首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 827 毫秒
1.
Differences in expression of the Escherichia coli stress protein HtpG were found following exposure of exponentially growing cells to heat or chemical shock when cells were grown under different environmental conditions. With an htpG::lacZ reporter system, htpG expression increased in cells grown in a complex medium (Luria-Bertani [LB] broth) following a temperature shock at 45°C. In contrast, no HtpG overexpression was detected in cells grown in a glucose minimal medium, despite a decrease in the growth rate. Similarly, in pyruvate-grown cells there was no heat shock induction of HtpG expression, eliminating the possibility that repression of HtpG in glucose-grown E. coli was due to catabolite repression. When 5 mM phenol was used as a chemical stress agent for cells growing in LB broth, expression of HtpG increased. However, when LB-grown cells were subjected to stress with 10 mM phenol and when both 5 and 10 mM phenol were added to glucose-grown cultures, repression of htpG expression was observed. 2-Chlorophenol stress resulted in overexpression of HtpG when cells were grown in complex medium but repression of HtpG synthesis when cells were grown in glucose. No induction of htpG expression was seen with 2,4-dichlorophenol in cells grown with either complex medium or glucose. The results suggest that, when a large pool of amino acids and proteins is available, as in complex medium, a much stronger stress response is observed. In contrast, when cells are grown in a simple glucose mineral medium, htpG expression either is unaffected or is even repressed by imposition of a stress condition. The results demonstrate the importance of considering differences in growth environment in order to better understand the nature of the response to an imposed stress condition.  相似文献   

2.
Candida utilis NCYC 321 was grown in steady-state culture in a chemostat under glucose limitation or NH4+ limitation at temperatures of 30, 25, 20, and 15 C and at dilution rates (equal to growth rates) in the range of 0.35 to 0.05 hr−1. Deoxyribonucleic acid contents of cells grown under the various conditions remained approximately constant, but the contents of several other cell components varied. Over the range of 30 to 15 C, the greatest differences were in the ribonucleic acid (RNA) and protein contents of cells grown under NH4+ limitation, which increased as the temperature was decreased. The contents of other components, particularly adenosine triphosphate in cells grown under glucose limitation, varied more when the cells were grown at different rates at a fixed temperature. Cells grown at a fixed rate under NH4+ limitation increased in volume as the temperature was decreased below 30 C. The increase in volume was closely correlated with increases in the proportions of RNA and protein in the dry weight of cells. Cells grown under glucose limitation showed much smaller increases in volume; these increases were poorly correlated with the increased RNA content and hardly at all with the increased protein content. Increases in volume with a decrease in growth temperature from 30 to 20 C were also demonstrated in cells grown under phosphate limitation and to a much smaller extent in cells grown under glycerol limitation. The increased RNA synthesized at low temperatures by cells grown under NH4+ limitation was found almost exclusively in the 40,000 × g supernatant fluid, but only about 40% of it sedimented at 100,000 × g. Cells grown at a fixed rate under NH4+ limitation synthesized less total carbohydrate when the temperature was decreased from 30 to 15 C. This decrease was mainly in the trichloroacetic acid-soluble fraction (probably trehalose) and in the intracellular hot alkali-soluble glucan (probably glycogen). Cells grown at a fixed rate under glucose limitation showed a small increase in carbohydrate content as the temperature was decreased from 30 to 15 C.  相似文献   

3.
To study the importance of arginine provision and phosphate limitation for synthesis and accumulation of cyanophycin (CGP) in Acinetobacter sp. strain ADP1, genes encoding the putative arginine regulatory protein (argR) and the arginine succinyltransferase (astA) were inactivated, and the effects of these mutations on CGP synthesis were analyzed. The inactivation of these genes resulted in a 3.5- or 7-fold increase in CGP content, respectively, when the cells were grown on glutamate. Knockout mutations in both genes led to a better understanding of the effect of the addition of other substrates to arginine on CGP synthesis during growth of the cells of Acinetobacter sp. strain ADP1. Overexpression of ArgF (ornithine carbamoyltransferase), CarA-CarB (small and large subunits of carbamoylphosphate synthetase), and PepC (phosphoenolpyruvate carboxylase) triggered synthesis of CGP if amino acids were used as a carbon source whereas it was not triggered by gluconate or other sugars. Cells of Acinetobacter sp. strain ADP1, which is largely lacking genes for carbohydrate metabolism, showed a significant increase in CGP contents when grown on mineral medium supplemented with glutamate, aspartate, or arginine. The Acinetobacter sp. ΔastA(pYargF) strain is unable to utilize arginine but synthesizes more arginine, resulting in CGP contents as high as 30% and 25% of cell dry matter when grown on protamylasse or Luria-Bertani medium, respectively. This recombinant strain overcame the bottleneck of the costly arginine provision where it produces about 75% of the CGP obtained from the parent cells grown on mineral medium containing pure arginine as the sole source of carbon. Phosphate starvation is the only known trigger for CGP synthesis in this bacterium, which possesses the PhoB/PhoR phosphate regulon system. Overexpression of phoB caused an 8.6-fold increase in CGP content in comparison to the parent strain at a nonlimiting phosphate concentration.  相似文献   

4.
Inspired by previous work of Iwasa et al. (2006) and Haeno et al. (2007), we consider an exponentially growing population of cancerous cells that will evolve resistance to treatment after one mutation or display a disease phenotype after two or more mutations. We prove results about the distribution of the first time when k mutations have accumulated in some cell, and about the growth of the number of type-k cells. We show that our results can be used to derive the previous results about a tumor grown to a fixed size.  相似文献   

5.
Enzymatic extraction of intracellular enzymes from various yeasts by glucanase was investigated. Favourable conditions for lysis and release of intracellular enzymes were established. The effects of yeast concentration, growth phase of yeast, storage temperature and pretreatment of yeast were studied. The yeasts investigated can be divided into two groups. The first, Kluyveromyces lactis, Saccharomyces cerevisiae, Saccharomyces oviformis, Torulopsis glabrata, Hansenula polymorpha and local bakers' yeast, lysed relatively easily (70–80% of the cells), especially when cells from the logarithmic growth phase were treated. The second, Candida utilis and Candida vini, were more susceptible to lysis (40–50%) when cells were taken from the stationary phase. Release of two enzymes, glycerol kinase from Candida utilis grown on glycerol and formate dehydrogenase from Torulopsis glabrata grown on methanol was examined. The highest specific activities were obtained by incubating the cells with glucanase for 1.5 h at 37°C. Inactivation of the released enzyme was relatively low. After 12 h of enzymatic treatment at 28°C glycerol kinase maintained about 50%, and formate dehydrogenase over 80%, of the original activities.  相似文献   

6.
In Saccharomyces cerevisiae the cellular content of cytochrome P-450 was investigated and shown to be related to the growth phase of aerobic cultures when glucose was the carbon source. When grown on glucose medium the log-phase cells of the diploid strain D5 contained about 9× more cytochrome P-450 than log-phase cells of the diploid strain D4. The D4 cells grown on medium containing glucose contained about 10× more cytochrome P-450 than D4 cell grown on medium containing galactose as carbon source. Cells of strain D4, harvested from log-phase cultures grown on glucose, were capable of metabolizing aflatoxin B1, dimethylnitrosamine, β-naphthylamine, ethyl carbamate, cyclophosphamide and dimethylsulphoxide to products active genetically in the same cells. The metabolism of the compounds tested was attributed to cyctochrome P-450-dependent mixed-function oxidation since genetic activity was high in log cells grown on medium containing glucose but negligible in log cells grown on medium containing galactose. However, aflatoxin B1 differed from the other promutagens tested since the genetic activity of this compound in cells grown on galactose medium was similar to the activity in cells grown on glucose medium. This result is discussed in relation to enzyme systems which could metabolize aflatoxin B1. The results of treating log-phase cells of the strain D5, grown on medium containing glucose, with aflatoxin B1 and dimethylnitrosamine are presented and compared with the results from the strain D4.  相似文献   

7.
Photosynthetic and respiratory rates of two psychrophilic diatoms   总被引:1,自引:0,他引:1       下载免费PDF全文
The photosynthetic rates in two psychrophilic diatoms, Chaetoceros sp. strain K3-10 and Nitzschia sp. K3-3 for cells grown at 0°C were 8 to 10 microliters O2 evolved per milligram dry weight per hour, and 10-fold higher, about 80 for cells grown at 10°C. The respiration rates followed the same pattern, with a value of around 1 microliter dark uptake per milligram dry weight per hour for both organisms grown at 0°C, and 6 to 10 for cells grown at 10°C. When cells grown at 0°C were immediately shifted to 10°C or cells grown at 10°C were shifted to 0°C, the respiratory rates quickly adapted to values characteristic of cells grown at the shift temperature. On the other hand, the light-saturated rate of O2 evolution showed much less immediate adaptation, especially on the up shift, 0° to 10°C. The chlorophyll a content of 0°C grown cells was about 0.5% of dry weight, in 10°C grown cells 1.3% (strain K3-10) and 2.2% (strain K3-3). In addition to a diminished chlorophyll a content in 0°C grown cells, there seemed proportionally (by absorbance and calculation) less c to a than in 10°C grown cells. The relative fluorescence excitation spectra of 680-nm emission also showed a lower contribution by both chlorophyll c and fucoxanthin in 0°C grown cells of Chaetoceros sp. strain K3-10 as compared to 10°C grown cells. The data at hand suggest that in psychrophilic diatoms continuously growing at 0°C there may be problems associated with synthesis of an effective accessory pigment system, and as a working hypothesis it is suggested this is related to restriction of synthesis of one or several accessory pigment proteins.  相似文献   

8.
The stability of spheroplasts from the osmotrophic yeast Saccharomyces rouxii was studied in buffered solutions of mannitol and glucose. The plasma membranes from cells grown in high glucose concentrations were more stable to osmotic lysis than were membranes from cells grown in lower glucose concentrations. Mannitol was a better osmotic stabilizer than glucose, except when the cells were grown in a high glucose concentration. Spheroplasts from a glucose tolerant-deficient mutant were much less stable than the corresponding spheroplasts from the parent strain, especially when suspended in glucose solutions. These results suggest an involvement of the plasma membrane in the glucose-tolerant mechanism of S. rouxii.  相似文献   

9.
Phycobilisomes (PBS) are antenna complexes that harvest light for photosystem (PS) I and PS II in cyanobacteria and some algae. A process known as far-red light photoacclimation (FaRLiP) occurs when some cyanobacteria are grown in far-red light (FRL). They synthesize chlorophylls d and f and remodel PS I, PS II, and PBS using subunits paralogous to those produced in white light. The FaRLiP strain, Leptolyngbya sp. JSC-1, replaces hemidiscoidal PBS with pentacylindrical cores, which are produced when cells are grown in red or white light, with PBS with bicylindrical cores when cells are grown in FRL. This study shows that the PBS of another FaRLiP strain, Synechococcus sp. PCC 7335, are not remodeled in cells grown in FRL. Instead, cells grown in FRL produce bicylindrical cores that uniquely contain the paralogous allophycocyanin subunits encoded in the FaRLiP cluster, and these bicylindrical cores coexist with red-light-type PBS with tricylindrical cores. The bicylindrical cores have absorption maxima at 650 and 711 nm and a low-temperature fluorescence emission maximum at 730 nm. They contain ApcE2:ApcF:ApcD3:ApcD2:ApcD5:ApcB2 in the approximate ratio 2:2:4:6:12:22, and a structural model is proposed. Time course experiments showed that bicylindrical cores were detectable about 48 h after cells were transferred from RL to FRL and that synthesis of red-light-type PBS continued throughout a 21-day growth period. When considered in comparison with results for other FaRLiP cyanobacteria, the results here show that acclimation responses to FRL can differ considerably among FaRLiP cyanobacteria.  相似文献   

10.
Isolated membrane fragments from Anacystis nidulans grown at 39 °C undergo visible spectral changes on chilling, suggesting a carotenoid component is altered. No such changes are seen when cells are grown at 25 °C. The magnitude of the decreased absorbance is a function of the chilling temperature and the media in which membrane fragments are suspended. The spectral decrease following chilling develops relatively slowly and is a function of the cooling rate and final temperature. The absorbance change is reversed if the fragments are heated to near 50 °C subsequent to chilling. Liposomes prepared from a total lipid extract of Anacystis undergo a spectral change on chilling which closely resembles that occurring in whole cells or isolated membrane fragments. Liposomes prepared from an extract of cells grown at 25 °C show only about 30% as great a spectral change as those from cells grown at 39 °C. The spectral bleaching is freely reversible when the liposomes are reheated, but shows a pronounced hysteresis. It is suggested that specific phase changes occur in Anacystis membranes and artificial liposomes on cooling which alter the environment of carotenoid. These changes may relate to previous observations that cells grown at 39 °C cannot survive a cold shock while those grown at 25 °C do.  相似文献   

11.
Azotobacter synthesizes an extensive internal membranous nework when grown with air (N2), i.e., under conditions when these bacteria fix nitrogen. Very slight quantities of internal membrane, concentrated mainly about the cell periphery, are formed when Azotobacter grows with fixed nitrogen, i.e., ammonia and amino acids. Compared to cells growing with ammonia, cells utilizing atmospheric nitrogen as the sole nitrogen source are smaller in size and volume, grow one-third slower, and lack detectable poly-β-hydroxybutyrate.  相似文献   

12.
The composition of Bdellovibrio bacteriovorus lipopolysaccharide (LPS) was determined for cells grown axenically and intraperiplasmically on Escherichia coli or Pseudomonas putida. The LPS of axenically grown bdellovibrios contained glucose and fucosamine as the only detectable neutral sugar and amino sugar, and nonadecenoic acid (19:1) as the predominant fatty acid. Additional fatty acids, heptose, ketodeoxyoctoic acid, and phosphate were also detected. LPS from bdellovibrios grown intraperiplasmically contained components characteristic of both axenically grown bdellovibrios and the substrate cells. Substrate cell-derived LPS fatty acids made up the majority of the bdellovibrio LPS fatty acids and were present in about the same proportions as in the substrate cell LPS. Glucosamine derived from E. coli LPS amounted to about one-third of the hexosamine residues in intraperiplasmically grown bdellovibrio LPS. However, galactose, characteristic of the E. coli outer core and O antigen, was not detected in the bdellovibrio LPS, suggesting that only lipid A components of the substrate cell were incorporated. Substrate cell-derived and bdellovibrio-synthesized LPS materials were conserved in the B. bacteriovorus outer membrane for at least two cycles of intraperiplasmic growth. When bdellovibrios were grown on two different substrate cells successively, lipid A components were taken up from the second while the components incorporated from the lipid A of the first were conserved in the bdellovibrio LPS. The data show that substrate cell lipid A components were incorporated into B. bacteriovorus lipid A during intraperiplasmic growth with little or no change, and that these components, fatty acids and hexosamines, comprised a substantial portion of bdellovibrio lipid A.  相似文献   

13.
Phycobilisomes of Tolypothrix tenuis, a cyanobacterium capable of complete chromatic adaptation, were studied from cells grown in red and green light, and in darkness. The phycobilisome size remained constant irrespective of the light quality. The hemidiscoidal phycobilisomes had an average diameter of about 52 nanometers and height of about 33 nanometers, by negative staining. The thickness was equivalent to a phycocyanin molecule (about 10 nanometers). The molar ratio of allophycocyanin, relative to other phycobiliproteins always remained at about 1:3. Phycobilisomes from red light grown cells and cells grown heterotrophically in darkness were indistinguishable in their pigment composition, polypeptide pattern, and size. Eight polypeptides were resolved in the phycobilin region (17.5 to 23.5 kilodaltons) by isoelectric focusing followed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Half of these were invariable, while others were variable in green and red light. It is inferred that phycoerythrin synthesis in green light resulted in a one for one substitution of phycocyanin, thus retaining a constant phycobilisome size. Tolypothrix appears to be one of the best examples of phycobiliprotein regulation with wavelength. By contrast, in Nostoc sp., the decrease in phycoerythrin in red light cells was accompanied by a decrease in phycobilisome size but not a regulated substitution.  相似文献   

14.
Preparation of concentrated lactic streptococcus starters   总被引:10,自引:7,他引:3       下载免费PDF全文
Single-strain cultures of Streptococcus cremoris were grown in a semisynthetic medium with automatic pH control. After centrifugation, the cells were resuspended in sterile nonfat milk (2% of the original volume). There was no significant difference in the maximum population attained when cultures were grown at pH values of 5.5, 6.0, or 6.5 with sodium hydroxide as the neutralizer. With ammonium hydroxide as the neutralizer, maximum populations obtained were increased about twofold. In most cases, the acid-producing ability of the culture concentrates was comparable to that of fresh-milk cultures. There was some variation among strains of S. cremoris with respect to the effects of different neutralizers and levels of pH control on the biological activity of the culture concentrates. The culture concentrates were stored in liquid nitrogen for as long as 231 days without significant loss in biological activity.  相似文献   

15.
Euglena gracilis, when grown on a medium containing 10?5m 2,4-dinitrophenol, will initially bleach, cease to divide, and about one-half will die off. After a prolonged lag period of 6–8 days, the remaining cells green and begin to multiply. The resultant cells are resistant to dinitrophenol and will grow in its presence at rates close to those in normal medium. The resistant cells do not differ greatly from the nonresistant ones, except that they show no sign of respiratory control, their photosynthetic activity is somewhat reduced, and their size is larger. The resistant cells appear less motile, their flagellar movement is slower, and their motility appears disturbed (they tend to swim in circles). The resistance is lost when the cells are grown for 2–3 generations on medium lacking dinitrophenol.  相似文献   

16.
Effects of different pH and carbon sources on pullulan production, UDP-glucose level and pullulan-related synthases activity inAureobasidium pullulans Y68 were examined. It was found that more pullulan was produced when the yeast strain was grown in the medium with initial pH 7.0 than when it was grown in the same medium with constant pH 6.0. The results also show that higher pullulan yield was obtained when the cells were grown in the medium containing glucose than when they were cultivated in the medium supplementing other carbon sources. Our results demonstrate that the more pullulan was synthesized, the less UDP-glucose was left in the cells ofA. pullulans Y68. However, it was observed that more pullulan was synthesized; the cells had higher pullulan-related synthase activity. Therefore, high pullulan yield was related to low UDP-glucose level and high pullulan-related synthases activity inAureobasidium pullulans Y68.  相似文献   

17.
《Process Biochemistry》2007,42(2):141-147
Haploid Saccharomyces cerevisiae W303-1A cells grown on different carbon sources were employed as the biocatalyst for ethyl acetoacetate reduction in n-hexane. The effects of cell immobilization on montmorillonite, as well as the addition of trehalose or sucrose solutions, were also tested. Best conversions (∼50%) to the chiral alcohol ethyl (S)-(+)-3-hydroxybutanoate (ee > 99%) were obtained with cells grown under respiratory metabolism with glycerol–ethanol, and higher yields were observed when trehalose was added to the reaction media. Although cells with fermentative metabolism grown on glucose were able to reduce the substrate when sucrose was added, the disaccharide was consumed by the cells during the course of the reaction, and no enantioselective product was obtained. Immobilized cells also required the addition of trehalose in order to reduce the substrate with high yield. Thus, our results indicate that trehalose may be an efficient protector of immobilized or free yeast cells during enantioselective reductions in organic solvent.  相似文献   

18.
The specific activities of nitrate reductase, nitrite reductase, glutamine synthetase, glutamate synthase, and glutamate dehydrogenase were determined in intact protoplasts and intact chloroplasts from Chlamydomonas reinhardtii. After correction for contamination, the data were used to calculate the portion of each enzyme in the algal chloroplast. The chloroplast of C. reinhardtii contained all enzyme activities for nitrogen assimilation, except nitrate reductase, which could not be detected in this organelle. Glutamate synthase (NADH- and ferredoxin-dependent) and glutamate dehydrogenase were located exclusively in the chloroplast, while for nitrite reductase and glutamine synthetase an extraplastidic activity of about 20 and 60%, respectively, was measured. Cells grown on ammonium, instead of nitrate as nitrogen source, had a higher total cellular activity of the NADH-dependent glutamate synthase (+95%) and glutamate dehydrogenase (+33%) but less activity of glutamine synthetase (−10%). No activity of nitrate reductase could be detected in ammonium-grown cells. The distribution of nitrogen-assimilating enzymes among the chloroplast and the rest of the cell did not differ significantly between nitrate-grown and ammonium-grown cells. Only the plastidic portion of the glutamine synthetase increased to about 80% in cells grown on ammonium (compared to about 40% in cells grown on nitrate).  相似文献   

19.
Candida albicans cells have low levels of ergosterol when grown in ascorbic acid-supplemented media. When cells are grown in hydroquinone-supplemented media, the ergosterol levels became higher as compared to normal cells. The uptake of lysine, glycine, glutamic acid, proline, methionine and serine is reduced in hydroquinone-supplemented cells. In contrast to hydroquinone-supplemented cells, the rate and level of accumulation of these amino acids are higher in ascorbic acid-supplemented cells. Nystatin-resistant isolates of C. albicans with low ergosterol contents also exhibit an increased rate and level of accumulation of these amino acids. The uptake of phenylalanine and leucine remained unaffected by such a change in ergosterol levels brought about by different supplementation of the media. The results demonstrate a correlation between ergosterol levels and amino acids uptake. Contrary to various reports, the rate of K+ efflux does not seem to correlate with the amino acid uptake in C. albicans cells.  相似文献   

20.
Spheroplasts were prepared from cells of Saccharomyces cerevisiae NCYC 366, grown at 30 or 15 C, by incubating cells with snail-gut juice after pretreatment with 2-mercaptoethanol. Walls of cells grown batchwise or in continuous culture at 15 C were more resistant to digestion with snail juice than walls on cells grown under the same conditions as 30 C. Spheroplasts lysed when suspended in hypotonic solutions of mannitol. The resistance of spheroplasts to osmotic lysis tended to increase when the test temperature was lowered below 30 C. The increased resistance was greater with spheroplasts from cells grown at 15 C. Cations, especially Ca2+, protected spheroplasts against osmotic lysis. In general, the protective effects, measured at 30 C, were smaller with spheroplasts from cells grown at 15 C compared with 30 C. Citrate and ethylenediaminetetraacetate (EDTA) decreased the resistance of spheroplasts to osmotic lysis. On the whole, the decrease was greater with spheroplasts from cells grown at 30 C rather than 15 C. In the presence of EDTA, spheroplasts from cells grown at 30 C were less resistant to osmotic lysis at 5 C than at 30 C; when spheroplasts from cells grown at 15 C were similarly examined, they were more resistant to lysis at 5 C than at 30 C. Spheroplast membranes from cells grown at 15 C had slightly but significantly greater contents of Mg2+, Ca2+, K+, and Na+ compared with spheroplast membranes from cells grown at 15 C. Mg2+ and Ca2+ were more easily extracted with EDTA from membranes of 30 C-grown cells than from 15 C-grown cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号