首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Cdc25 phosphatases have been considered as attractive drug targets for anticancer therapy due to the correlation of their overexpression with a wide variety of cancers. As a method for the discovery of novel inhibitors of Cdc25 phosphatases, we have evaluated the computer-aided drug design protocol involving the homology modeling of Cdc25A and virtual screening with the two docking tools: FlexX and the modified AutoDock program implementing the effects of ligand solvation in the scoring function. The homology modeling with the X-ray crystal structure of Cdc25B as a template provides a high-quality structure of Cdc25A that enables the structure-based inhibitor design. Of the two docking programs under consideration, AutoDock is found to be more accurate than FlexX in terms of scoring putative ligands. A detailed binding mode analysis of the known inhibitors shows that they can be stabilized in the active site of Cdc25A through the simultaneous establishment of the multiple hydrogen bonds and the hydrophobic interactions. The present study demonstrates the usefulness of the modified AutoDock program as a docking tool for virtual screening of new Cdc25 phosphatase inhibitors as well as for binding mode analysis to elucidate the activities of known inhibitors. Figure Structures and available IC50 values (in μM) of the twenty Cdc25 phosphatase inhibitors seeded in docking library  相似文献   

3.
Lee HS  Zhang Y 《Proteins》2012,80(1):93-110
We developed BSP‐SLIM, a new method for ligand–protein blind docking using low‐resolution protein structures. For a given sequence, protein structures are first predicted by I‐TASSER; putative ligand binding sites are transferred from holo‐template structures which are analogous to the I‐TASSER models; ligand–protein docking conformations are then constructed by shape and chemical match of ligand with the negative image of binding pockets. BSP‐SLIM was tested on 71 ligand–protein complexes from the Astex diverse set where the protein structures were predicted by I‐TASSER with an average RMSD 2.92 Å on the binding residues. Using I‐TASSER models, the median ligand RMSD of BSP‐SLIM docking is 3.99 Å which is 5.94 Å lower than that by AutoDock; the median binding‐site error by BSP‐SLIM is 1.77 Å which is 6.23 Å lower than that by AutoDock and 3.43 Å lower than that by LIGSITECSC. Compared to the models using crystal protein structures, the median ligand RMSD by BSP‐SLIM using I‐TASSER models increases by 0.87 Å, while that by AutoDock increases by 8.41 Å; the median binding‐site error by BSP‐SLIM increase by 0.69Å while that by AutoDock and LIGSITECSC increases by 7.31 Å and 1.41 Å, respectively. As case studies, BSP‐SLIM was used in virtual screening for six target proteins, which prioritized actives of 25% and 50% in the top 9.2% and 17% of the library on average, respectively. These results demonstrate the usefulness of the template‐based coarse‐grained algorithms in the low‐resolution ligand–protein docking and drug‐screening. An on‐line BSP‐SLIM server is freely available at http://zhanglab.ccmb.med.umich.edu/BSP‐SLIM . Proteins 2012. © 2011 Wiley Periodicals, Inc.  相似文献   

4.
Reliability in docking of ligand molecules to proteins or other targets is an important challenge for molecular modeling. Applications of the docking technique include not only prediction of the binding mode of novel drugs, but also other problems like the study of protein-protein interactions. Here we present a study on the reliability of the results obtained with the popular AutoDock program. We have performed systematical studies to test the ability of AutoDock to reproduce eight different protein/ligand complexes for which the structure was known, without prior knowledge of the binding site. More specifically, we look at factors influencing the accuracy of the final structure, such as the number of torsional degrees of freedom in the ligand. We conclude that the Autodock program package is able to select the correct complexes based on the energy without prior knowledge of the binding site. We named this application blind docking, as the docking algorithm is not able to "see" the binding site but can still find it. The success of blind docking represents an important finding in the era of structural genomics.  相似文献   

5.
Dengue infection is the most common arthropod‐borne disease caused by dengue viruses, predominantly affecting millions of human beings annually. To find out promising chemical entities for therapeutic application in Dengue, in the current research, a multi‐step virtual screening effort was conceived to screen out the entire “screening library” of the Asinex database. Initially, through “Lipinski rule of five” filtration criterion almost 0.6 million compounds were collected and docked with NS3‐NS2B protein. Thereby, the chemical space was reduced to about 3500 compounds through the analysis of binding affinity obtained from molecular docking study in AutoDock Vina. Further, the “Virtual Screening Workflow” (VSW) utility of Schrödinger suite was used, which follows a stepwise multiple docking programs such as ‐ high‐throughput virtual screening (HTVS), standard precision (SP), and extra precision (XP) docking, and in postprocessing analysis the MM‐GBSA based free binding energy calculation. Finally, five potent molecules were proposed as potential inhibitors for the dengue NS3‐NS2B protein based on the investigation of molecular interactions map and protein‐ligand fingerprint analyses. Different pharmacokinetics and drug‐likeness parameters were also checked, which favour the potentiality of selected molecules for being drug‐like candidates. The molecular dynamics (MD) simulation analyses of protein‐ligand complexes were explained that NS3‐NS2B bound with proposed molecules quite stable in dynamic states as observed from the root means square deviation (RMSD) and root means square fluctuation (RMSF) parameters. The binding free energy was calculated using MM‐GBSA method from the MD simulation trajectories revealed that all proposed molecules possess such a strong binding affinity towards the dengue NS3‐NS2B protein. Therefore, proposed molecules may be potential chemical components for effective inhibition of dengue NS3‐NS2B protein subjected to experimental validation.  相似文献   

6.
Docking ligands into an ensemble of NMR conformers is essential to structure-based drug discovery if only NMR structures are available for the target. However, sequentially docking ligands into each NMR conformer through standard single-receptor-structure docking, referred to as sequential docking, is computationally expensive for large-scale database screening because of the large number of NMR conformers involved. Recently, we developed an efficient ensemble docking algorithm to consider protein structural variations in ligand binding. The algorithm simultaneously docks ligands into an ensemble of protein structures and achieves comparable performance to sequential docking without significant increase in computational time over single-structure docking. Here, we applied this algorithm to docking with NMR structures. The HIV-1 protease was used for validation in terms of docking accuracy and virtual screening. Ensemble docking of the NMR structures identified 91% of the known inhibitors under the criterion of RMSD < 2.0 A for the best-scored conformation, higher than the average success rate of single docking of individual crystal structures (66%). In the virtual screening test, on average, ensemble docking of the NMR structures obtained higher enrichments than single-structure docking of the crystal structures. In contrast, docking of either the NMR minimized average structure or a single NMR conformer performed less satisfactorily on both binding mode prediction and virtual screening, indicating that a single NMR structure may not be suitable for docking calculations. The success of ensemble docking of the NMR structures suggests an efficient alternative method for standard single docking of crystal structures and for considering protein flexibility.  相似文献   

7.
虚拟筛选是在计算机上对化合物分子进行模拟预筛选,找出容易和药物靶标结合的小分子(配体),从而降低实际实验测试次数,提高药物先导化合物的发现效率。常用的分子对接软件可以用于基于结构的虚拟筛选,寻找配体与靶标的最佳的作用模式和结合构象,并通过打分函数来筛选出潜在的配体。现有的对接软件如AutoDock Vina等在分子对接过程中需要耗费大量时间和计算资源,特别是面对大规模分子对接时,过长的筛选时间不能满足应用需求,因此,本文在最高效的QVina2对接软件基础上,提出一种基于GPU的QVina 2并行化方法QVina2-GPU,利用GPU硬件高度并行体系加速分子对接。具体包括增加初始化分子构象数量,以扩展蒙特卡罗的迭代局部搜索中线程的并行规模,增加蒙特卡罗的迭代搜索的广度以减少每次蒙特卡罗迭代搜索深度,并利用Wolfe-Powell准则改进局部搜索算法,提高了对接精度,进一步减少蒙特卡罗迭代搜索深度,最后,在NVIDIA Geforce RTX 3090平台上在公开的配体数据库上验证了QVina2-GPU的性能,实验表明在保证分子对接精度的基础上,我们提出的QVina2-GPU对Qvina2的平均加速比达到5.18倍,最大加速比达到12.28倍。  相似文献   

8.
In this study, the influences of initial settings, i.e. initial conformations, configurations and docking parameters, on docking results were investigated. The conformations used in the study were generated by the CAMDAS program. After the conformational search calculations, five structures were selected from the conformer groups according to their conformation energies and root mean square deviations against crystal structures; for example, the lowest energy conformer, as well as the closest and farthest conformers to the crystal structure, was retrieved. Several docking parameter settings were used (default, high speed, generating 50 poses). In this study, docking calculations were conducted using the GOLD, eHiTS, AutoDock, AutoDock vina, FRED and DOCK programs. The success rates of GOLD, eHiTS and FRED were better than those of AutoDock, AutoDock vina and DOCK. The docking results using the farthest conformations were worse than those obtained using other conformations, indicating that some conformation search for the ligand molecule should be performed before the docking calculations.  相似文献   

9.
Huang SY  Zou X 《Proteins》2007,66(2):399-421
One approach to incorporate protein flexibility in molecular docking is the use of an ensemble consisting of multiple protein structures. Sequentially docking each ligand into a large number of protein structures is computationally too expensive to allow large-scale database screening. It is challenging to achieve a good balance between docking accuracy and computational efficiency. In this work, we have developed a fast, novel docking algorithm utilizing multiple protein structures, referred to as ensemble docking, to account for protein structural variations. The algorithm can simultaneously dock a ligand into an ensemble of protein structures and automatically select an optimal protein structure that best fits the ligand by optimizing both ligand coordinates and the conformational variable m, where m represents the m-th structure in the protein ensemble. The docking algorithm was validated on 10 protein ensembles containing 105 crystal structures and 87 ligands in terms of binding mode and energy score predictions. A success rate of 93% was obtained with the criterion of root-mean-square deviation <2.5 A if the top five orientations for each ligand were considered, comparable to that of sequential docking in which scores for individual docking are merged into one list by re-ranking, and significantly better than that of single rigid-receptor docking (75% on average). Similar trends were also observed in binding score predictions and enrichment tests of virtual database screening. The ensemble docking algorithm is computationally efficient, with a computational time comparable to that for docking a ligand into a single protein structure. In contrast, the computational time for the sequential docking method increases linearly with the number of protein structures in the ensemble. The algorithm was further evaluated using a more realistic ensemble in which the corresponding bound protein structures of inhibitors were excluded. The results show that ensemble docking successfully predicts the binding modes of the inhibitors, and discriminates the inhibitors from a set of noninhibitors with similar chemical properties. Although multiple experimental structures were used in the present work, our algorithm can be easily applied to multiple protein conformations generated by computational methods, and helps improve the efficiency of other existing multiple protein structure(MPS)-based methods to accommodate protein flexibility.  相似文献   

10.
In protein–ligand docking, an optimization algorithm is used to find the best binding pose of a ligand against a protein target. This algorithm plays a vital role in determining the docking accuracy. To evaluate the relative performance of different optimization algorithms and provide guidance for real applications, we performed a comparative study on six efficient optimization algorithms, containing two evolutionary algorithm (EA)-based optimizers (LGA, DockDE) and four particle swarm optimization (PSO)-based optimizers (SODock, varCPSO, varCPSO-ls, FIPSDock), which were implemented into the protein–ligand docking program AutoDock. We unified the objective functions by applying the same scoring function, and built a new fitness accuracy as the evaluation criterion that incorporates optimization accuracy, robustness, and efficiency. The varCPSO and varCPSO-ls algorithms show high efficiency with fast convergence speed. However, their accuracy is not optimal, as they cannot reach very low energies. SODock has the highest accuracy and robustness. In addition, SODock shows good performance in efficiency when optimizing drug-like ligands with less than ten rotatable bonds. FIPSDock shows excellent robustness and is close to SODock in accuracy and efficiency. In general, the four PSO-based algorithms show superior performance than the two EA-based algorithms, especially for highly flexible ligands. Our method can be regarded as a reference for the validation of new optimization algorithms in protein–ligand docking.  相似文献   

11.
Estrogen receptor-α (ERα) is expressed more in patients with breast cancer and its level correlated with endocrine resistance. LMTK3 is reported as breast cancer target with regulation of estrogen receptor-α (ERα) through phosphorylation. In this computational study, structure-based inhibitor screening was performed on human LMTK3 using ZINC database. ATP-binding cavity with critical residues involved in the LMTK3 phosphorylation was used as target site for the screening. From the large ligand library, the best compounds were screen with three-phase virtual screening methods in Dockblaster, AutoDock Vina and AutoDock, respectively. The evaluation of ligands was carried out by binding energy and weak interactions, such as hydrogen bond interactions and hydrophobic contacts, in the target site that favors LMTK3 inhibition. Top compounds were found to be more effective in druglikeness activity by ADME prediction. The stability and binding affinity of ligand complexes were optimized by trajectory analysis such as RMSD, Rg, SASA and interhydrogen bonds from molecular dynamics simulations. The behavior of protein motion after ligand binding was illustrated by eigenvectors from principal component analysis (PCA). In addition, binding free energy of the LMTK3–ligand complexes were calculated by MM/PBSA methods and results supported the strong binding in dynamic system. Thus, the computational studies illustrated the structural insights on LMTK3 inhibition mechanism by ligands ZINC04670539, ZINC05607079 and ZINC04344028, also proposed as potent lead candidates. Our findings step towards developing novel LMTK3 inhibitors and identified lead candidates can be future breast cancer drugs with further experimental studies.  相似文献   

12.
In order to identify novel inhibitors of the Helicobacter pylori nickel response regulator (HpNikR) an integrative protocol was performed for half a million compounds retrieved from the ZINC database. We firstly implement a structure-based virtual screening to build a library of potential inhibitors against the HpNikR using a docking analysis (AutoDock Vina). The library was then used to perform a hierarchical clustering of docking poses, based on protein-contact footprints calculation from the multiple conformations given by the AutoDock Vina software, and the drug-protein interaction analyses to identify and remove potential promiscuous compounds likely interacting with human proteins, hence causing drug side effects. 250 drug-like compounds were finally proposed as non-promicuous potential inhibitors for HpNikR. These compounds target the DNA-binding sites of HpNikR so that HpNikR-compound binding could be able to mimic key interactions in the DNA-protein recognition process. HpNikR inhibitors with promising potential against H. pylori could also act against other human bacterial pathogens due to the conservation of targeting motif of NikR involved in DNA-protein interaction.  相似文献   

13.
With the rapid development of structural determination of target proteins for human diseases, high throughout virtual screening based drug discovery is gaining popularity gradually. In this paper, a fast docking algorithm (H-DOCK) based on hydrogen bond matching and surface shape complementarity was developed. In H-DOCK, firstly a divide-and-conquer strategy based enumeration approach is applied to rank the intermolecular modes between protein and ligand by maximizing their hydrogen bonds matching, then each docked conformation of the ligand is calculated according to the matched hydrogen bonding geometry, finally a simple but effective scoring function reflecting mainly the van der Waals interaction is used to evaluate the docked conformations of the ligand. H-DOCK is tested for rigid ligand docking and flexible one, the latter is implemented by repeating rigid docking for multiple conformations of a small molecule and ranking all together. For rigid ligands, H-DOCK was tested on a set of 271 complexes where there is at least one intermolecular hydrogen bond, and H-DOCK achieved success rate (RMSD<2.0?Å) of 91.1%. For flexible ligands, H-DOCK was tested on another set of 93 complexes, where each case was a conformation ensemble containing native ligand conformation as well as 100 decoy ones generated by AutoDock [1], and the success rate reached 81.7%. The high success rate of H-DOCK indicates that the hydrogen bonding and steric hindrance can grasp the key interaction between protein and ligand. H-DOCK is quite efficient compared with the conventional docking algorithms, and it takes only about 0.14 seconds for a rigid ligand docking and about 8.25 seconds for a flexible one on average. According to the preliminary docking results, it implies that H-DOCK can be potentially used for large scale virtual screening as a pre-filter for a more accurate but less efficient docking algorithm.  相似文献   

14.
Zhao Y  Sanner MF 《Proteins》2007,68(3):726-737
Conformational changes of biological macromolecules when binding with ligands have long been observed and remain a challenge for automated docking methods. Here we present a novel protein-ligand docking software called FLIPDock (Flexible LIgand-Protein Docking) allowing the automated docking of flexible ligand molecules into active sites of flexible receptor molecules. In FLIPDock, conformational spaces of molecules are encoded using a data structure that we have developed recently called the Flexibility Tree (FT). While the FT can represent fully flexible ligands, it was initially designed as a hierarchical and multiresolution data structure for the selective encoding of conformational subspaces of large biological macromolecules. These conformational subspaces can be built to span a range of conformations important for the biological activity of a protein. A variety of motions can be combined, ranging from domains moving as rigid bodies or backbone atoms undergoing normal mode-based deformations, to side chains assuming rotameric conformations. In addition, these conformational subspaces are parameterized by a small number of variables which can be searched during the docking process, thus effectively modeling the conformational changes in a flexible receptor. FLIPDock searches the variables using genetic algorithm-based search techniques and evaluates putative docking complexes with a scoring function based on the AutoDock3.05 force-field. In this paper, we describe the concepts behind FLIPDock and the overall architecture of the program. We demonstrate FLIPDock's ability to solve docking problems in which the assumption of a rigid receptor previously prevented the successful docking of known ligands. In particular, we repeat an earlier cross docking experiment and demonstrate an increased success rate of 93.5%, compared to original 72% success rate achieved by AutoDock over the 400 cross-docking calculations. We also demonstrate FLIPDock's ability to handle conformational changes involving backbone motion by docking balanol to an adenosine-binding pocket of protein kinase A.  相似文献   

15.
16.
BEAR (binding estimation after refinement) is a new virtual screening technology based on the conformational refinement of docking poses through molecular dynamics and prediction of binding free energies using accurate scoring functions. Here, the authors report the results of an extensive benchmark of the BEAR performance in identifying a smaller subset of known inhibitors seeded in a large (1.5 million) database of compounds. BEAR performance proved strikingly better if compared with standard docking screening methods. The validations performed so far showed that BEAR is a reliable tool for drug discovery. It is fast, modular, and automated, and it can be applied to virtual screenings against any biological target with known structure and any database of compounds.  相似文献   

17.
Protein-ligand docking is a key computational method in the design of starting points for the drug discovery process. We are motivated by the desire to automate large-scale docking using our popular docking engine idock and thus have developed a publicly-accessible web platform called istar. Without tedious software installation, users can submit jobs using our website. Our istar website supports 1) filtering ligands by desired molecular properties and previewing the number of ligands to dock, 2) monitoring job progress in real time, and 3) visualizing ligand conformations and outputting free energy and ligand efficiency predicted by idock, binding affinity predicted by RF-Score, putative hydrogen bonds, and supplier information for easy purchase, three useful features commonly lacked on other online docking platforms like DOCK Blaster or iScreen. We have collected 17,224,424 ligands from the All Clean subset of the ZINC database, and revamped our docking engine idock to version 2.0, further improving docking speed and accuracy, and integrating RF-Score as an alternative rescoring function. To compare idock 2.0 with the state-of-the-art AutoDock Vina 1.1.2, we have carried out a rescoring benchmark and a redocking benchmark on the 2,897 and 343 protein-ligand complexes of PDBbind v2012 refined set and CSAR NRC HiQ Set 24Sept2010 respectively, and an execution time benchmark on 12 diverse proteins and 3,000 ligands of different molecular weight. Results show that, under various scenarios, idock achieves comparable success rates while outperforming AutoDock Vina in terms of docking speed by at least 8.69 times and at most 37.51 times. When evaluated on the PDBbind v2012 core set, our istar platform combining with RF-Score manages to reproduce Pearson''s correlation coefficient and Spearman''s correlation coefficient of as high as 0.855 and 0.859 respectively between the experimental binding affinity and the predicted binding affinity of the docked conformation. istar is freely available at http://istar.cse.cuhk.edu.hk/idock.  相似文献   

18.
Matrix metalloproteinase-9 (MMP-9) is a significant target for the development of drugs for the treatment of arthritis, CNS disorders, and cancer metastasis. The structure-based and ligand-based methods were used for the virtual screening (VS) of database compounds to obtain potent and selective MMP-9 inhibitors. Experimentally known MMP-9 inhibitors were used to grow up ligand-based three pharmacophore models utilizing Schrodinger suite. The X-ray crystallographic structures of MMP-9 with different inhibitors were used to develop five energy-optimized structure-based (e-pharmacophore) models. All developed pharmacophores were validated and applied to screen the Zinc database. Pharmacophore matched compounds were subjected to molecular docking to retrieve hits with novel scaffolds. The molecules with diverse structures, high docking scores and low binding energies for various crystal structures of MMP-9, were selected as final hits. The Induced fit docking (IFD) analysis provided significant information about the driving of inhibitor to approve a suitable bioactive conformational position in the active site of protein. Since charge transfer reaction occurs during receptor–ligand interaction, therefore, electronic features of hits (ligands) are interesting parameters to explain the binding interactions. Density functional theory (DFT) at B3LYP/6-31G* level was utilized to explore electronic features of hits. The docking study of hits using AutoDock was helpful to establish the binding interactions. The study illustrates that the combined pharmacophore approach is advantageous to identify diverse hits which have better binding affinity to the active site of the enzyme for all possible bioactive conformations. The approach used in the study is worthy to design drugs for other targets.  相似文献   

19.
Yang JM  Shen TW 《Proteins》2005,59(2):205-220
We developed a pharmacophore-based evolutionary approach for virtual screening. This tool, termed the Generic Evolutionary Method for molecular DOCKing (GEMDOCK), combines an evolutionary approach with a new pharmacophore-based scoring function. The former integrates discrete and continuous global search strategies with local search strategies to expedite convergence. The latter, integrating an empirical-based energy function and pharmacological preferences (binding-site pharmacological interactions and ligand preferences), simultaneously serves as the scoring function for both molecular docking and postdocking analyses to improve screening accuracy. We apply pharmacological interaction preferences to select the ligands that form pharmacological interactions with target proteins, and use the ligand preferences to eliminate the ligands that violate the electrostatic or hydrophilic constraints. We assessed the accuracy of our approach using human estrogen receptor (ER) and a ligand database from the comparative studies of Bissantz et al. (J Med Chem 2000;43:4759-4767). Using GEMDOCK, the average goodness-of-hit (GH) score was 0.83 and the average false-positive rate was 0.13% for ER antagonists, and the average GH score was 0.48 and the average false-positive rate was 0.75% for ER agonists. The performance of GEMDOCK was superior to competing methods such as GOLD and DOCK. We found that our pharmacophore-based scoring function indeed was able to reduce the number of false positives; moreover, the resulting pharmacological interactions at the binding site, as well as ligand preferences, were important to the screening accuracy of our experiments. These results suggest that GEMDOCK constitutes a robust tool for virtual database screening.  相似文献   

20.
Zacharias M 《Proteins》2004,54(4):759-767
Most current docking methods to identify possible ligands and putative binding sites on a receptor molecule assume a rigid receptor structure to allow virtual screening of large ligand databases. However, binding of a ligand can lead to changes in the receptor protein conformation that are sterically necessary to accommodate a bound ligand. An approach is presented that allows relaxation of the protein conformation in precalculated soft flexible degrees of freedom during ligand-receptor docking. For the immunosuppressant FK506-binding protein FKBP, the soft flexible modes are extracted as principal components of motion from a molecular dynamics simulation. A simple penalty function for deformations in the soft flexible mode is used to limit receptor protein deformations during docking that avoids a costly recalculation of the receptor energy by summing over all receptor atom pairs at each step. Rigid docking of the FK506 ligand binding to an unbound FKBP conformation failed to identify a geometry close to experiment as favorable binding site. In contrast, inclusion of the flexible soft modes during systematic docking runs selected a binding geometry close to experiment as lowest energy conformation. This has been achieved at a modest increase of computational cost compared to rigid docking. The approach could provide a computationally efficient way to approximately account for receptor flexibility during docking of large numbers of putative ligands and putative docking geometries.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号