首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Growth and function of the mammary gland is regulated by cytokines and modulated by suppressor of cytokine signalling (SOCS) proteins. In vitro experiments demonstrated that SOCS3 can inhibit PRL induction of milk protein gene expression and STAT5 activation. We explored the SOCS3 expression pattern during mouse mammary development and its regulation by PRL and GH in wild-type and STAT5a-null mammary tissue. Our results suggest that, in vivo, PRL stimulates SOCS3 expression in stromal adipocytes, independently of STAT5a stimulation. In mammary epithelial cells, SOCS3 expression appears to be related to STAT3 activation. Together, our results are consistent with a role of SOCS3 in the mammary gland by promoting apoptosis of differentiated cells (adipocytes during gestation and epithelial cells during involution).  相似文献   

3.
4.
5.
Although elevation of the blood glucose level is a causal adverse effect of treatment with interferon (IFN), the precise underlying molecular mechanism is largely unknown. We examined the effects of type I and type II IFN (IFN-β and IFN-γ) on insulin-induced metabolic signaling leading to glucose uptake in 3T3-L1 adipocytes. IFN-β suppressed insulin-induced tyrosine phosphorylation of IRS-1 without affecting its expression, whereas IFN-γ reduced both the protein level and tyrosine phosphorylation. Although both IFNs stimulated phosphorylation of STAT1 (at Tyr(701)) and STAT3 (at Tyr(705)) after treatment for 30 min, subsequent properties of induction of the SOCS isoform were different. IFN-β preferentially induced SOCS1 rather than SOCS3, whereas IFN-γ strongly induced SOCS3 expression alone. In addition, adenovirus-mediated overexpression of either SOCS1 or SOCS3 inhibited insulin-induced tyrosine phosphorylation of IRS-1, whereas the reduction of IRS-1 protein was observed only in SOCS3-expressed cells. Notably, IFN-β-induced SOCS1 expression and suppression of insulin-induced tyrosine phosphorylation of IRS-1 were attenuated by siRNA-mediated knockdown of STAT1. In contrast, adenovirus-mediated expression of a dominant-negative STAT3 (F-STAT3) attenuated IFN-γ-induced SOCS3 expression, reduction of IRS-1 protein, and suppression of insulin-induced glucose uptake but did not have any effect on the IFN-β-mediated SOCS1 expression and inhibition of insulin-induced glucose uptake. Interestingly, pretreatment of IFN-γ with IL-6 synergistically suppressed insulin signaling, even when IL-6 alone had no significant effect. These results indicate that type I and type II IFN induce insulin resistance by inducing distinct SOCS isoforms, and IL-6 synergistically augments IFN-γ-induced insulin resistance by potentiating STAT3-mediated SOCS3 induction in 3T3-L1 adipocytes.  相似文献   

6.
7.
Proinflammatory cytokines are well-known to inhibit insulin signaling to result in insulin resistance. IL-1alpha is also one of the proinflammatory cytokines, but the mechanism of how IL-1alpha induces insulin resistance remains unclear. We have now examined the effects of IL-1alpha on insulin signaling in 3T3-L1 adipocytes. Prolonged IL-1alpha treatment for 12 to 24 hours partially decreased the protein levels as well as the insulin-stimulated tyrosine phosphorylation of IRS-1 and Akt phosphorylation. mRNA for SOCS3, an endogenous inhibitor of insulin signaling, was dramatically augmented 4 hours after IL-1alpha treatment. Concomitantly, the level of IL-6 in the medium and STAT3 phosphorylation were increased by the prolonged IL-1alpha treatment. Addition of anti-IL-6 neutralizing antibody to the medium or overexpression of dominant-negative STAT3 decreased the IL-1alpha-stimulated STAT3 activation and SOCS3 induction, and ameliorated insulin signaling. These results suggest that the IL-1alpha-mediated deterioration of insulin signaling is largely due to the IL-6 production and SOCS3 induction in 3T3-L1 adipocytes.  相似文献   

8.
9.
Objective : Determine the biochemical pathways involved in induction of apoptosis by ajoene, an organosulfur compound from garlic. Research Methods and Procedures : Mature 3T3‐L1 adipocytes were incubated with ajoene at concentrations up to 200 μM. Viability and apoptosis were quantified using an MTS‐based cell viability assay and an enzyme‐linked immunosorbent assay for single‐stranded DNA (ssDNA), respectively. Intracellular reactive oxygen species (ROS) production was measured based on production of the fluorescent dye, dichlorofluorescein. Activation of the mitogen‐activated protein kinases extracellular signal‐regulating kinase 1/2 (ERK) and c‐Jun‐N‐terminal kinase (JNK) was shown by Western blot. Western blot was also used to show activation of caspase‐3, translocation of apoptosis‐inducing factor (AIF) from mitochondria to nucleus, and cleavage of 116‐kDa poly(ADP‐ribose) polymerase (PARP)‐1. Results : Ajoene induced apoptosis of 3T3‐L1 adipocytes in a dose‐ and time‐dependent manner. Ajoene treatment resulted in activation of JNK and ERK, translocation of AIF from mitochondria to nucleus, and cleavage of 116‐kDa PARP‐1 in a caspase‐independent manner. Ajoene treatment also induced an increase in intracellular ROS level. Furthermore, the antioxidant N‐acetyl‐l ‐cysteine effectively blocked ajoene‐mediated ROS generation, activation of JNK and ERK, translocation of AIF, and degradation of PARP‐1. Discussion : These results indicate that ajoene‐induced apoptosis in 3T3‐L1 adipocytes is initiated by the generation of hydrogen peroxide, which leads to activation of mitogen‐activated protein kinases, degradation of PARP‐1, translocation of AIF, and fragmentation of DNA. Ajoene can, thus, influence the regulation of fat cell number through the induction of apoptosis and may be a new therapeutic agent for the treatment of obesity.  相似文献   

10.
This study was designed to determine whether sprint exercise activates signaling cascades linked to leptin actions in human skeletal muscle and how this pattern of activation may be interfered by glucose ingestion. Muscle biopsies were obtained in 15 young healthy men in response to a 30-s sprint exercise (Wingate test) randomly distributed into two groups: the fasting (n = 7, C) and the glucose group (n = 8, G), who ingested 75 g of glucose 1 h before the Wingate test. Exercise elicited different patterns of JAK2, STAT3, STAT5, ERK1/2, p38 MAPK phosphorylation, and SOCS3 protein expression during the recovery period after glucose ingestion. Thirty minutes after the control sprint, STAT3 and ERK1/2 phosphorylation levels were augmented (both, P < 0.05). SOCS3 protein expression was increased 120 min after the control sprint but PTP1B protein expression was unaffected. Thirty and 120 min after the control sprint, STAT5 phosphorylation was augmented (P < 0.05). Glucose abolished the 30 min STAT3 and ERK1/2 phosphorylation and the 120 min SOCS3 protein expression increase while retarding the STAT5 phosphorylation response to sprint. Activation of these signaling cascades occurred despite a reduction of circulating leptin concentration after the sprint. Basal JAK2 and p38 MAPK phosphorylation levels were reduced and increased (both P < 0.05), respectively, by glucose ingestion prior to exercise. During recovery, JAK2 phosphorylation was unchanged and p38 MAPK phosphorylation was transiently reduced when the exercise was preceded by glucose ingestion. In conclusion, sprint exercise performed under fasting conditions is a leptin signaling mimetic in human skeletal muscle.  相似文献   

11.
Accumulating evidence suggests that inhibition of mitogen‐activated protein kinase signalling can reduce phosphorylation of peroxisome proliferator‐activated receptor γ (PPARγ) at serine 273, which mitigates obesity‐associated insulin resistance and might be a promising treatment for type 2 diabetes. Dihydromyricetin (DHM) is a flavonoid that has many beneficial pharmacological properties. In this study, mouse fibroblast 3T3‐L1 cells were used to investigate whether DHM alleviates insulin resistance by inhibiting PPARγ phosphorylation at serine 273 via the MEK/ERK pathway. 3T3‐L1 pre‐adipocytes were differentiated, and the effects of DHM on adipogenesis and glucose uptake in the resulting adipocytes were examined. DHM was found to dose dependently increase glucose uptake and decrease adipogenesis. Insulin resistance was then induced in adipocytes using dexamethasone, and DHM was shown to dose and time dependently promote glucose uptake in the dexamethasone‐treated adipocytes. DHM also inhibited phosphorylation of PPARγ and ERK. Inhibition of PPARγ activity with GW9662 potently blocked DHM‐induced glucose uptake and adiponectin secretion. Interestingly, DHM showed similar effects to PD98059, an inhibitor of the MEK/ERK pathway. DHM acted synergistically with PD98059 to improve glucose uptake and adiponectin secretion in dexamethasone‐treated adipocytes. In conclusion, our findings indicate that DHM improves glucose uptake in adipocytes by inhibiting ERK‐induced phosphorylation of PPARγ at serine 273.  相似文献   

12.
13.
14.
15.
Recent reports demonstrate T-cell infiltration of adipose tissue in early obesity. We hypothesized that interferon (IFN) γ, a major T-cell inflammatory cytokine, would attenuate human adipocyte functions and sought to establish signaling mechanisms. Differentiated human adipocytes were treated with IFNγ ± pharmacological inhibitors prior to insulin stimulation. [3H]Glucose uptake and AKT phosphorylation were assessed as markers of insulin sensitivity. IFNγ induced sustained loss of insulin-stimulated glucose uptake in human adipocytes, coincident with reduced Akt phosphorylation and down-regulation of the insulin receptor, insulin receptor substrate-1, and GLUT4. Loss of adipocyte triglyceride storage was observed with IFNγ co-incident with reduced expression of peroxisome proliferator-activated receptor γ, adiponectin, perilipin, fatty acid synthase, and lipoprotein lipase. Treatment with IFNγ also blocked differentiation of pre-adipocytes to the mature phenotype. IFNγ-induced robust STAT1 phosphorylation and SOCS1 mRNA expression, with modest, transient STAT3 phosphorylation and SOCS3 induction. Preincubation with a non-selective JAK inhibitor restored glucose uptake and Akt phosphorylation while completely reversing IFNγ suppression of adipogenic mRNAs and adipocyte differentiation. Specific inhibition of JAK2 or JAK3 failed to block IFNγ effects suggesting a predominant role for JAK1-STAT1. We demonstrate that IFNγ attenuates insulin sensitivity and suppresses differentiation in human adipocytes, an effect most likely mediated via sustained JAK-STAT1 pathway activation.  相似文献   

16.
17.
During infection, the functional status of the innate immune system is tightly regulated. Although signals resulting in activation have been well characterized, counterregulative mechanisms are poorly understood. Suppressor of cytokine signaling (SOCS) proteins have been characterized as cytokine-inducible negative regulators of Janus kinase/STAT signaling in cells of hemopoietic origin. To analyze whether SOCS proteins could also be induced by pathogen-derived stimuli, we investigated the induction of SOCS-1 and SOCS-3 after triggering of macrophage cell lines, bone marrow-derived dendritic cells, and peritoneal macrophages with CpG-DNA. In this study, we show that CpG-DNA, but not GpC-DNA, induces expression of mRNA for SOCS-1 and SOCS-3 in vitro and in vivo. SOCS mRNA expression could be blocked by chloroquine and was independent of protein synthesis. Inhibitors of the mitogen-activated protein kinase pathway triggered by CpG-DNA were able to impede induction of SOCS mRNA. CpG-DNA triggered synthesis of SOCS proteins that could be detected by Western blotting. SOCS proteins were functional because they inhibited IFN-gamma as well as IL-6- and GM-CSF-induced phosphorylation of STAT proteins. Furthermore, IFN-gamma-induced up-regulation of MHC class II molecules was also prevented. The same effects could be achieved by overexpression of SOCS-1. Hence, the results indicate a substantial cross-talk between signal pathways within cells. They provide evidence for regulative mechanisms of Janus kinase/STAT signaling after triggering Toll-like receptor signal pathways.  相似文献   

18.
19.
We report here the role of one of the less studied members of the family of suppressors of cytokine signaling (SOCS), namely SOCS-7, in cytokine signaling. We demonstrate that SOCS-7 inhibits prolactin (PRL), growth hormone (GH), or leptin (LEP) signaling mediated through STAT3 and STAT5 in a dose-dependent manner. SOCS-7 also attenuated STAT3 and STAT5 signaling induced by overexpression of JH1, the catalytic subdomain of JAK2. Since SOCS-7 interacted with phosphorylated STAT3 or STAT5, we assumed that SOCS-7 acts at the level of STAT proteins. Indeed, we showed that SOCS-7 inhibits PRL- and leptin-induced STAT5 and STAT3 phosphorylation and prevented the nuclear translocation of activated STAT3. Taken together, our results indicate that SOCS-7 is a physiological dysregulator of PRL, leptin, and probably also GH signaling and that its mode of action is a novel variation of SOCS protein inhibition of cytokine-inducible STAT-mediated signal transduction.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号