首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
Objective: We used a rodent model of dietary obesity to evaluate effects of caloric restriction‐induced weight loss on mortality rate. Research Measures and Procedures: In a randomized parallel‐groups design, 312 outbred Sprague‐Dawley rats (one‐half males) were assigned at age 10 weeks to one of three diets: low fat (LF; 18.7% calories as fat) with caloric intake adjusted to maintain body weight 10% below that for ad libitum (AL)‐fed rat food, high fat (HF; 45% calories as fat) fed at the same level, or HF fed AL. At age 46 weeks, the lightest one‐third of the AL group was discarded to ensure a more obese group; the remaining animals were randomly assigned to one of three diets: HF‐AL, HF with energy restricted to produce body weights of animals restricted on the HF diet throughout life, or LF with energy restricted to produce the body weights of animals restricted on the LF diet throughout life. Life span, body weight, and leptin levels were measured. Results: Animals restricted throughout life lived the longest (p < 0.001). Life span was not different among animals that had been obese and then lost weight and animals that had been nonobese throughout life (p = 0.18). Animals that were obese and lost weight lived substantially longer than animals that remained obese throughout life (p = 0.002). Diet composition had no effect on life span (p = 0.52). Discussion: Weight loss after the onset of obesity during adulthood leads to a substantial increase in longevity in rats.  相似文献   

4.
5.
Maternal nutrient restriction results in intrauterine growth restriction (IUGR) newborns that develop obesity despite normal postweaning diet. The epidemic of metabolic syndrome is attributed to programmed "thrifty phenotype" and exposure to Western diets. We hypothesized that programmed IUGR newborns would demonstrate greater susceptibility to obesity and metabolic abnormalities in response to high-fat diet. From day 10 to term gestation and lactation, control pregnant rats received ad libitum (AdLib) food, whereas study rats were 50% food restricted (FR). Cross-fostering techniques resulted in three offspring groups: control (AdLib/AdLib), FR during pregnancy (FR/AdLib), and FR during lactation (AdLib/FR). At 3 weeks, offspring were weaned to laboratory chow or high-fat calorie diet (9% vs. 17% calorie as fat). Body composition, appetite hormones, and glucose and lipid profiles were determined in 9-mo-old male and female offspring. High-fat diet had no effect on body weight of AdLib/AdLib, but significantly increased weights of FR/AdLib and AdLib/FR offspring. High-fat diet significantly increased body fat, reduced lean body mass, and accentuated plasma leptin but not ghrelin levels in both sexes in all groups. In males, high-fat diet caused a significant increase in glucose levels in all three groups with increased insulin levels in AdLib/AdLib and AdLib/FR, but not in FR/AdLib. In females, high-fat diet had no effect on glucose but significantly increased basal insulin among all three groups. High-fat diet caused hypertriglyceridemia in all three groups although only food-restricted females exhibited hypercholesterolemia. Sex and offspring phenotype-associated effects of high-fat diet indicate differing pathophysiologic mechanisms that require specific therapeutic approaches.  相似文献   

6.
BACKGROUND: Birth weight in humans has been inversely associated with adult disease risk. Results of animal studies have varied depending on species, strain, and treatment. METHODS: We compared birth weight and adult health in offspring following 50% maternal undernutrition on gestation days (GD) 1–15 (UN1–15) or GD 10–21 (UN10–21) in Sprague Dawley and Wistar rats. Offspring from food‐deprived dams were weighed and cross‐fostered to control dams. Litters were weighed during lactation and initiating at weaning males were fed either control or a high‐fat diet. Young and mature adult offspring were evaluated for obesity, blood pressure (BP), insulin response to oral glucose, and serum lipids. Nephron endowment, renal glucocorticoid receptor, and renin–aldosterone–angiotensin system components were measured. RESULTS: The UN10–21 groups had birth weights lower than controls and transient catch up growth by weaning. Neither strain demonstrated obesity or dyslipidemia following prenatal undernutrition, but long‐term body weight deficits occurred in the UN groups of both strains. High‐fat diet fed offspring gained more weight than control offspring without an effect of prenatal nutrition. Sprague Dawley were slightly more susceptible than Wistar rats to altered insulin response and increased BP following gestational undernutrition. Nephron endowment in Sprague Dawley but not Wistar offspring was lower in the UN10–21 groups. Glucocorticoid and renin–aldosterone–angiotensin system pathways were not altered. CONCLUSIONS: The most consistent effect of maternal undernutrition was elevated BP in offspring. Long‐term health effects occurred with undernutrition during either window, but the UN10–21 period resulted in lower birth weight and more severe adult health effects. Birth Defects Res (Part B) 89:396–407, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

7.
The effects of the amount of fat provided in a restricted diet on weight loss and body composition were studied in this work. Lean male (Fa/?) Zucker rats were fed a control diet ad libitum. Obese (fa/fa) Zucker rats were divided into three groups: one group was fed a control diet ad libitum and the other two groups were fed 75% energy-restricted diets, which provided 10 or 50% of calories as fat. After 4 weeks, energy restriction normalized body weight but not body composition in the genetically obese rats. Reductions in adipose tissue weights and adipocyte size, without changes in the cellularity, were observed. Differences only reached statistical significance in subcutaneous adipose tissue. A standard fat content in the diet induced the same fat-free mass reduction as a higher amount of this macronutrient, but a greater body fat reduction. This suggests that the restriction of dietary fat, as well as energy, is necessary to achieve dietary management in obesity.  相似文献   

8.
Objective: To investigate stearoyl‐coenzyme A desaturase (SCD) 1 expression in obesity‐prone C57BL/6 mice and in obesity‐resistant FVB mice to explore the relationship of SCD1 expression and susceptibility to diet‐induced obesity. Research Methods and Procedures: Nine‐week‐old C57BL/6 and FVB mice were fed either a high‐ or low‐fat diet for 8 weeks. Body weight and body composition were measured before and at weeks 4 and 8 of the study. Energy expenditure was measured at weeks 1 and 5 of the study. Hepatic SCD1 mRNA was measured at 72 hours and at the end of study. Plasma leptin and insulin concentrations were measured at the end of study. Results: When C57BL/6 mice were switched to a calorie‐dense high‐fat diet, animals gained significantly more body weight than those maintained on a low‐calorie density diet primarily due to increased fat mass accretion. Fat mass continued to accrue throughout 8 weeks of study. Increased calorie intake did not account for all weight gain. On the high‐fat diet, C57BL/6 mice decreased their energy expenditure when compared with mice fed a low‐fat diet. In response to 8 weeks of a high‐fat diet, SCD1 gene expression in liver increased >2‐fold. In contrast, feeding a high‐fat diet did not change body weight, energy expenditure, or SCD1 expression in FVB mice. Discussion: Our study showed that a high‐fat hypercaloric diet increased body adiposity first by producing hyperphagia and then by decreasing energy expenditure of mice susceptible to diet‐induced obesity. Consumption of a high‐fat diet in species predisposed to obesity selectively increased SCD1 gene expression in liver.  相似文献   

9.
The effects of fat content in the hypocaloric diet on whole body glucose oxidation and adipocyte glucose transport were investigated in two animal-feeding experiments. Diet-induced obese rats were food restricted to 75% of their previous energy intakes with either a high (45% by calorie) or a low (12% by calorie) corn oil diet for 9 wk (experiment 1) or 10 days (experiment 2). The losses of body weight (P < 0.05) and adipose depot weight (P < 0.05) were less in the 45% compared with the 12% fat group. During the dynamic phase of weight loss (day 10 of food restriction), plasma glucose and insulin concentrations were higher (P < 0.05) in the 45% than those in the 12% fat group. Whole body carbohydrate oxidation rate in response to an oral load of glucose was increased (P < 0.001) by food restriction in both dietary groups; however, carbohydrate oxidation rates were lower (P < 0.01) in the 45% than in the 12% fat-fed rats during the weight loss period. Adipocyte glucose transport was greater (P < 0.02) in the 45% than in the 12% fat group in an intra-abdominal adipose depot but not in subcutaneous fat. These data suggest that dietary fat content modifies whole body glucose oxidation and intra-abdominal adipocyte glucose uptake during weight loss.  相似文献   

10.
Protein malnutrition leads to growth retardation that can be reversed through catch‐up growth, once normative nutrition is restored. Because growth is a dynamic process, catch‐up capacity is likely influenced by the maturity of the animal and/or the duration of the insult, in addition to the type of insult experienced. We compared length of malnutrition, sexual dimorphism, body mass, and skeletal growth. Eighty Rattus norvegicus were divided into 10 treatment groups (five diets; male and female) and followed for more than 1 year. At weaning, animals were placed on either a control or low‐protein isocaloric diet. Three experimental groups were switched to the control diet at 40, 60, or 90 days. Beginning with 21 days of age, animals were weighed daily and radiographed throughout the study. To determine the presence of catch‐up growth, growth rates (GRs) were calculated (linear regression) for 20‐day time spans before and after diet changes and compared among treatment groups. Targeted growth was measured as final size or as the coefficient of variation with age. These results show that 1) protein‐restricted animals experience catch‐up growth with dietary rehabilitation; 2) for females, catch‐up GRs are proportional to GRs in control animals at the same age as the timing of dietary rehabilitation but not for males; and 3) targeted growth was observed in some, but not all, aspects of anatomy. The length of the tibia and humerus was indistinguishable from controls, regardless of length of malnutrition or gender, whereas the ulna and male body mass exceeded control sizes. Although most measures decreased in variation with ontogeny, the tibia failed to do so. These results support a complex biological regulation of catch‐up and targeted growth. The implications for selection are that flexible and responsive developmental trajectories may have an advantage over those programed into a single size. J. Morphol., 2011. © 2011 Wiley‐Liss, Inc.  相似文献   

11.
Protein restriction during the suckling phase can malprogram rat offspring to a lean phenotype associated with metabolic dysfunctions later in life. We tested whether protein-caloric restriction during lactation can exacerbate the effect of a high-fat (HF) diet at adulthood. To test this hypothesis, we fed lactating Wistar dams with a low-protein (LP; 4% protein) diet during the first 2 weeks of lactation or a normal-protein (NP; 23% protein) diet throughout lactation. Rat offspring from NP and LP mothers received a normal-protein diet until 60 days old. At this time, a batch of animals from both groups was fed an HF (35% fat) diet, while another received an NF (7% fat) diet. Maternal protein-caloric restriction provoked lower body weight and fat pad stores, hypoinsulinemia, glucose intolerance, higher insulin sensitivity, reduced insulin secretion and altered autonomic nervous system (ANS) function in adult rat offspring. At 90 days old, NP rats fed an HF diet in adulthood displayed obesity, impaired glucose homeostasis and altered insulin secretion and ANS activity. Interestingly, the LP/HF group also presented fat pad and body weight gain, altered glucose homeostasis, hyperleptinemia and impaired insulin secretion but at a smaller magnitude than the NP-HF group. In addition, LP/HF rats displayed elevated insulin sensitivity. We concluded that protein-caloric restriction during the first 14 days of life programs the rat metabolism against obesity and insulin resistance exacerbation induced by an obesogenic HF diet.  相似文献   

12.
The effect of fumagillin (a methionine aminopeptidase‐type 2 (Met‐AP2) inhibitor, with antiangiogenic properties) was investigated in murine models of diet‐induced obesity. Eleven‐week‐old male C57Bl/6 mice (group 1) were given fumagillin by oral gavage at a dose of 1 mg/kg/day during 4 weeks while fed a high‐fat diet (HFD) (20.1 kJ/g), and control mice (group 2) received solvent and were pair‐fed. At the end of the experiment, body weights in group 1 were significantly lower as compared to group 2 (P < 0.0005). The subcutaneous (SC) and gonadal (GON) fat mass was also significantly lower in group 1 (P < 0.005 and P < 0.05, respectively). Adipocytes were smaller in adipose tissues of mice in group 1, associated with higher adipocyte density. Blood vessel density normalized to adipocyte density was lower in group 1 adipose tissues. However, in mice with established obesity monitored to maintain the same body weight and fat mass as controls, short‐term fumagillin administration was also associated with adipocyte hypotrophy (P = 0.01) without affecting blood vessel size or density. Thus, treatment with fumagillin impaired diet‐induced obesity in mice, associated with adipocyte hypotrophy but without marked effect on adipose tissue angiogenesis.  相似文献   

13.
A number of clinical and biochemical studies demonstrate that obesity and insulin resistance are associated with increases in oxidative stress and inflammation. Paradoxically, insulin sensitivity can be enhanced by oxidative inactivation of cysteine residues of phosphatases, and inflammation can be reduced by S‐glutathionylation with formation of protein‐glutathione mixed disulfides (PSSG). Although oxidation of protein‐bound thiols (PSH) is increased in multiple diseases, it is not known whether there are changes in PSH oxidation species in obesity.

Objective:

In this work, the hypothesis that obesity is associated with decreased levels of proteins containing oxidized protein thiols was tested.

Design and Methods:

The tissue levels of protein sulfenic acids (PSOH) and PSSG in liver, visceral adipose tissue, and skeletal muscle derived from glucose intolerant, obese‐prone Sprague‐Dawley rats were examined.

Results:

The data in this study indicate that decreases in PSSG content occurred in liver (44%) and adipose (26%) but not skeletal muscle in obese rats that were fed a 45% fat‐calorie diet versus lean rats that were fed a 10% fat‐calorie diet. PSOH content did not change in the tissue between the two groups. The activity of the enzyme glutaredoxin (GLRX) responsible for reversal of PSSG formation did not change in muscle and liver between the two groups. However, levels of GLRX1 were elevated 70% in the adipose tissue of the obese, 45% fat calorie‐fed rats.

Conclusion:

These are the first data to link changes in S‐glutathionylation and GLRX1 to adipose tissue in the obese and demonstrate that redox changes in thiol status occur in adipose tissue as a result of obesity.  相似文献   

14.
Objective: We aimed to characterize further the Lou/C (LOU) and Fischer 344 (F344) rat strains for nutritional traits to validate their use as contrasting strains for molecular genetic studies. Research Methods and Procedures: Five batches of LOU and F344 rats were used to measure caloric intake, weight gain, and body composition when fed a chow diet, a self‐selection diet (together with the study of preferences for macronutrients), hypercaloric diets, and a chow diet in a cold environment. Results: Despite a higher caloric intake when fed a chow diet, LOU rats showed a lower weight gain, final body weight, and percentage of fat tissue, together with a higher percentage of carcass weight, than F344 rats. When fed a self‐selection diet, LOU males ingested less protein and more fat than F344 males, and the reverse was observed for females. In this condition, feed efficiency was reduced in LOU but increased in F344 rats compared with the chow diet. Diet‐induced obesity was observed in F344 rats but not in LOU rats fed hypercaloric diets. In a cold environment, both LOU and F344 rats displayed an increased percentage of brown adipose tissue compared with control groups, together with a higher caloric intake. Discussion: The study shows robust nutritional differences between the LOU rat, a lean strain with a low feed efficiency and resistant to diet‐induced obesity, and the contrasting F344 rat strain. It also shows the interest in these strains for studying the genetic components of resistance to obesity.  相似文献   

15.
Obesity is increasing at an alarming rate globally. Several studies have shown that premenopausal women have a reduced risk of CV disease and a reduced myocardial susceptibility to ischemia/reperfusion injury. The effect of obesity on myocardial tolerance to ischemia in women has not been established. To determine how obesity affects myocardial susceptibility to ischemia/reperfusion injury in both males and females, we fed male and female Wistar rats a high caloric diet (HCD) or a control rat chow diet (CD) for 18 weeks. Rats were subsequently fasted overnight, anesthetized and blood was collected. In separate experiments, 18-week-fed (HCD and CD) rats underwent 45 min in vivo coronary artery ligation (CAL) followed by 2 hours reperfusion. Hearts were stained with TTC and infarct size determined. Both male and female HCD fed rats had increased body and visceral fat weights. Homeostasis model assessment (HOMA) index values were 13.95+/-3.04 for CD and 33.58+/-9.39 for HCD male rats (p<0.01) and 2.98+/-0.64 for CD and 2.99+/-0.72 for HCD fed female rats. Male HCD fed rats had larger infarct sizes than CD fed littermates (43.2+/-9.3 % vs. 24.4+/-7.6 %, p<0.05). Female HCD and CD diet fed rats had comparable infarct sizes (31.8+/-4.3 % vs. 23.9+/-3.3 %). We conclude that male rats on the HCD became viscerally obese, dyslipidemic and insulin-resistant, while female HCD fed rats became viscerally obese without developing dyslipidemia or insulin resistance. Obesity increased myocardial infarct size in males but not the females.  相似文献   

16.
Interventions against obesity, are mainly around changing calorie intake and energy expenditure. Recently, some studies focused on the influence of circadian time of food intake on metabolic status. Here, we compare the role of calorie restriction and time restricted feeding followed by high-fat diet started post weaning, First, 52 male Wistarrats (3 weeks old) were divided into two groups: the high-fat diet (HFD, n = 42) and the control group (CON1, n = 11). After 17 weeks, five rats were randomly selected from each group for sample preparation. In the second phase, the animals in HFD group were assigned into four groups (n = 9): (1) 30% calorie restriction (CR), (2) day intermittent fasting (DIF), (3) night intermittent fasting (NIF), (4) adlibitum food intake (AL), (5) remained animal from the first phase control (CON2). Seventeen weeks of HFD started post-weaning did not cause fatty liver but it caused a significant difference in the body and the adipose tissue weight (P0.05). The results showed that longtime HFD did not lead to liver steatosis while the incorrect time of food intake predisposes the animal to the upcoming liver disease. This data indicate a significant role of timing of food intake rather than nutrition composition itself.  相似文献   

17.
Effects of protein malnutrition on adipose tissue development were studied in weanling male Sprague-Dawley rats fed isocaloric diets ad libitum containing either 22% (controls) or 8% (protein-malnourished rats) casein, and in rats pair-fed to the protein-malnourished rats with the 22% casein diet. After 32 days on the diet, protein-malnourished rats were 37% and pair-fed 67% the weight of the controls, while torso length was 37% and 73% of controls, respectively. Food consumption relative to body weight was greatest in protein-malnourished rats. Compared to control rats, the distal epididymal adipocyte number in the protein-malnourished rats was decreased in proportion to the decrease in body size and was more closely related to the protein intake than to the total calories consumed. After 32 days on diet, mean adipocyte number per 2 distal pads was 11.7 x 10(6) in controls and 4.3 x 10(6) in protein-malnourished rats. In pair-fed rats, cell number lagged behind controls at 4 and 11 days, but was normal at 32 days (11.4 x 10(6) cells). The distal epididymal pad adipocyte size and percent lipid were similar in all groups during the first 25 days of dietary treatment. Adipocyte size was increased significantly in controls at day 32 compared to the other two groups. At each time studied through day 25 on diet, epididymal pad weight was related to the adipose cell number rather than the cell size. It is concluded that severe restriction of dietary protein during the postweaning period of growth in rats results in decreased epididymal adipocyte proliferation and/or differentiation concomitant with generalized growth retardation, whereas isocaloric feeding of a diet of normal protein content is associated with only a transient delay in adipose tissue development.  相似文献   

18.
Objective: Ghrelin is a 28‐amino‐acid acylated peptide that was recently identified as the endogenous ligand for the growth hormone secretagogue receptor. Previous studies have shown that ghrelin potently increases growth hormone release and food intake. The aim of this study was to clarify the physiological implications of ghrelin in the regulation of energy balance, by assessing the effect of undernutrition throughout 21 days in normal‐cycling and pregnant rats on ghrelin. Research Methods and Procedures: We have determined ghrelin levels by radioimmunoassay and gastric ghrelin mRNA expression by Northern blot analysis during 21 days of chronic food restriction (30% of ad libitum available diet) in normal‐cycling female rats and in pregnancy. Results: Our results show that chronic food restriction led to an increase in plasmatic ghrelin levels in normal‐cycling female rats. In pregnancy, ghrelin plasmatic levels were enhanced particularly during the latter part of gestation (19 and 21 days) compared with pregnant rats with free access to food. Gastric ghrelin mRNA expression showed a similar expression pattern, being higher in the food‐restricted group than in the group fed ad libitum, in normal‐cycling as well as in pregnant rats. Discussion: These observations indicate that ghrelin plasmatic levels and ghrelin gastric mRNA are up‐modulated during undernutrition in normal‐cycling rats and in pregnancy. These findings suggest that increased ghrelin levels may have a role in mediating the physiological responses to undernutrition and could represent an adaptative response to prevent long‐lasting alterations in energy balance and body weight homeostasis.  相似文献   

19.
Low birth weight has been associated with increased obesity in adulthood. It has been shown that dietary salt restriction during intrauterine life induces low birth weight and insulin resistance in adult Wistar rats. The present study had a two-fold objective: to evaluate the effects that low salt intake during pregnancy and lactation has on the amount and distribution of adipose tissue; and to determine whether the phenotypic changes in fat mass in this model are associated with alterations in the activity of the renin-angiotensin system. Maternal salt restriction was found to reduce birth weight in male and female offspring. In adulthood, the female offspring of dams fed the low-salt diet presented higher adiposity indices than those seen in the offspring of dams fed a normal-salt diet. This was attributed to the fact that adipose tissue mass (retroperitoneal but not gonadal, mesenteric or inguinal) was greater in those rats than in the offspring of dams fed a normal diet. The adult offspring of dams fed the low-salt diet, compared to those dams fed a normal-salt diet, presented the following: plasma leptin levels higher in males and lower in females; plasma renin activity higher in males but not in females; and no differences in body weight, mean arterial blood pressure or serum angiotensin-converting enzyme activity. Therefore, low salt intake during pregnancy might lead to the programming of obesity in adult female offspring.  相似文献   

20.

Background

Sensitivity to obesity is highly variable in humans, and rats fed a high fat diet (HFD) are used as a model of this inhomogeneity. Energy expenditure components (basal metabolism, thermic effect of feeding, activity) and variations in substrate partitioning are possible factors underlying the variability. Unfortunately, in rats as in humans, results have often been inconclusive and measurements usually made after obesity onset, obscuring if metabolism was a cause or consequence. Additionally, the role of high carbohydrate diet (HCD) has seldom been studied.

Methodology/Findings

Rats (n=24) were fed for 3 weeks on HCD and then 3 weeks on HFD. Body composition was tracked by MRI and compared to energy expenditure components measured prior to obesity. Results: 1) under HFD, as expected, by adiposity rats were variable enough to be separable into relatively fat resistant (FR) and sensitive (FS) groups, 2) under HCD, and again by adiposity, rats were also variable enough to be separable into carbohydrate resistant (CR) and sensitive (CS) groups, the normal body weight of CS rats hiding viscerally-biased fat accumulation, 3) HCD adiposity sensitivity was not related to that under HFD, and both HCD and HFD adiposity sensitivities were not related to energy expenditure components (BMR, TEF, activity cost), and 4) only carbohydrate to fat partitioning in response to an HCD test meal was related to HCD-induced adiposity.

Conclusions/Significance

The rat model of human obesity is based on substantial variance in adiposity gains under HFD (FR/FS model). Here, since we also found this phenomenon under HCD, where it was also linked to an identifiable metabolic difference, we should consider the existence of another model: the carbohydrate resistant (CR) or sensitive (CS) rat. This new model is potentially complementary to the FR/FS model due to relatively greater visceral fat accumulation on a low fat high carbohydrate diet.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号