首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The seasonal changes in the relative distribution of P700 chlorophyll-protein complex a1 and light harvesting chlorophyll-protein complex a/b were studied in a natural stand of Pinus silvestris. Similar measurements were made after artificial photobleaching of chlorophyll in pine seedlings or in isolated pine chloroplasts. The chlorophyll-protein complexes were solubilized by sodium dodecyl sulphate and separated by polyacrylamide gel electrophoresis. When autumn and winter destruction of chlorophyll occurs, the chlorophyll a antenna associated with P700 in photosystem 1 (P700-CPa1) is relatively more affected than the light harvesting complex, which lacks a reaction centre. These results are further supported by low-temperature fluorescence emission properties of isolated chloroplasts presented in this work and elsewhere. The destruction of chlorophyll in stressing autumn and winter climates is most probably caused by photosensitized oxidation of chlorophyll.  相似文献   

2.
Summary Irradiation of the principal photosystem II light-harvesting chlorophyll-protein antenna complex, LHC II, with high light intensities brings about a pronounced quenching of the chlorophyll fluorescence. Illumination of isolated thylakoids with high light intensities generates the formation of quenching centres within LHC II in vivo, as demonstrated by fluorescence excitation spectroscopy. In the isolated complex it is demonstrated that the light-induced fluorescence quenching: a) shows a partial, biphasic reversibility in the dark; b) is approximately proportional to the light intensity; c) is almost independent of temperature in the range 0–30°C; d) is substantially insensitive to protein modifying reagents and treatments; e) occurs in the absence of oxygen. A possible physiological importance of the phenomenon is discussed in terms of a mechanism capable of dissipating excess excitation energy within the photosystem II antenna.Abbreviations chla chlorophyll a - chlb chlorophyll b - F0 fluorescence yield with reaction centers open - Fm fluorescence yield with reaction centres closed - Fi fluorescence at the plateau level of the fast induction phase - LHC II light-harvesting chlorophyll a/b protein complex II - PS II photosystem II - PSI photosystem I - Tricine N-[2-hydroxy-1,1-bis(hydroxymethyl)ethyl]glycine  相似文献   

3.
When grown heterotrophically in the dark on enriched culture medium, the pigment-deficient strain of Scenedesmus obliquus, mutant C-6E, is uniquely characterized by a complete deficiency in carotenoids and chlorophyll b while retaining a low level of chlorophyll a which is exclusively utilized in photosystem I-type reactions. The strain lacks photosystem II activity but exhibits all PS-I reactions tested, including P700 redox reactions, photoreduction of CO2 with hydrogen as electron donor, and O2 uptake following methyl viologen reduction. The mutant contains 10 times more P700 per chlorophyll than the wild type and develops the pigment-protein complex of PS-I, CP-I. The action spectrum for methyl viologen reduction compares favorable to the low temperature absorption spectrum of whole cells. Both the chlorophyll fluorescence excitation and emission spectra of pigment-protein complexes derived from cells of C-6E show patterns typical of PS-I. The strain lacks the LHCs and CP-II as well as their respective apoproteins. The absence of carotenoids appears to prevent the development of the normal variety of pigment-protein complexes and the accumulation of Chl b. This inability is also expressed by the presence of only single stranded thylakoid membranes in the chloroplast of C-6E. When heterotrophically grown cells of this mutant are exposed to white light of 8 or 22 W m?2, 50% of its chlorophyll is lost by photooxidation within 4 or 1.5 hours, respectively.  相似文献   

4.
The chlorophyll a antenna of photosystems I and II were each isolated after detergent treatment by gel electrophoresis or sucrose gradient centrifugation from a b-less mutant of barley grown in daylight and from wildtype barley developed in intermittent light. We identified each fraction by both its electrophoretic position and PS I activity (P700 content) in the case of the mutant, and by both PS I and PS II activity (DCIP reduction from DPC) in the light-limited plants. The proportion of Chl a in each photosystem was estimated from the amount in each gel or sucrose gradient band, and from addition of the areas under the absorption spectra (650–710 nm) of each fraction to match the spectrum of the solubilized thylakoids. The latter method was possible because the spectrum (77 K) of each fraction was unique; in the mutant about 70% of chlorophyll is associated with PS I and 30% with PS II. In the light-limited plants, the reverse is true with nearly 70% associated with PS II. RESOL analyses of both absorption and fluorescence emission spectra of all isolated fractions indicated an abnormal arrangement of antenna chlorophyll molecules in the light-limited, developing membranes even though their reaction centers are fully functional.Abbreviations DCIP dichlorophenolindophenol - DOC deoxycholate - DPC diphenylcarbazide - DL daylight - ImL intermittent light - LHC light-harvesting Chl a/b protein complex - PAGE polyacrylamide gel electrophoresis DPB-CIW No. 778  相似文献   

5.
The effects of nuclear genome duplication on the chlorophyll-protein content and photochemical activity of chloroplasts, and photosynthetic rates in leaf tissue, have been evaluated in haploid, diploid, and tetraploid individuals of the castor bean, Ricinus communis L. Analysis of this euploid series revealed that both photosystem II (2,6-dichlorophenolindophenol reduction) and photosystem I oxygen uptake (N,N,N′,N′-tetramethyl-p-phenylenediamine to methyl viologen) decrease in plastids isolated from cells with increasingly larger nuclear complement sizes. Photosynthetic O2-evolution and 14CO2-fixation rates in leaf tissue from haploid, diploid, and tetraploid individuals were also found to decrease with the increase in size of the nuclear genome. Six chlorophyll-protein complexes, in addition to a zone of detergent complexed free pigment, were resolved from sodium dodecyl sulfate-solubilized thylakoid membranes from cells of all three ploidy levels. In addition to the P700-chlorophyll a-protein complex and the light-harvesting chlorophyll a/b-protein complex, four minor complexes were revealed, two containing only chlorophyll a and two containing both chlorophyll a and b. The relative distribution of chlorophyll among the resolved chlorophyll-protein complexes and free pigment was found to be similar for all three ploidy levels.  相似文献   

6.
Photosystem 1 (PS1) enriched preparations have been extracted from the cyanobacterium Chlorogloea fritschii grown either in darkness or in the light. Absorption spectra show that the main chlorophyll peak has shifted from 678 nm in PS1 from light grown cells to 675 nm in PS1 from dark grown cells. Fluorescence spectra show a similar blue shift in wavelength maximum from 690 nm to 678 nm and the fluorescence intensity is higher in PS1 from dark grown cells. Allophycocyanin is present in PS1 from light grown cells, but absent from preparations from C. fritschii grown in the dark. P700: chlorophyll a ratios of the preparations from light and dark grown cells are 1:35 and 1:80 respectively, all P700 being photoactive. The results are interpreted to suggest that allophycocyanin is not attached to PS1 in dark grown C. fritschii, neither is all chlorophyll arranged in such a way as to ensure efficient energy transfer to P700.  相似文献   

7.
The electron transport rates of photosystems II and I, amounts of electron carriers, coupling factor activity and photosynthetic rates were investigated in thylakoids isolated from pea plants grown under a wide range of light intensities (16 h light-8 h dark). The electron transport rates of PS II and PS I, as partial reactions or in whole chain, and coupling factor activity on a unit chlorophyll basis, all increased as the light intensity available for growth was altered from a very low intensity of 10 E m-2s-1 to a high intensity of 840 E m-2s-1. Similarly, there were increases in the amounts of atrazine binding sites, plastoquinine, cytochrome f and P700 per unit chlorophyll; significantly, the amounts of reaction centres of PS II and PS I were not equal at any light intensity. The rate of change of all parameters with respect to light intensity could be represented by two straight lines of different slopes which met at a transition point corresponding to approximately 200 E m-2s-1 during growth. These photoadaptations were similar to those observed for both the relative distribution of chlorophyll in chlorophyll-protein complexes and the chl a/chl b ratios [Leong and Anderson, 1984, Photosynthesis Research 5:117–128]. Since these thylakoid components and functions were affected in the same direction by light intensity during growth and all show linear relationships with chl a/chl b ratios, it indicates that they are closely regulated and markedly well co-ordinated. Plants compensate for the limited amount of low light intensities by drastically increasing the light-harvesting antenna unit size of photosystem II and to a lesser extent that of photosystem I. Changes in the composition of the thylakoid membranes exert a regulatory effect on the overall photosynthetic rate up to approximately 450 E m-2s-1.Abbreviations chl chlorophyll - cyt cytochrome - PQ plastoquinone - PS photosystem  相似文献   

8.
R. E. Glick  S. W. McCauley  A. Melis 《Planta》1985,164(4):487-494
The effect of light quality during plant growth of chloroplast membrane organization and function in peas (Pisum sativum L. cv. Alaska) was investigated. In plants grown under photosystem (PS) I-enriched (far-red enriched) illumination both the PSII/PSI stoichiometry and the electrontransport capacity ratios were high, about 1.9. In plants grown under PSII-enriched (far-red depleted) illumination both the PSII/PSI stoichiometry and the electron-transport capacity ratios were significantly lower, about 1.3. In agreement, steady-state electron-transport measurements under synchronous illumination of PSII and PSI demonstrated an excess of PSII in plants grown under far-red-enriched light. Sodium dodecylsulfate polyacrylamide gel electrophoretic analysis of chlorophyll-containing complexes showed greater relative amounts of the PSII reaction center chlorophyll-protein complex in plants grown under farred-enriched light. Additional changes were observed in the ratio of light-harvesting chlorophyll a/b protein to PSII reaction center chlorophyll-protein under the two different light-quality regimes. The results demonstrate the dynamic nature of chloroplast structure and support the notion that light quality is an important factor in the regulation of chloroplast membrane organization and-function.Abbreviations and symbols Chl chlorophyll - CPa PSII reaction center chlorophyll protein complex - CPI PSI chlorophyll protein complex - FR-D light depleted in far-red sensitizing primarily PSII - FR-E light enriched in far-red sensitizing primarily PSI - LHCP PSII light-harvesting chlorophyll a/b protein complex - P 700 primary electron donor of PSI - PSI, PSII photosystems I and II, respectively - Q primary electron acceptor of PSII  相似文献   

9.
Yeda press disruption of thylakoids in the presence of magnesium followed by aqueous polymer two-phase partitioning fractionated the total thylakoid membrane material into two distinctly different fractions. One fraction comprised approx. 60% of the material on a chlorophyll basis and contained inside-out vesicles while the other fraction (40%) contained right-side-out vesicles. The sidedness of the vesicles was determined from the direction of their light-induced proton translocation. The inside-out vesicles showed a pronounced Photosystem (PS) II enrichment as judged by their high PS II and low PS I activities. Moreover, they showed a high ratio between the PS II reaction centre chlorophyll-protein complex and the PS I reaction centre chlorophyll-protein complex (CP I). The chlorophyll ab ratio was as low as 2.3 compared to 3.2 for the starting material. In contrast, the right-side-out vesicles showed a pronounced PS I enrichment. Their chlorophyll ab ratio was 4.3–4.9. The tight stacking induced by Mg2+ allows a quantitative formation of inside-out vesicles from the appressed thylakoid regions while mainly non-appressed thylakoids turn right-side-out. The possibility of fractionating all of the thylakoid material into two sub-populations with markedly different composition with respect to PS I and PS II argues against a close physical association between the two photosystems and in favour of their spatial separation in the plane of the membrane. This fractionation procedure, which can be completed within 1 h and gives high yields of both PS II inside-out thylakoids and PS I right-side-out thylakoids, should be very useful for facilitating and improving studies on both the transverse and lateral organization of the thylakoid membrane.  相似文献   

10.
Excitation spectra of chlorophyll a fluorescence in chloroplasts from spinach and barley were measured at 4.2 K. The spectra showed about the same resolution as the corresponding absorption spectra. Excitation spectra for long-wave chlorophyll a emission (738 or 733 nm) indicate that the main absorption maximum of the photosystem (PS) I complex is at 680 nm, with minor bands at longer wavelengths. From the corresponding excitation spectra it was concluded that the emission bands at 686 and 695 nm both originate from the PS II complex. The main absorption bands of this complex were at 676 and 684 nm. The PS I and PS II excitation spectra both showed a contribution by the light-harvesting chlorophyll ab protein(s), but direct energy transfer from PS II to PS I was not observed at 4 K. Omission of Mg2+ from the suspension favored energy transfer from the light-harvesting protein to PS I. Excitation spectra of a chlorophyll b-less mutant of barley showed an average efficiency of 50–60% for energy transfer from β-carotene to chlorophyll a in the PS I and in the PS II complexes.  相似文献   

11.
The changes in chlorophyll-protein complexes (CPs) in cucumbercotyledons during illumination and subsequent dark incubationwere studied by SDS-polyacrylamide gel electrophoresis. Whenetiolated cucumber seedlings were illuminated, chlorophyll wassynthesized and CPs were formed. In the early phase of greening(6 h of illumination), light-harvesting chlorophyll a/b-proteincomplex (LHCP) was the main GP. As the greening proceeded, P700chlorophyll a-protein complex (CP1) accumulated. When 6-h illuminatedseedlings were transferred to darkness, CP1 accumulated concomitantlywith a decrease in LHCP without new chlorophyll synthesis. Thechanges in the amounts of CPs in the dark became smaller withthe progress of greening and were not observed after 72 h ofillumination. These changes were confirmed by examining thechlorophyll/P700 ratio and the low temperature absorption spectrumof cotyledons. These results suggest that in the early phaseof greening, CPs were unstable and their chlorophyll moleculeseasily exchanged with those of other kinds of CPs. (Received October 14, 1982; Accepted December 1, 1982)  相似文献   

12.
The effects of protein phosphorylation and cation depletion on the electron transport rate and fluorescence emission characteristics of photosystem I at two stages of chloroplast development in light-grown wheat leaves are examined. The light-harvesting chlorophyll a/b protein complex associated with photosystem I (LHC I) was absent from the thylakoids at the early stage of development, but that associated with photosystem II (LHC II) was present. Protein phosphorylation produced an increase in the light-limited rate of photosystem I electron transport at the early stage of development when chlorophyll b was preferentially excited, indicating that LHC I is not required for transfer of excitation energy from phosphorylated LHC II to the core complex of photosystem I. However, no enhancement of photosystem I fluorescence at 77 K was observed at this stage of development, demonstrating that a strict relationship between excitation energy density in photosystem I pigment matrices and the long-wavelength fluorescence emission from photosystem I at 77 K does not exist. Depletion of Mg2+ from the thylakoids produced a stimulation of photosystem I electron transport at both stages of development, but a large enhancement of the photosystem I fluorescence emission was observed only in the thylakoids containing LHC I. It is suggested that the enhancement of PS I electron transport by Mg2+-depletion and phosphorylation of LHC II is associated with an enhancement of fluorescence at 77 K from LHC I and not from the core complex of PS I.  相似文献   

13.
A chlorophyll b-less mutant of Chlamydomonas reinhardtii (Pg 27) was isolated after UV irradiation of the wild type cells. This photosynthetically competent mutant totally lacks chlorophyll b and the CP2 chlorophyll-protein complex. However, SDS-PAGE, proteolytic digestions and immunodetections demonstrated that the 24–25 Kd apoproteins of the lacking CP2 complex are still present in thylakoids of the Pg27 mutant. It is concluded that this CP2-less mutant is affected in the biosynthesis pathway of chlorophyll b.This CP2-less mutant was crossed with a CP1-less mutant (Fl5) Fluorescence emission spectra and fluorescence inductions in the presence of DCMU were analysed in the resulting (cp 2 , cp 1 + ), (cp 2 + , cp 1 ), (cp 2 + , cp 1 + ), cp 2 , cp 1 )tetratype. Differences in PS 2 optical cross section and in the relative amplitude or localisation of fluorescence emission peaks fit well with a quadripartite model where PS1 and PS2 would each correspond to a reaction centre core complex (CP1 and CP2 respectively) associated to a light harvesting antenna (LHC1 and LHC2 respectively). The occurrence of energy transfers from PS1 peripheral antenna to PS2 in the Fl 5 mutant shows that, in absence of CP1, at least a part of its associated PS1 light harvesting antenna migrates in the PS2 containing appressed thylakoids.Abbreviations Chl Chlorophyll - LHC Light harvesting chl a/b complex - CP2 Predominant form of LHC or SDS polyacrylamide gels - WT Wild type - DM Double mutant (cp 1 , cp 2 ) - SDS-PAGE sodium dodecyl sulfate polyacrylamide gel electrophoresis - DOC-PAGE Deoxycholate polyacrylamide gel electrophoresis  相似文献   

14.
The effect of light intensity (16 h white light and 8 h dark) during growth of pea plants at 20°C on the chlorophyll composition and on the relative distribution of chlorophyll amongst the various chlorophyll-protein of pea thylakoids was studied. The chl a/chl b ratios increased from 2.1 to 3.2 as light intensity during growth varied from 10 to 840 Em-2 s-1. This function can be described by two straight lines intersecting at a transition point of approximately 200 Em-2 s-1. Similar discontinuities in the responses were observed in the changes in the relative distribution of chlorophyll amongst the various chlorophyll-protein complexes. This demonstrates that the chl a/chl b ratio of the various thylakoids is a good indicator of changes in the relative distribution of chlorophyll. As the chl a/chl b ratio decreased, the amount of chlorophyll associated with photosystem I complexes decreased, that with photosystem II core reaction centre complex was halved, and that with the main chl a/b-proteins of the light-harvesting complex was markedly increased.Abbreviations chl chlorophyll - PS photosystem - SDS sodium dodecyl sulphate - Tricine N-tris (hydroxymethyl) methylglycine  相似文献   

15.
Japanese black pine (Pinus thunbergii) cotyledons were found to synthesize chlorophylls in complete darkness during germination, although the synthesis was not as great as that in the light. The compositions of thylakoid components in plastids of cotyledons grown in the dark and light were compared using sodium dodecyl sulfate-polyacrylamide gel electrophoresis patterns of polypeptides and spectroscopic determination of membrane redox components. All thylakoid membrane proteins found in preparations from light-grown cotyledons were also present in preparations from dark-grown cotyledons. However, levels of photosystem I, photosystem II, cytochrome b[ill]/f, and light-harvesting chlorophyll-protein complexes in dark-grown cotyledons were only one-fourth of those in light-grown cotyledons, on a fresh weight basis. These results suggest that the low abundance of thylakoid components in dark-grown cotyledons is associated with the limited supply of chlorophyll needed to assemble the two photosystem complexes and the light-harvesting chlorophyll-protein complex.  相似文献   

16.
Kinetics of fluorescence at room temperature, electron transport and photooxidation of P700 and cytochrome f have been studied in chloroplasts isolated from active and winter stressed Pinus silvestris. The winter stress induced block in the electron transport chain between the two photosystems is close to the site of plastoquinone, since winter stress and DCMU caused the same type of inhibition of the reoxidation of the primary electron acceptor Q of photosystem II. No winter inhibition of the electron transport between cytochrome f and P700 was observed. Time course studies of P700 photooxidation in chloroplasts of active and winter stressed pine have shown that the photosynthetic unit size must be about equal in the two types of chloroplasts. An apparent increase of the photosynthetic unit size was induced by winter stress, as revealed by the high chlorophyll/P700 ratio of winter stressed pine. The phenomenon is explained by the formation of photosynthetically inactive chlorophyll. Low-temperature fluorescence emission spectra were recorded when either chlorophyll a (433 nm) or chlorophyll b (477 nm) were preferentially excited. Winter stress induced the formation of a chlorophyll a fraction emitting at 673 nm. This chlorophyll is most likely derived from the chlorophyll a antennae of the two photosystems, and it probably contributes to the photosynthetically inactive pool of chlorophyll in winter stressed pine. The light harvesting chlorophyll a/b complex is relatively resistant to winter stress.  相似文献   

17.
The phylogenetic distribution of photosystem I-associated polypeptides was assessed by immunoblotting algal thylakoid membrane polypeptides with antisera generated against the P700-chlorophyll a protein (CC I) and a photosystem I light-harvesting chlorophyll-protein (LHC Ib). Polypeptides cross-reacting with the CC I apoprotein were found in 20 species representing four classes of unicellular algae. Polypeptides sharing antigenicity with spinach LHC Ib were observed only in algal species containing chlorophyll b. Tetraselmis spp. (Pleurastrophyceae), rich in chlorophyll b (Chl a:b 1.2), exhibited marked heterogeneity in the composition of their CC I and LHC Ib cross-reactive polypeptides. When immunoblotted with antisera against CC I, all Tetraselmis clones examined exhibited a 25-kD polypeptide in greater abundance than the 58-kD CC I apoprotein characteristic of higher plants and other green algal thylakoids. Three Tetraselmis clones (RG 6, RG 11, and RG 12) exhibited an 81-kD polypeptide with strong antigenicity toward the LHC Ib antisera, in contrast to the 17- to 24-kD cross-reactive polypeptides found in spinach, green algae, and one Tetraselmis clone (RG 5). Associated with the unique photosystem I polypeptide composition in Tetraselmis spp., Chl: P700 ratios for the group are 2–5 times greater than those observed for higher plants or other green algae. The chlorophyll b enrichment, unusual composition of photosystem I cross-reactive polypeptides, and heterogeneity of these polypeptides within isolates of Tetraselmis might make this genus useful for investigations of the functional organization of chlorophyll b in light-harvesting systems. These features also support the view of an alternative phyletic origin for the Pleurastrophyceae.  相似文献   

18.
After one month of cultivation in the dark in inorganic medium the chloroplasts of protonemata of Ceratodon purpureus have larger grana than chloroplasts from light-grown cultures. Incubation of dark-grown material with ALA increases the chlorophyll content and chlorophyll a/b ratio. On polyacrylamide-gel electrophoresis, a préferential labelling of chlorophyll-protein complex I is obtained after treatment with (3H) ALA in darkness. In contrast, in light, much higher activity is found in chlorophyll-protein complex II. The free pigment zone is highly labelled in both environments.  相似文献   

19.
The green alga Chlamydomonas reinhardtii is a facultative heterotroph and, when cultured in the presence of acetate, will synthesize chlorophyll (Chl) and photosystem (PS) components in the dark. Analysis of the thylakoid membrane composition and function in dark grown C. reinhardtii revealed that photochemically competent PS II complexes were synthesized and assembled in the thylakoid membrane. These PS II centers were impaired in the electron-transport reaction from the primary-quinone electron acceptor, QA, to the secondary-quinone electron acceptor, QB (QB-nonreducing centers). Both complements of the PS II Chl a–b light harvesting antenna (LHC II-inner and LHC II-peripheral) were synthesized and assembled in the thylakoid membrane of dark grown C. reinhardtii cells. However, the LHC II-peripheral was energetically uncoupled from the PS II reaction center. Thus, PS II units in dark grown cells had a -type Chl antenna size with only 130 Chl (a and b) molecules (by definition, PS II units lack LHC II-peripheral). Illumination of dark grown C. reinhardtii caused pronounced changes in the organization and function of PS II. With a half-time of about 30 min, PS II centers were converted froma QB-nonreducing form in the dark, to a QB-reducing form in the light. Concomitant with this change, PS II units were energetically coupled with the LHC II-peripheral complement in the thylakoid membrane and were converted to a PS II form. The functional antenna of the latter contained more than 250 Chl(a+b) molecules. The results are discussed in terms of a light-dependent activation of the QA-QB electron-transfer reaction which is followed by association of the PS II unit with a LHC II-peripheral antenna and by inclusion of the mature form of PS II (PS II) in the membrane of the grana partition region.Abbreviations Chl chlorophyll - PS photosystem - QA primary quinone electron acceptor of PS II - QB secondary quinone electron acceptor of PS II - LHC light harvesting complex - F0 non-variable fluorescence yield - Fplf intermediate fluorescence yield plateau leyel - Fmax maximum fluorescence yield - Fi initial fluorescence yield increase from F0 to Fpl (Fpl–F0) - Fv total variable fluorescence yield (Fm–F0) - DCMU dichlorophenyl-dimethylurea  相似文献   

20.
Maize seedlings, treated with the herbicide norflurazon to produce a deficiency in carotenoid pigments, were grown in low-fluence-rate light. Under these conditions, which induced chlorophyll biosynthesis while minimizing photooxidation, carotenoid-deficient seedlings showed identical patterns of chloroplast protein accumulation compared with normal seedlings. Carotenoid pigments thus play no direct role in regulating the accumulation of chloroplast proteins. When shifted to high-fluence-rate light, chlorophyll was rapidly photooxidized in carotenoid-deficient seedlings. Chloroplast proteins showed varying degrees of sensitivity to photooxidation. The P-700 apoprotein of photosystem I was rapidly degraded. Most stromal and thylakoid proteins either decreased progressively in photooxidative conditions or appeared to be unaffected. The relative quantity of the light-harvesting chlorophyll a/b-binding protein of photosystem II increased significantly in the first few hours of high-fluence-rate light. It then appeared to be only minimally affected 18 hours after complete photooxidation of chlorophyll.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号