone content by HPLC, after purification by thin-layer chromatography, evidenced another quinone species in a very low amount. Myxothiazol and stigmatellin were shown to inhibit the alternative pathway but at a higher concentration than required to inhibit the classical pathway. Cytochrome spectra analysis showed that, in the presence of high myxothiazol concentrations, cytochromes c and aa3 were not reduced, while they were in the presence of antimycin A. It is suggested that the secondary pathway of C. parapsilosis involved a specific quinone pool which can be displaced from its binding site by high concentrations of myxothiazol or analogous compounds.  相似文献   

12.
1. Cytochrome b-562 is more reduced in submitochondrial particles of mutant 28 during the aerobic steady-state respiration with succinate than in particles of the wild type. When anaerobiosis is reached, the reduction of cytochrome b is preceded by a rapid reoxidation in the mutnat. A similar reoxidation is observed in the wild type in the present of low concentrations of antimycin. 2. In contrast to the wild type, inhibition of electron transport in the mutant has a much higher antimycin titre than effects on cytochromes b (viz., aerobic steady-state reduction; reduction in the presence of substrate, cyanide and oxygen; the 'red shift' and lowering of E'-o of cytochrome b-562). Moreover, the titration curve of electron transport is hyperbolic whereas the curves for the reduction are sigmoidal. The conclusion is, that in both mutant and wild type, the actions of antimycin on electron transport and cytochromes b are separable. 3. The red shift in the mutant is more extensive than in the wild type. 4. Cytochrome b-558 and cytochrome b-566 (that absorbs in mutant and wild type at 564.5 nm) do not respond simultaneously to addition of antimycin, indicating that they are two separate cytochromes. 5. The difference between the effect of antimycin on electron transport and cytochromes b reduction is also found in intact cells of the mutant. 6. A model is suggested for the wild-type respiratory chain in which (i) the cytochromes b lie, in an uncoupled system, out of the main electron-transfer chain, (ii) antimycin induces a conformation change in QH-2-cytochrome c reductase resulting in effects on cytochrome b and inhibition of electron transport, (iii) a second antimycin-binding site with low affinity to the antibiotic is present, capable of inhibiting electron transport.  相似文献   

13.
Membranes from free-living Rhizobium japonicum were isolated to study electron transport components involved in H2 oxidation. The H2/O2 uptake rate ratio in membranes was approximately 2. The electron transport inhibitors antimycin A, cyanide, azide, hydroxylamine, and 2-n-heptyl-4-hydroxyquinoline-N-oxide (HQNO) inhibited H2 uptake and H2-dependent O2 uptake significantly. H2-reduced minus O2-oxidized absorption difference spectra revealed peaks at 551.5, 560, and 603 nm, indicating the involvement of cytochromes c, b, and a-a3, respectively. H2-dependent cytochrome reduction was completely inhibited in the presence of 0.15 mM HQNO. This inhibition was relieved by the addition of 0.1 mM menadione. Evidence is presented for the involvement of two b-type cytochromes in H2 oxidation. One b-type cytochrome was not reduced by ascorbate and had an absorption peak at 560 nm. The reduction of this cytochrome by H2 was not inhibited by cyanide. A second b-type cytochrome, cytochrome b', was not reduced by H2 in the presence of cyanide. This cytochrome had an absorption peak at 558 nm. Carbon monoxide difference spectra with H2 as reductant provided evidence for the involvement of cytochrome o as well as cytochrome a3 in H2 oxidation. H2 uptake activity in cell-free extracts was inhibited by UV light irradiation. Most of the activity of the UV-treated extracts was restored with the addition of ubiquinone. The restored activity was inhibited by cyanide. A branched electron transport pathway from H2 to O2 is proposed.  相似文献   

14.
The respiratory system of the fastidious beta-proteobacterium Eikenella corrodens grown with limited oxygen was studied. Membranes showed the highest oxidase activity with ascorbate plus N,N,N',N'-tetramethyl-p-phenylenediamine (TMPD) or succinate and the lowest activity with NADH and formate. The presence of a bc1-type complex was suggested by the inhibition exerted by 2-heptyl-4-hydroxyquinoline-N-oxide (HOQNO), myxothiazol, and antimycin A on respiration with succinate and by the effect of the latter two inhibitors on the succinate-reduced difference spectra. Respiration with succinate or ascorbate-TMPD was abolished by low KCN concentrations, suggesting the presence of a KCN-sensitive terminal oxidase. Cytochromes b and c were spectroscopically detected after reduction with physiological or artificial electron donors, whereas type a and d cytochromes were not detected. The CO difference spectrum of membranes reduced by dithionite and its photodissociation spectrum (77 K) suggested the presence of a single CO compound that had the spectral features of a cytochrome o-like pigment. High-pressure liquid chromatography analysis of membrane haems confirmed the presence of haem B; in contrast, haems A and O were not detected. Peroxidase staining of membrane type c cytochromes using SDS-PAGE revealed the presence of five bands with apparent molecular masses of 44, 33, 30, 26, and 14 kDa. Based on our results, a tentative scheme of the respiratory chain in E. corrodens, comprising (i) dehydrogenases for succinate, NADH, and formate, (ii) a ubiquinone, (iii) a cytochrome bc1, and (iv) a type-cbb' cytochrome c oxidase, is proposed.  相似文献   

15.
Strain inl-89601 of Neurospora crassa respires exclusively by means of the mitochondrial cytochrome chain. The respiration of this strain is entirely inhibited by cyanide or antimycin A, the classical inhibitors of cytochrome chain respiration. When this strain was grown in the presence of chloramphenicol, however, two additional terminal oxidases were detected. One of these oxidases is inhibited by substituted hydroxamic acids and has been described previously. The second oxidase was not inhibited by cyanide or hydroxamic acid but was inhibited by azide in the presence of both cyanide and hydroxamic acid. This azide-sensitive respiration was due to a single respiratory pathway with a Ki for azide of 200 micrometer. A small amount of azide-sensitive respiration was detected in mitochondrial fractions obtained from chloramphenicol-treated cells, and it is likely that the azide-sensitive oxidase is localized in the mitochondrion. The determinants for the azide-sensitive and hydroxamate-sensitive oxidases segregate in a Mendelian manner in crosses and are either unlinked or not closely linked to each other.  相似文献   

16.
L Kato  M Ishaque 《Cytobios》1975,12(45):31-43
Particles from Mycobacterium lepraemurium catalysed the oxidation of NADH with oxygen as the terminal electron acceptor. The preparations contained cytochromes of the a + a3'b and c types, as well as CO-binding pigments. The NADH oxidase activity was sensitive to inhibitors of the flavoprotein system as well as to HQNO and antimycin A. In addition, a cytochrome oxidase sensitive to cyanide was also present. The system was inhibited by the thiol-binding agent, PCMB, and thus indicated the involvement of sulphydryl group in the enzymatic oxidation of NADH. The sensitivity of the NADH oxidase system to all the inhibitors of the respiratory chain and the effect of these inhibitors on the absorption spectra suggested that cytochromes of the b, c, a + a3 types are involved in the transfer of electrons in NADH oxidation.  相似文献   

17.
The kinetics of oxidation of ubiquinone, flavoprotein, cytochrome c, and the cytochrome b complex in skunk cabbage (Symplocarpus foetidus) mitochondria made anaerobic with succinate have been measured spectrophotometrically and fluorimetrically in the absence of respiratory inhibitor and in the presence of cyanide or antimycin A. No component identifiable by these means was oxidized rapidly enough in the presence of one or the other inhibitor to qualify for the role of alternate oxidase. Cycles of oxidation and rereduction of flavoprotein and ubiquinone obtained by injecting 12 mum oxygen into the anaerobic mitochondrial suspension were kinetically indistinguishable in the presence of cyanide or antimycin A, implying that these 2 components are part of a respiratory pathway between succinate and oxygen which does not involve the cytochromes and does involve a cyanide-insensitive alternate oxidase. The cytochrome b complex shows biphasic oxidation kinetics with half times of 0.018 sec and 0.4 sec in the absence of inhibitor, which increase to 0.2 sec and 1 sec in the presence of cyanide. In the presence of antimycin A, the oxidation of the cytochrome b complex shows an induction period of 1 sec and a half-time of 3.5 sec. A split respiratory chain with 2 terminal oxidases and a branch point between the cytochromes and flavoprotein and ubiquinone is proposed for these mitochondria.  相似文献   

18.
The difference spectrum (reduced minus oxidized) of castor bean(Ricinus communis L.) mitochondria showed the presence of cytochromeoxidase (cytochromes a+a3), b-type cytochromes and cytochromec. The mitochondria actively oxidized succinate, -ketoglutarate,pyruvate and exogenous NADH, and oxidations of these substrateswere stimulated by added ADP, as in mammalian mitochondria.Values for the P/O ratio obtained for succinate, pyruvate and-ketoglutarate were the same as those reported for mammalianmitochondria, indicating that theoretical values are 2, 3 and4, respectively. The theoretical P/O ratio for exogenous NADHseemed to be 2. Oxidations of succinate and exogenous NADH instate 3 were almost completely inhibited by 0.3 mM cyanide and10 µM its antimycin A, while those of NAD+-linked substratesin state 3 were not completely suppressed even by excess concentrationsof these inhibitors. There seem to be two types of pathway forelectron transfer in the oxidation of NAD+-linked substratesin castor bean mitochondria, i.e. pathways which are sensitiveand insensitive to these inhibitors. Oxidation of exogenousNADH in state 3 was not inhibited by rotenone. Transitions of redox levels of the respiratory components fromstate 4 to state 3 on addition of ADP and from state 3 to state4 on exhaustion of added ADP were observed with a dual-wavelengthspectrophotometer. Effects of inhibitors on redox levels ofthe respiratory components in state 3 were investigated. Cytochromesof b-type and cytochrome c were fully reduced on addition ofcyanide. Cytochromes of b-type were also fully reduced on additionof antimycin A, but cytochrome oxidase (cytochromes a + a3)and cytochrome c changed to the oxidized forms. The redox levelof the component(s) with an absorption maximum at 465 mµshifted further, but not completely, to the reduced side onaddition of antimycin A. However, this component(s) was oxidizedon addition of cyanide. Cyanide-, or antimycin A-resistant oxidationof NAD+-linked substrates seems to occur via an alternate electrontransfer pathway branching from NAD+-linked flavoprotein(s)in the mitochondria, not via the normal pathway through thecytochromes-cytochrome oxidase system. (Received June 8, 1970; )  相似文献   

19.
The respiratory chain of Rhodopseudomonas capsulata, strain St. Louis and of two respiration deficient mutants (M6 and M7) has been investigated by examining the redox and spectral characteristics of the cytochromes and their response to substrates and to specific respiratory inhibitors. Since the specific lesions of M6 and M7 have been localized on two different branches of the multiple oxidase system of the wild type strain, the capability for aerobic growth of these mutants can be considered as a proof of the physiological significance of both branched systems "in vivo". Using M6 and M7 mutants the response of the branched chain to respiratory inhibitors could be established. Cytochrome oxidase activity, a specific function of an high potential cytochrome b (E'0 = +413 mV) is sensitive to low concentrations of KCN (5-10(-5) M); CO is a specific inhibitor of an alternative oxidase, which is also inhibited by high concentrations of KCN (10(-3) M). Antimycin A inhibits preferentially the branch of the chain affected by low concentrations of cyanide. Redox titrations and spectral data indicate the presence in the membrane of three cytochromes of b type (E'0 = +413, +260, +47 vM) and two cytochromes of c type (E'0 = +342, +94 mV). A clear indication of the involvement in respiration of cytochrome b413, cytochrome c342 and cytochrome b47 has been obtained. Only 50% of the dithionite reducible cytochrome b can be reduced by respiratory substrates also in the presence of high concentrations of KCN or in anaerobiosis. The presence and function of quinones in the respiratory electron transport system has been clearly demonstrated. Quinones, which are reducible by NADH and succinate to about the same extent can be reoxidized through both branches of the respiratory chain, as shown by the response of their redox state to KCN. The possible site of the branching of the electron transport chain has been investigated comparing the per cent level of reduction of quinones and of cytochromes b and c as a function of KCN concentrations in membranes from wild type and M6 mutants cells. The site of the branching has been localized at the level of quinones-cytochrome b47. A tentative scheme of the respiratory chains operating in Rhodopseudomonas capsulata, St. Louis and in the two respiration deficient mutants, M6 and M7 is presented.  相似文献   

20.
The effect of antimycin A on the respiration of fresh potato (Solanum tuberosum var. Russet Burbank) slices has been determined in the presence and absence of m-chlorobenzhydroxamic acid (CLAM). Two antimycin-binding sites are indicated. At low concentrations antimycin alone inhibits respiration only slightly. When CLAM and low antimycin are added together, respiration is sharply inhibited, as in response to cyanide. High antimycin alone is as inhibitory as cyanide. The branch point to the alternate path is intact in fresh slices, as is the hydroxamate-sensitive component. The full alternate path is inoperative, however, as indicated by the sensitivity to cyanide. The data suggest an alternate path loop which bypasses the high affinity antimycin site and returns electrons to the cytochrome path. Antimycin at high concentrations prevents articulation of the loop with the cytochrome path.

The respiration of aged slices is not only markedly resistant to antimycin at high concentrations, but quite insensitive to CLAM in the presence of antimycin. A model is proposed which involves parallel paths within complex III of the cytochrome path, with one path bearing the high affinity, and the other the low affinity antimycin site. With slice aging the antimycin affinity of the latter site is even further reduced, providing a relatively antimycin-insensitive bypass to both the high affinity antimycin-sensitive cytochrome path, and the CLAM-sensitive alternate path. The alternate path loop in fresh slices is presumed to feed into the low affinity antimycin-sensitive arm of the cytochrome path.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号