首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Respirometric studies with mitochondrial, fractions and whole cells revealed the presence of a more actively functioning respiratory system inAspergillus sydowii grown under salinity conditions. Oxidation of substrate, i.e., succinate, by the mitochondrial fraction was inhibited by the addition of rotenone, antimycin A, and cyanide. Electron microscopic observations ofAsp. sydowii grown in the presence of 2M NaCl indicated a comparatively larger size of mitochondria than in the control grown culture. A relatively larger fraction of the total cytoplasmic volume was occupied by the mitochondria in theAsp. sydowii grown in the media containing 2M NaCl. Levels of respiratory enzymes like succinate dehydrogenase. NADH dehydrogenase, cytochrome oxidase, NADH oxidase, and succinoxidase were higher in the culture grown in the presence of 2 M NaCl than in that grown in the absence of NaCl.  相似文献   

2.
The activities of four mitochondrial enzymes were studied in four stages of ripening tomato fruit. The highest enzyme activity was recorded for malate dehydrogenase followed by cytochrome c oxidase. Succinate dehydrogenase and NADH oxidase levels were low and could only be determined in the green stage of the fruit. However, peaks of various enzyme activities coincided in identical mitochondrial fractions on the sucrose density gradient. Moreover, the levels of malate dehydrogenase and cytochrome c oxidase were constant during the ripening process while the other two enzymes, succinate dehydrogenase and NADH oxidase, declined. This might indicate that mitochondria retain some of their essential functions through the ripening process.  相似文献   

3.
A method is described for the preparation of spheroplasts in high yield from Schizosaccharomyces pombe, by treating cells grown in the presence of glucose and deoxyglucose with snail digestive enzymes. Gentle disruption of such spheroplasts yielded homogenates, from which marker enzymes for nuclei (NAD pyrophosphorylase) and mitochondria (cytochrome c oxidase activity and spectroscopically-detectable cytochromes a + a3) could be quantitatively sedimented by low-speed centrifugation. In contrast to previous findings with Saccharomyces carlsbergensis, cytochrome c oxidase and another mitochondrial enzyme, succinate dehydrogenase, were completely sedimentable by zonal centrifugation in sucrose gradients in the presence of either 2 mM-MgCl2 or 0-4 mM-EDTA. Mitochondria were apparently smaller and of lower buoyant density in gradients containing EDTA. The bulk of the total units of malate dehydrogenase and NADH; cytochrome c oxidoreductase sedimented with mitochondria, whereas NADPH: cytochrome c oxidoreductase was located in fractions containing no mitochondria. The distributions of mitochondrial enzymes were heterogeneous in populations of mitochondria separated on the basis of size or density. The possible origins of mitochondrial heterogeneity in extracts of S. pombe are discussed with special reference to changes in the enzyme activities of cells during the cell cycle.  相似文献   

4.
Distribution of the activities of some mitochondrial enzymes after sucrose density gradient ultracentrifugation of cell homogenates of S. cerevisiae in the early and late exponential growth phases is studied. It is demonstrated that young yeast cells have a characteristic complex distribution of NADH oxidase (cyanide-sensitive), succinate:ferricyanide-oxidoreductase (or succinate:2,6-dichlorophenol indophenol-oxidoreductase), NADH:2,6-dichlorophenol indophenol-oxidoreductase and cytochrome oxidase activities in sucrose density gradient; the distribution patterns of these activities are different. All the above activities are detected in a single relatively narrow band in mature yeast cells. Similar results are obtained in the experiments with glucose or galactose as a carbon source in the yeast growth media. The Arrhenius plots for NADH oxidase (as well as for succinate:2,6-dichlorophenol indophenol-oxidoreductase) activity do not differ in the case of "light" and "heavy" mitochondrial structures characteristic of yeast cells in the early exponential growth phase. Nevertheless, "light" and "heavy" mitochondrial structures differ with respect of the arrangement of certain respiratory chain components in their membranes NADH-dehydrogenase and cytochrome oxidase). This conclusion is drawn from the results obtained in the study of the interaction of the two types of structures with Fe(CN)6(3-), a non-penetrating ion and the antiserum to yeast mitochondria.  相似文献   

5.
SYNOPSIS. Mitochondrial and supernatant fractions were isolated from Crithidia fasciculata by grinding with neutral alumina and differential centrifugation. Supernatant fractions contained at least 2 NAD-linked enzymes: an α-glycerophosphate dehydrogenase and a malate dehydrogenase. The properties of these enzymes were investigated polarographically with phenazine ethosulfate acting as electron acceptor. Agaricic acid, cinnamic acid and p-NO2-cinnamic acid were specific inhibitors of the α-glycerophosphate dehydrogenase. Succinate, malate, DL-α-glycerophosphate and NADH stimulated respiration of mitochondrial preparations; O2 uptake was greatest with succinate. KCN and antimycin A inhibited succinate respiration more than α-glycerophosphate respiration. Amytal did not affect succinate, α-glycerophosphate or NADH oxidation. The trypanocide suramin inhibited mitochondrial respiration at least 77% with each substrate. The relevance of these results to other members of the Trypanosomatidae is discussed.  相似文献   

6.
Abstract— The distributions of NADH2 dehydrogenase, NADH, cytochrome c reductase and cytochrome oxidase have been determined utilizing synaptosomal isolation techniques. Deoxycholate was used to determine compartmentation and/or ‘latency’ of these activities. NADPH, dehydrogenase proved to be a soluble and mitochondrial enzyme and the activity of this enzyme was not appreciably changed by deoxycholate treatment. NADHg cytochrome c reductase proved to be a mitochondrial enzyme with considerable activity in microsomal fractions. Deoxycholate treatment increased activity in the synaptosomal fraction 8.3-fold. A bimodal activation pattern was observed with synaptosomal and mitochondrial NADH, cyrochrome c reductase upon exposure to increasing concentrations of deoxycholate, with enhancement of activity at 0.25 % (w/v) and 0.50 % (w/v) deoxycholate. The enzyme was stable at concentrations of deoxycholate less than 0.25% (w/v) but was irreversibly inactivated at concentrations higher than 0.25% (w/v). The mechanism of this activation pattern appeared to be a combination of enzyme release and inactivation. Similar results were not observed in liver mitochondria. Cytochrome oxidase, a known mitochondrial marker, exhibited a 17-fold increase in synaptosomal activity with deoxycholate treatment. The synaptosomal cytochrome oxidase activity after deoxycholate treatment approached the activity in the free mitochondrial fraction. The percentage of mitochondrial protein in synaptosomal fractions was estimated to be about 30 per cent from a comparison of the respective total (deoxycholate-treated) activities. On the basis of these data we suggest that the synaptosomal fraction possesses a relatively sizable energy-producing potential which may be of significance in vivo.  相似文献   

7.
H A Dailey  Jr 《Journal of bacteriology》1976,127(3):1286-1291
The membrane-bound respiratory system of the gram-negative bacterium Spirillum itersonii was investigated. It contains cytochromes b (558), c (550), and o (558) and beta-dihydro-nicotinamide adenine dinucleotide (NADH) and succinate oxidase activities under all growth conditions. It is also capable of producing D-lactate and alpha-glycerophosphate dehydrogenases when grown with lactate or glycerol as sole carbon source. Membrane-bound malate dehydrogenase was not detectable under any conditions, although there is high activity of soluble nicotinamide adenine dinucleotide: malate dehydrogenase. When grown with oxygen as the sole terminal electron acceptor, approximately 60% of the total b-type cytochrome is present as cytochrome o, whereas only 40% is present as cytochrome o in cells grown with nitrate in the presence of oxygen. Both NADH and succinate oxidase are inhibited by azide, cyanide, antimycin A, and 2-n-heptyl-4-hydroxyquinoline-N-oxidase at low concentrations. The ability of these inhibitors to completely inhibit oxidase activity at low concentrations and their effects upon the aerobic steady-state reduction levels of b- and c-type cytochromes as well as the aerobic steady-state reduction levels obtained with NADH, succinate, and ascorbate-dichlorophenolindophenol suggest that presence of an unbranched respiratory chain in S. itersonii with the order ubiquinone leads to b leads to c leads to c leads to oxygen.  相似文献   

8.
Differential and sucrose density gradient centrifugation established that about 80% of the total arginase activity (EC 3.5.3.1) in cotyledons of germinating broad bean seeds (Vicia faba L.) was present in the mitochondrial fraction. The mitochondrial arginase activity was enhanced considerably by exposure to osmotic shock, by freezing and thawing, or by Triton X-100 treatment. About 10% of the total arginase activity was recovered from the 40,000g supernatant fraction. During seed maturation, arginase activity in the cotyledons decreased to about one-third of its maximal activity, while increasing over 10-fold during subsequent germination. The time courses of mitochondrial arginase, succinate oxidase, and succinate dehydrogenase activities differed considerably during germination.  相似文献   

9.
Mitochondria were isolated from the cellular slime mold. Dictyoostelium discoideum, and partially purified by sucrose density gradient fractionation. The most purified mitochondrial fraction from the gradient contained essentially no contaminating lysosomes and minimal amounts of contaminating peroxisomes as determined by the marker enzymes N-acetyl-glucosaminidase and catalase. A mitochondrial fraction with the same amount of lysosomal and peroxisomal contamination was also isolated from cells which had been treated with ethidium bromide for 5 days. The most purified mitochondrial fraction from control and ethidium bromide-treated cells had an identical buoyant density of 1.181 to 1.182 g per ml, suggesting that treatment with the drug does not result in any drastic structural changes in the mitochondrial membrane which would affect its density. In the purified mitochondria from ethidium bromide-treated cells, the content of cytochromes a-a3 was decreased over 80% and that of cytochrome oxidase and oligomycin sensitive ATPase were reduced approximately 50%. By contrast, the specific activities of NADH and succinate dehydrogenases were identical in the purified mitochondria from control and ethidium bromide-treated cells. Previously, we had reported that the specific activities of these two enzymes had nearly doubled in whole cells maintained in ethidium bromide for a time equivalent to six or seven generations after growth had stopped (Stuchell, R. N., Weinstein, B. I., and Beattie, D. S. (1973) Fed. Eur. Biochem. Coc Lett. 37, 23-26). These results suggest that continued formation of new mitochondrial membranes, with an identical complement of succinate and NADH dehydrogenases, must occur despite the cessation of cell growth which occurs as a result of the ethidium bromide induced loss of mitochondrial enzymes. Consequently, the amount of mitochondria, or mitochondrial protein per cell, calculated from the activity of NADH and succinate dehydrogenases has increased nearly 50%. Possible models to explain the control of mitochondrial biogenesis are discussed to explain these results.  相似文献   

10.
By means of sucrose density centrifugation three membrane fractions, named light, medium and heavy have been isolated from cells of Rhodopseudomonas capsulata strain 37b4, adapting from chemotrophic to phototrophic growth conditions. Succinate dehydrogenase activity of aerobically grown cells was mainly confined to the heavy (chromatophore) fraction. Upon changing to phototrophic conditions the activity of the succinate dehydrogenase increased in the medium and light fraction. All fractions contain bacteriochlorophyll. NADH dehydrogenase of chemotrophically grown cells was enriched in the light and medium fraction but is increased in the heavy fraction under phototrophic growth conditions. The capacity of photophosphorylation is high in the light and heavy fraction. The results indicate a differentially incorporation of functional subunits into specific parts of the membrane system during membrane differentiation.Abbreviations Bchl bacteriochlorophyll - CCCP carbonyl cyanide m-chlorophenyl hydrazone - DCCD N,N-dicyclohexyl carbodiimide  相似文献   

11.
Highly purified mitochondria from rat liver were separated into six sub-fractions by differential centrifugation. The sub-fractions represent a spectrum from “heavy” to “very light” mitochondria. Enzymes representative of mitochondrial compartments were assayed to see whether functional differences occurred among the various mitochondrial sub-fractions. Respiratory control and NADH oxidase activity, both of which are indicators of mitochondrial structural integrity, were also measured. An enzyme marker for endoplasmic reticulum (glucose-6-phosphatase, G-6-Pase) was also assayed. Specific activities for monoamine oxidase (outer membrane marker), cytochrome oxidase (inner membrane marker) and malate-cytochrome c reductase did not vary within experimental error in all sub-fractions; similarly, for respiratory control and NADH oxidase activity. Malate dehydrogenase, a component of malate-cytochrome c reductase is located within the matrix surrounded by the inner membrane. Specific activity of adenylate kinase (located between the outer and inner membrane) decreased markedly from the “heavy” mitochondria to the “very light” fractions. Specific activity for G-6-Pase, very low in the “heavy” fractions, increased markedly in the “light” to “very light” fractions. Isopycnic density centrifugation on a linear sucrose density gradient of each of the fractions indicated that the correlation coefficient for the sucrose concentrations at which cytochrome oxidase and G-6-Pase activities peaked was 0.995. Thus the “light” to “very light” mitochondria may represent mitochondria whose outer membrane is still contiguous with the endoplasmic reticulum. Microsomes containing the endoplasmic reticulum peaked on the gradient at a significantly lower sucrose concentration than any of the mitochondrial sub-fractions. A buoyant effect of endoplasmic reticulum still attached to any of the mitochondrial sub-fractions would be expected to lower the density of attached mitochondria and thus give rise to “light” and “very light” mitochondria.  相似文献   

12.
This paper describes experiments conducted with membranous and soluble fractions obtained from Escherichia coli that had been grown on succinate, malate, or enriched glucose media. Oxidase and dehydrogenase activities were studied with the following substrates: nicotinamide adenine dinucleotide, reduced form (NADH), nicotinamide adenine dinucleotide phosphate, reduced form (NADPH), succinate, malate, isocitrate, glutamate, pyruvate, and α-ketoglutarate. Respiration was virtually insensitive to poisons that are commonly used to inhibit mitochondrial systems, namely, rotenone, antimycin, and azide. Succinate dehydrogenase and NADH, NADPH, and succinate oxidases were primarily membrane-bound whereas malate, isocitrate, and NADH dehydrogenases were predominantly soluble. It was observed that E. coli malate dehydrogenase could be assayed with the dye 2,6-dichlorophenol indophenol, but that porcine malate dehydrogenase activity could not be assayed, even in the presence of E. coli extracts. The characteristics of E. coli NADH dehydrogenase were shown to be markedly different from those of a mammalian enzyme. The enzyme activities for oxidation of Krebs cycle intermediates (malate, succinate, isocitrate) did not appear to be under coordinate genetic control.  相似文献   

13.
Spontaneous mutants resistant to vanadate, arsenate or thiophosphate were isolated from a haploid strain of Saccharomyces cerevisiae. These three anions have an inhibitory effect on some mitochondrial functions and at the level of glyceraldehyde 3-phosphate dehydrogenase, a glycolysis enzyme. All the selected mutants had the same phenotype: they were deficient in alcohol dehydrogenase I, the terminal enzyme of the glycolysis, and possessed a high content of cytochrome c oxidase, the terminal enzyme of the respiratory chain. Moreover, cytochrome c oxidase biosynthesis had become insensitive to the catabolite repression, while the biosynthesis of the other enzymes sensitive to this phenomenon were always inhibited by glucose. Metabolic effects of this pleiotropic mutation manifested themselves in the following ways. 1. Growth rate and final cell mass were enhanced, compared to the wild type, when cells were grown on glucose or on glycerol, but not on lactate or ethanol. 2. Growth under anaerobiosis was nil and mutants did not ferment. 3. Mitochondrial respiration of the mutant strains was identical to the wild type with succinate or 2-oxo-glutarate as substrate, and weak with ethanol. But with added NADH, respiration rate of the mutants was higher than that of the wild type and partially insensitive to antimycin, even when cells were grown in repression conditions. It is postulated that in mutants strains, NADH produced at the level of glyceraldehyde 3-phosphate dehydrogenase, failing to be reoxidized via alcohol dehydrogenase, could be reoxidized with a high turnover owing to the enhancement of the amount of cytochrome c oxidase. Since NADH reoxidation is partially insensitive to antimycin, a secondary pathway going from external NADH dehydrogenase to cytochrome c oxidase is suggested.  相似文献   

14.
The reversible, membrane-associated transhydrogenase that catalyzes hydride-ion transfer between NADP(H) and NAD(H) was evaluated and compared to the corresponding NADH oxidase and succinate dehydrogenase activities in midgut and fat body mitochondria from fifth larval instar Manduca sexta. The developmentally significant NADPH-forming transhydrogenation occurs as a nonenergy- or energy-linked activity with energy for the latter derived from either electron transport-dependent NADH or succinate utilization, or ATP hydrolysis by Mg++-dependent ATPase. In general, the plant flavonoids examined (chyrsin, juglone, morine, quercetin, and myricetin) affected all reactions in a dose-dependent fashion. Differences in the responses to the flavonoids were apparent, with the most notable being inhibition of midgut, but stimulation of fat body transhydrogenase by morin, and myricetin as also noted for NADH oxidase and succinate dehydrogenase. Although quercetin inhibited or stimulated transhydrogenase activity depending on the origin of mitochondria, it was without effect on either midgut or fat body NADH oxidase or succinate dehydrogenase. Observed sonication-dependent increases in flavonoid inhibition may well reflect an alteration in membrane configuration, resulting in increased exposure of the enzyme systems to the flavonoids. The effects of flavonoids on the transhydrogenation, NADH oxidase, and succinate dehydrogenase reactions suggest that compounds of this nature may prove valuable in the control of insect populations by affecting these mitochondrial enzyme components.  相似文献   

15.
The respiratory chain of the ethanologenic bacterium Zymomonas mobilis was investigated, in which the pyruvate-to-ethanol pathway has been demonstrated to be mainly responsible for NADH oxidation and the tricarboxylic acid cycle is incomplete. Membranes from cells cultivated under aerobic or anaerobic growth conditions showed dehydrogenase and oxidase activities for NADH, D-lactate and D-glucose and ubiquinol oxidase activity. Intriguingly, the NADH oxidase activity level of membrane fractions from cells grown aerobically was found to be higher than that of membrane fractions from Escherichia coli or Pseudomonas putida grown aerobically, indicating a crucial role of the respiratory chain in NADH oxidation in the organism. Cyanide-resistant terminal oxidase activity was observed and appeared to be due to a bd-type ubiquinol oxidase as the only terminal oxidase encoded by the entire genome. The terminal oxidase with a relatively strong ubiquinol oxidase activity exhibited remarkably weak signals of cytochrome d. Considering these findings and the presence of a type-II NADH dehydrogenase but not a type-I, a simple respiratory chain that generates less energymay have evolved in Z. mobilis.  相似文献   

16.
Cytoplasmic membranes of Bacillus subtilis, grown in complex medium containing glucose, were fractionated into three membrane subfractions [light band (1.155 - 1.158 g/cm3); medium band (1.181 - 1.183 g/cm3); heavy band (1.21 - 1.25 g/cm3)] by sucrose density gradient centrifugation. Among these subfractions, the light and medium bands consisted mainly of membranes but the heavy band consisted of an irregular arrangement or aggregate of small globular protein components of 5 - 8 nm in diameter. We named this H-protein. H-protein formed trilamellar unit membrane structure when combined with lipid. In pulse-labeling and pulse-chase experiments with radioactive leucine, it was found that H-protein consisted of the newest membrane protein synthesized in the cells and the label incorporated into H-protein was shifted into light and medium band of the membranes during the chase. Cytochromes were not found in H-protein. However, when H-protein was incubated with haem alpha and protohaem, these compounds were incorporated into the apoproteins of the cytochromes present in H-protein and form cytochromes a and b. Cytochromes were also formed in H-protein which were isolated from the cells grown in the presence of haemin (haemin-grown H protein). Succinate dehydrogenase activity was increased about 4-fold by combining H-protein or haemin-grown H protein with lipid. H-protein had no cytochrome oxidase activity; however, haemin-grown H protein was found to have some of the activity and this was increased about 4-fold by combining the protein with lipid. Haemin-grown H protein was also found to form succinate: cytochrome c oxidoreductase when combined with lipid and vitamin K2. On the other hand, succinate oxidase was required for the addition of lipid, vitamin K2 and cytochrome c. NADH oxidase was also found in haemin-grown H protein and was activated about 9-fold in constituted reaction systems. Vesicles formed by haemin-grown H protein and lipid, could accumulate alanine and proline by addition of NADH or reduced phenazine methosulfate. Alanine and proline was also accumulated into the vesicles when transport energy was supplied as a membrane potential introduced by K+-diffusion via valinomycin. These results would indicate that H-protein contains the apoprotein of cytochromes, and a carrier involved in the active transport of alanine and proline.  相似文献   

17.
The inhibitory effects of 2-hydroxybiphenyl on various electron transport reactions of isolated membranes and growth in the presence of malate of either phototrophic or chemotrophic cells of Rhodospirillum rubrum were studied. 50% inhibition of both oxygen uptake of whole cells and growth under chemotrophic conditions (i.e. aerobiosis in the dark) was achieved in the presence of 0.09 mM 2-hydroxybiphenyl. With isolated membranes the same effect on NADH oxidase was obtained with 0.08 mM of inhibitor. Succinate dependent respiratory reactions were inhibited by 50% at a concentration of 0.36 mM. Growth under phototrophic conditions (i.e. anaerobiosis in the light) was inhibited by 50% in the presence of 0.17 mM (wild type strain) or 0.21 mM (blue-green mutant, strain VI) of 2-hydroxybiphenyl. Photophosphorylation and light dependent NAD+ reduction by succinate were inhibited by 50% at concentrations of 0.21 mM and 0.03 mM of inhibitor, respectively. After phototrophic growth of the organisms for about five doublings of cell mass in the presence of 0.18 mM of 2-hydroxybiphenyl coloured carotenoids could no longer be detected. Membrane fractions of such cultures exhibited normal activities of succinate cytochrome c reductase but activities of NADH cytochrome c reductase were decreased by 80%. In comparison with a blue green mutant, strain VI, of R. rubrum light induced absorbance changes at 865 nm as well as activities of photophosphorylation were unaffected. However, no activity of light dependent NAD+ reduction with succinate could be detected. The data indicate that cellular respiration as well as chemotrophic growth depend largely on NADH dependent respiration. Phototrophic growth, on the other hand, is limited by photophosphorylation while energy dependent reversed electron flow to NAD+, if at all, is of rathe minor importance.Abbreviation BChl bacteriochlorophyll  相似文献   

18.
Mitochondria isolated from the skeletal muscle of an infant with mitochondrial myopathy and renal dysfunction were analyzed. Activities of NADH dehydrogenase, succinate dehydrogenase, ubiquinol-cytochrome c oxidoreductase, and cytochrome c oxidase were severely decreased. Cytochromes aa3 and b were not detected in patient mitochondria, and the cytochrome c+c1 content was 14% of control. Immunoblotting demonstrated that the amount of cytochrome c oxidase subunits were markedly decreased in patient mitochondria. The polypeptide profile of patient mitochondria was quite different from that of control mitochondria. These results suggest that deterioration of mitochondria in a severe case of mitochondrial myopathy involves not only cytochrome c oxidase but also other mitochondrial proteins.  相似文献   

19.
I.G. Young  B.J. Wallace   《BBA》1976,449(3):376-385
A strain carrying a point mutation affecting the NADH dehydrogenase complex of Escherichia coli has been isolated and its properties examined. The gene carrying the mutation (designated ndh) was located on the E. coli chromosome at about minute 23 and was shown to be cotransducible with the pyrC gene. Strains carrying the ndh? allele were found to be unable to grow on mannitol and to grow very poorly on glucose unless the medium was supplemented with succinate, acetate or casamino acids.The following properties of strains carrying the ndh? allele were established which suggest that the mutation affects the NADH dehydrogenase complex but apparently not the primary dehydrogenase. Membrane preparations possess normal to elevated levels of d-lactate oxidase and succinate oxidase activities but NADH oxidase is absent. NADH is unable to reduce ubiquinone in the aerobic steady state and reduces cytochrome b very slowly when the membranes become anaerobic. NADH dehydrogenase, measured as NADH-dichlorophenolindophenol reductase is reduced but not absent. NADH oxidase is stimulated by menadione although not by Q-3 or MK-1 and in the presence of menadione, cytochrome b is reduced normally by NADH.Further mutants affected in NADH oxidase were isolated using a screening procedure based on the growth characteristics of the original ndh? strain. The mutations carried by these strains were all cotransducible with the pyrC gene and the biochemical properties of the additional mutants were similar to those of the original mutant.The properties of the group of ndh? mutants established so far suggest that they are affected in the transfer of reducing equivalents from the NADH dehydrogenase complex to ubiquinone.  相似文献   

20.
The synthesis of isocitrate lyase was induced by the presence of ethanol in the chemostat reaching a specific activity of 200 mU·mg-1 at this induced state. In glucoselimited, derepressed cells, 20 mU·mg-1 were detected and under repressed conditions isocitrate lyase activity was not detected.The sensitivity of gluconeogenic enzymes: cytoplasmic malate dehydrogenase; fructose 1,6-bisphosphatase and isocitrate lyase as well as the mitochondrial enzymes NADH dehydrogenase and succinate cytochrome c oxidase to glucose and galactose repression were studied in chemostat cultures. Our results show that galactose was less effective as a repressor than glucose. Malate dehydrogenase was completely inactivated by glucose, whereas galactose only produced a 78% decrease of specific activity. Fructose 1,6-bisphosphatase and isocitrate lyase were completely inactivated by both sugars but at different rate. Glucose produced an 85% decrease of specific activity of the mitochondrial enzymes whereas galactose only decrease an 67%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号