首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The hypothesis of the present work was that the pannus tissue overlying the articular hard tissues has an aggressive phenotype and contains the newly discovered collagenase-3 and its endogenous inducers and activators. We therefore analyzed the eventual presence of collagenase-3 and its regulation at the pannus-cartilage junction. Collagenase-3 mRNA (in situ hybridization) and enzyme protein (ABC and immunofluorescence staining) were found in the pannocytes in the pannus-hard tissue junction. Inflammatory round cells associated with the critical interface contained TNF-alpha and IL-1beta. These cytokines induced collagenase-3 secretion in cultured rheumatoid synovial fibroblasts. Procollagenase-3 activators, stromelysin-1, 72 kDa type IV collagenase/gelatinase and membrane-type 1-MMP, were also found in the pannus-hard tissue junction. Active collagenase-3 was inhibited with alendronate (IC50 = 500-750 microM). Collagenase-3, due to its substrate profile and local synthesis in a milieu favoring its activation, might play a major role in the degradation of cartilage type II and bone type I collagens. Alendronate, at concentrations attainable in vivo, is able to inhibit collagenase-3. This might offer an option to control collagenase-3-mediated tissue destruction in rheumatoid arthritis.  相似文献   

2.
As cancer cells traverse collagen-rich extracellular matrix (ECM) barriers and intravasate, they adopt a fibroblast-like phenotype and engage undefined proteolytic cascades that mediate invasive activity. Herein, we find that fibroblasts and cancer cells express an indistinguishable pericellular collagenolytic activity that allows them to traverse the ECM. Using fibroblasts isolated from gene-targeted mice, a matrix metalloproteinase (MMP)-dependent activity is identified that drives invasion independently of plasminogen, the gelatinase A/TIMP-2 axis, gelatinase B, collagenase-3, collagenase-2, or stromelysin-1. In contrast, deleting or suppressing expression of the membrane-tethered MMP, MT1-MMP, in fibroblasts or tumor cells results in a loss of collagenolytic and invasive activity in vitro or in vivo. Thus, MT1-MMP serves as the major cell-associated proteinase necessary to confer normal or neoplastic cells with invasive activity.  相似文献   

3.
Tissue inhibitors of metalloproteinases (TIMPs) inhibit the extracellular matrix (ECM) metalloproteinases (MMPs). To determine the source of TIMPs in synovial fluids of patients with osteoarthritis (OA), the ability of chondrocytes to express TIMP-2 and its regulation by agents found in inflammed joints was investigated. The constitutive TIMP-2 mRNA expression was demonstrated in chondrocytes from normal bovine, human OA and normal cartilage. The cross-hybridization of human and bovine TIMP-2 suggested its evolutionary conservation. Serum, IL-1, IL-6 and TGF-β were unable to augment considerably the basal expression of TIMP-2 mRNA. TIMP-1 RNA expression in chondrocytes from human OA cartilage was elevated compared to non-OA chondrocytes, while TIMP-2 mRNA levels were similar in both. IL-1β, IL-6 and TGF-β did not affect TIMP-2 expression but TGF-β induced TIMP-1 mRNA in human OA chondrocytes. TIMP-2 and TIMP-1 are therefore differentially regulated in chondrocytes and the basal TIMP-2 levels may be needed for the cartilage ECM integrity. © 1996 Wiley-Liss, Inc.  相似文献   

4.
5.
Nitric oxide (NO) is a multifunctional messenger molecule generated from L-arginine by a family of enzymes, including nitric oxide synthase (NOS). This study was performed to examine whether NO modulates the production of matrix metalloproteinases (MMPs), which degrade all components of extracellular matrix (ECM), in rheumatoid synovial cells. We investigated the effects of exogenously generated NO by a NO donor, S-nitroso-N-acetyl-DL-penicillamine (SNAP), on the MMPs production by rheumatoid synovial cells. Culture media conditioned by SNAP-treated synovial cells were examined by gelatin zymography and immunoblot analysis. Incubation of synovial cells with SNAP resulted in gelatinase A production in a dose-dependent fashion. Furthermore, RT-PCR analysis demonstrated that MMP-2 mRNA expression was induced in SNAP-treated synovial cells. In contrast, SNAP did not influence the production of TIMP-1 and TIMP-2, which preferentially inhibit MMP-2, by rheumatoid synovial cells. Our data indicate that NO could modulate MMP production by rheumatoid synovial cells and therefore contribute to ECM degradation of articular components in RA.  相似文献   

6.
7.
Summary Mandibular condylar cartilage acts as both articular and growth plate cartilage during growth, and then becomes articular cartilage after growth is complete. Cartilaginous extracellular matrix is remodeled continuously via a combination of production, degradation by matrix metalloproteinases (MMPs), and inhibition of MMP activity by tissue inhibitors of metalloproteinases (TIMPs). This study attempted to clarify the age-related changes in the mRNA expression patterns of MMP-2, MMP-9, TIMP-1, TIMP-2, and TIMP-3 in mandibular condylar cartilage in comparison to tibial growth plate and articular cartilage using an in situ hybridization method in growing and adult rats. MMP-2 and MMP-9 were expressed in a wide range of condylar cartilage cells during growth, and their expression domains became limited to mature chondrocytes in adults. The patterns of TIMP-1 and TIMP-2 expression were similar to those of MMP-2 and MMP-9 during growth, and were maintained until adulthood. TIMP-3 was localized to hypertrophic chondrocytes throughout the growth stage. Therefore, we concluded that TIMP-1 and TIMP-2 were general inhibitors of MMP-2 and MMP-9 in condylar cartilage, while TIMP-3 regulates the collagenolytic degradation of the hypertrophic cartilage matrix.  相似文献   

8.
Following activation, monolayers of lapine articular chondrocytes secreted into their culture media large amounts of prostaglandin E2 (PGE2) and the neutral metalloproteinases collagenase and gelatinase. Partially purified preparations of synovial "chondrocyte activating factors" (CAF), which contain interleukin-1 (IL-1), generally proved stronger activators of chondrocytes than recombinant, human, IL-1 alpha (rHIL-1 alpha) or IL-1 beta (rHIL-1 beta). The presence of synergistic cytokines within the synovial material provides one possible explanation of this discrepancy. As first reported by K. Phadke (1987, Biochem. Biophys. Res. Commun. 142, 448-453) fibroblast growth factor (FGF) synergized with rHIL-1 in promoting the synthesis of neutral metalloproteinases. In our hands FGF alone did not induce neutral metalloproteinases and increased PGE2 synthesis only modestly. However, at doses from 1 ng/ml to 1 microgram/ml, FGF progressively enhanced the synthesis of PGE2, collagenase, and gelatinase by chondrocytes responding to rHIL-1. Acidic and basic FGF synergized equally well with both rHIL-1 alpha and rHIL-1 beta. Phorbol myristate acetate (PMA), but not the Ca2+-ionophore A23187, could substitute for FGF as a synergist. PMA alone was a poor inducer of collagenase or gelatinase but, unlike FGF, it greatly enhanced the synthesis of PGE2 by chondrocytes. Dot-blot analyses with a cDNA probe to collagenase mRNA confirmed that partially purified synovial CAF induced collagenase mRNA more effectively than rHIL-1, with rHIL-1 alpha being superior to rHIL-1 beta in this regard. The synergistic effects of both FGF and PMA upon IL-1-mediated collagenase induction were associated with increased abundance of collagenase mRNA.  相似文献   

9.
Proteolytic degradation of collagen-rich extracellular matrices is a key feature in the development, growth and aging of skeleton. Matrix metalloproteinases (MMPs) are a family of enzymes capable of performing this function, whereas tissue inhibitors of MMPs (TIMPs) are believed to play an important role in regulating their activity. To better understand the roles of TIMP-1, -2 and -3, we have studied their mRNA levels in several different mouse tissues with special emphasis on the skeleton and the developing eye. A systematic analysis of TIMP-1, -2 and -3 mRNA levels in mouse knee joints during growth and aging demonstrated markedly different expression patterns for each TIMP. Immunohistochemical analysis revealed several time-dependent changes in the distribution of TIMP-1 and -2 in articular and growth cartilages, synovial tissue and bone. The data suggest that upon aging synovial tissue becomes the major source of synovial fluid TIMPs. In articular cartilage these inhibitors were mainly found in the deep layer and in subchondral bone. Compared with epiphyseal growth plate, the amounts of TIMP-1 and -2 in articular cartilage were quite low. These findings suggest that the capacity of articular cartilage chondrocytes to inhibit MMP activities by local production of TIMPs is limited, which may be of consequence during osteoarthritic cartilage degeneration.  相似文献   

10.
The proinflammatory cytokine interleukin-1 (IL-1) elicits catabolic effects on the myocardial extracellular matrix (ECM) early after myocardial infarction but there is little understanding of its direct effects on cardiac myofibroblasts (CMF), or the role of p38 mitogen-activated protein kinase (MAPK). We used a focused RT-PCR microarray to investigate the effects of IL-1α on expression of 41 ECM genes in CMF cultured from different patients, and explored regulation by p38 MAPK.IL-1α (10 ng/ml, 6 h) had minimal effect on mRNA expression of structural ECM proteins, including collagens, laminins, fibronectin and vitronectin. However, it induced marked increases in expression of specific ECM proteases, including matrix metalloproteinases MMP-1 (collagenase-1), MMP-3 (stromelysin-1), MMP-9 (gelatinase-B) and MMP-10 (stromelysin-2). Conversely, IL-1α reduced mRNA and protein expression of ADAMTS1, a metalloproteinase that suppresses neovascularization. IL-1α increased expression of TIMP-1 slightly, but not TIMP-2. Data for MMP-1, MMP-2, MMP-3, MMP-9, MMP-10 and ADAMTS1 were confirmed by quantitative real-time RT-PCR. Tumor necrosis factor-alpha (TNFα), another important myocardial proinflammatory cytokine, did not alter expression of these metalloproteinases. IL-1α strongly activated the p38 MAPK pathway in human CMF. Pharmacological inhibitors of p38-α/β (SB203580) or p38-α/β/γ/δ (BIRB-0796) reduced MMP-3 and ADAMTS1 mRNA expression, but neither inhibitor affected MMP-9 levels. MMP-1 and MMP-10 expression were inhibited by BIRB-0796 but not SB203580, suggesting roles for p38-γ/δ.In summary, IL-1α induces a distinct pattern of ECM protein and protease expression in human CMF, in part regulated by distinct p38 MAPK subtypes, affirming the key role of IL-1α and CMF in post-infarction cardiac remodeling.  相似文献   

11.
Oncostatin M (OSM), a member of the IL-6 superfamily of cytokines, is elevated in patients with rheumatoid arthritis and, in synergy with IL-1, promotes cartilage degeneration by matrix metalloproteinases (MMPs). We have previously shown that OSM induces MMP and tissue inhibitor of metalloproteinase-3 (TIMP-3) gene expression in chondrocytes by protein tyrosine kinase-dependent mechanisms. In the present study, we investigated signaling pathways regulating the induction of MMP and TIMP-3 genes by OSM. We demonstrate that OSM rapidly stimulated phosphorylation of Janus kinase (JAK) 1, JAK2, JAK3, and STAT1 as well as extracellular signal-regulated kinase (ERK) 1/2, p38, and c-Jun N-terminal kinase 1/2 mitogen-activated protein kinases in primary bovine and human chondrocytes. A JAK3-specific inhibitor blocked OSM-stimulated STAT1 tyrosine phosphorylation, DNA-binding activity of STAT1 as well as collagenase-1 (MMP-1), stromelysin-1 (MMP-3), collagenase-3 (MMP-13), and TIMP-3 RNA expression. In contrast, a JAK2-specific inhibitor, AG490, had no impact on these events. OSM-induced ERK1/2 activation was also not affected by these inhibitors. Similarly, curcumin (diferuloylmethane), an anti-inflammatory agent, suppressed OSM-stimulated STAT1 phosphorylation, DNA-binding activity of STAT1, and c-Jun N-terminal kinase activation without affecting JAK1, JAK2, JAK3, ERK1/2, and p38 phosphorylation. Curcumin also inhibited OSM-induced MMP-1, MMP-3, MMP-13, and TIMP-3 gene expression. Thus, OSM induces MMP and TIMP-3 genes in chondrocytes by activating JAK/STAT and mitogen-activated protein kinase signaling cascades, and interference with these pathways may be a useful approach to block the catabolic actions of OSM.  相似文献   

12.
13.
14.
15.
Interleukin (IL)-17, a proinflammatory cytokine, is produced primarily by activated Th17 cells. IL-17 consists of six ligands that signal through five receptors (IL-17Rs); IL-17A and IL-17F share the highest homology in the family. Matrix metalloproteinases (MMPs) degrade the extracellular matrix during cartilage remodeling whereas tissue inhibitor of metalloproteinases (TIMPs) inhibit the action of MMPs. In the present study, we examined the effect of IL-17F on the degradation and synthesis of the extracellular matrix in cartilage using human articular chondrocytes. We examined the effect of IL-17F on the expression of IL-17Rs, MMPs, TIMPs, type II collagen, aggrecan, link protein, and cyclooxygenases (COXs), as well as on prostaglandin E2 (PGE2) production. We also examined the indirect effect of PGE2 on the above IL-17F-induced/reduced components using NS-398, a specific inhibitor of COX-2. Cells were cultured with or without IL-17F in the presence or absence of either an IL-17R antibody or NS-398 for up to 28 days. Expression of IL-17Rs, MMPs, TIMPs, type II collagen, aggrecan, link protein, and COXs at mRNA and protein levels was determined using real-time polymerase chain reaction and enzyme-linked immunosorbent assay (ELISA), respectively. PGE2 production was determined by ELISA. The expression of all types of IL-17Rs was detected in chondrocytes. However, IL-17RE expression was extremely low, compared with other IL-17Rs. The expression of MMP-1, MMP-3, MMP-13, and COX-2 as well as PGE2 production were increased by addition of IL-17F, whereas the expression of IL-17RD, TIMP-2, TIMP-4, type II collagen, aggrecan, link protein, and COX-1 was decreased. The expression of IL-17RA, IL-17RB, IL-17RC, MMP-2, MMP-14, TIMP-1, and TIMP-3 was unaffected by addition of IL-17F. The IL-17R antibody blocked the stimulating/reducing effect of IL-17F on the expression of MMP-1, MMP-3, MMP-13, TIMP-2, TIMP-4, type II collagen, aggrecan, and link protein. NS-398 blocked the reducing effect of IL-17F on aggrecan expression, whereas it did not completely block the stimulating/reducing effects of IL-17F on the expression of MMP-1, MMP-3, MMP-13, TIMP-2, TIMP-4, type II collagen, and link protein. Our results suggest that IL-17F stimulates cartilage degradation by increasing the expression of collagenases (MMP-1 and -13) and stromelysin-1 (MMP-3) and by decreasing expression of their inhibitors (TIMP-2 and -4), type II collagen, aggrecan, and link protein in chondrocytes. Furthermore, our results suggest that the expression of aggrecan, link protein, and TIMP-4 decrease through the autocrine action of PGE2 in chondrocytes.  相似文献   

16.
17.
Early gestation mammalian fetuses possess the remarkable ability to heal cutaneous wounds in a scarless fashion. Over the past 20 years, scientists have been working to decipher the mechanisms underlying this phenomenon. Much of the research to date has focused on fetal correlates of adult wound healing that promote fibrosis and granulation tissue formation. It is important to remember, however, that wound repair consists of a balance between tissue synthesis, deposition, and degradation. Relatively little attention has been paid to this latter component of the fetal wound healing process.In this study, we examined the ontogeny of ten matrix metalloproteinases (MMPs) and their tissue inhibitors (TIMPs) in nonwounded fetal rat skin and fibroblasts as a function of gestational age. We used a semiquantitative polymerase chain reaction protocol to analyze these important enzymes at time points that represent both the scarless and scar-forming periods of rat gestation. The enzymes evaluated were collagenase-1 (MMP-1), stromelysin-1 (MMP-3), gelatinase A (MMP-2), gelatinase B (MMP-9), membrane-type matrix metalloproteinases (MT-MMPs) 1, 2, and 3, and TIMPs 1, 2, and 3.Results demonstrated marked increases in gene expression for MMP-1, MMP-3 and MMP-9 that correlated with the onset of scar formation in nonwounded fetal skin. Similar results were noted in terms of MMP-9 gene expression in fetal fibroblasts. These results suggest that differences in the expression of these matrix metalloproteinases may have a role in the scarless wound healing phenotype observed early in fetal rat gestation. Furthermore, our data suggest that the differential expression of gelatinase B (MMP-9) may be mediated by the fetal fibroblasts themselves.  相似文献   

18.

Introduction

Fibronectin fragments have been found in the articular cartilage and synovial fluid of patients with osteoarthritis and rheumatoid arthritis. These matrix fragments can stimulate production of multiple mediators of matrix destruction, including various cytokines and metalloproteinases. The purpose of this study was to discover novel mediators of cartilage destruction using fibronectin fragments as a stimulus.

Methods

Human articular cartilage was obtained from tissue donors and from osteoarthritic cartilage removed at the time of knee replacement surgery. Enzymatically isolated chondrocytes in serum-free cultures were stimulated overnight with the 110 kDa α5β1 integrin-binding fibronectin fragment or with IL-1, IL-6, or IL-7. Cytokines and matrix metalloproteinases released into the media were detected using antibody arrays and quantified by ELISA. IL-7 receptor expression was evaluated by flow cytometry, immunocytochemical staining, and PCR.

Results

IL-7 was found to be produced by chondrocytes treated with fibronectin fragments. Compared with cells isolated from normal young adult human articular cartilage, increased IL-7 production was noted in cells isolated from older adult tissue donors and from osteoarthritic cartilage. Chondrocyte IL-7 production was also stimulated by combined treatment with the catabolic cytokines IL-1 and IL-6. Chondrocytes were found to express IL-7 receptors and to respond to IL-7 stimulation with increased production of matrix metalloproteinase-13 and with proteoglycan release from cartilage explants.

Conclusion

These novel findings indicate that IL-7 may contribute to cartilage destruction in joint diseases, including osteoarthritis.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号