首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
In vitro 1H- and 13C-NMR spectroscopy was used to investigate the effect of ammonia on fatty acid synthesis and composition in cultured astrocytes. Cells were incubated 3 and 24 h with 5 mM ammonia in the presence or absence of the glutamine synthetase inhibitor methionine sulfoximine. An increase of de novo synthesized fatty acids and the glycerol subunit of lipids was observed after 3 h treatment with ammonia (35% and 40% over control, respectively), the initial time point examined. Both parameters further increased significantly to 85% and 60% over control after 24 h ammonia treatment. Three hours incubation with ammonia increased the synthesis of diacylglycerides, while formation of triacylglycerides was decreased (40% over and 15% under control, respectively). The degradation of fatty acids was not affected by ammonia treatment. Furthermore, ammonia caused alterations in the composition of fatty acids, e.g. increased mono- and decreased polyunsaturated fatty acids (85% over and 15% under control concentrations, respectively). The decrease of polyunsaturated fatty acids was even more pronounced in isolated astrocytic mitochondria (39% lower than controls). Our results suggest ammonia-induced abnormalities in astrocytic membranes, which may be related to astrocytic mitochondrial dysfunction in hyperammonemic states. Most of the observed effects of ammonia on fatty acid synthesis and composition were ameliorated when glutamine synthetase was inhibited by methionine sulfoximine, supporting a pathological role of glutamine in ammonia toxicity. This study further emphasizes the importance of investigating the relative contribution of exogenous ammonia, effects of glutamine and of glutamine-derived ammonia on astrocytes and astrocytic mitochondria.  相似文献   

2.
Impact of transition metals which catalyze the generation of reactive oxygen species (ROS), on activation of cell death signaling in plant cells have been documented to date. Similarly in green paramecia (Paramecium bursaria), an aquatic protozoan species harboring symbiotic green algae in the cytoplasm, toxicities of various metallic ions have been documented. We have recently examined the effects of double-stranded GC-rich DNA fragments with copper-binding nature and ROS removal catalytic activity as novel plant cell-protecting agents, using the suspension-cultured tobacco cells. Here, we show that above DNA oligomers protect the cells of green paramecia from copper-induced cell death, suggesting that the phenomenon firstly observed in tobacco cells is not limited only within higher plants but it could be universally observable in wider range of organisms.  相似文献   

3.
A green ciliate Paramecium bursaria, bearing several hundreds of endosymbiotic algae, demonstrates rotational microtubule-based cytoplasmic streaming, in which cytoplasmic granules and endosymbiotic algae flow in a constant direction. However, its physiological significance is still unknown. We investigated physiological roles of cytoplasmic streaming in P. bursaria through host cell cycle using video-microscopy. Here, we found that cytoplasmic streaming was arrested in dividing green paramecia and the endosymbiotic algae proliferated only during the arrest of cytoplasmic streaming. Interestingly, arrest of cytoplasmic streaming with pressure or a microtubule drug also induced proliferation of endosymbiotic algae independently of host cell cycle. Thus, cytoplasmic streaming may control the algal proliferation in P. bursaria. Furthermore, confocal microscopic observation revealed that a division septum was formed in the constricted area of a dividing paramecium, producing arrest of cytoplasmic streaming. This is a first report to suggest that cytoplasmic streaming controls proliferation of eukaryotic cells.  相似文献   

4.
5.
Abstract cDNA-RNA liquid hybridization analysis was used to compare the RNA sequence homology between two members of the Nudaurelia β virus family, Trichoplusia ni virus ( T.ni V) and Dasychira pudibunda virus ( D.p V). Heterologous hybridization experiments demonstrated that these viruses shared little sequence homology. Using oligo(dT) chromatography and oligo(dT)12–18 as a primer for cDNA synthesis it was shown that neither T.ni V nor D.p V RNA genomes possess a poly(A) tract at the 3' end.  相似文献   

6.
Altered function of pulmonary surfactant in fatty acid lung injury   总被引:1,自引:0,他引:1  
To determine whether acute fatty acid lung injury impairs pulmonary surfactant function, we studied anesthetized ventilated rabbits given oleic acid (55 mg/kg iv, n = 11) or an equivalent volume of saline (n = 8). Measurements of pulmonary mechanics indicated a decrease in dynamic compliance within 5 min of injury and a decrease in lung volume that was disproportionately large at low pressures, consistent with diminished surfactant activity in vivo. Bronchoalveolar lavage fluid obtained 1 h after injury had significantly increased erythrocytes and total leukocytes, largely polymorphonuclear cells. The phospholipid content and composition of the cell-free fraction had only minor changes from those of controls, but the protein content was increased 35-fold. Measurements of lavage surface activity in vitro showed an increase in average minimum surface tension from 1.3 +/- 0.4 (SE) dyn/cm in controls to 20.2 +/- 3.9 dyn/cm in injured animals. The alterations in static pressure-volume curves and decrease in lavage surface activity suggest a severe alteration of surfactant function in this form of lung injury that occurs despite the presence of normal amounts of surfactant phospholipids.  相似文献   

7.
In the present paper, we report the results of a study on the in vivo localization of 51Cr-labeled lymphocytes with an altered lipid bilayer. In vitro treatment of lymphocytes with fatty acids (arachidic and linolenic acids) modifies the relative composition of plasma membrane fatty acids. Phospholipids of the plasma membrane of lymphocytes incubated with arachidic acid show a preferential increase of fatty acids with chain length between C:12 and C:16. Cells incubated with linolenic acid show an increase percentage of fatty acids C:16 to C:20 and the relative amount of the fatty acids with chain length superior to C:20 is higher in cells treated with linolenic than with arachidic acid. We have found that these alterations in plasma membrane fatty acid composition can modify the normal pattern of lymphocyte localization in vivo after iv transfer into syngeneic hosts. The possible role of factors such as cell to cell adhesion and/or fluidity of plasma membranes in the control of lymphocyte migration are discussed.  相似文献   

8.
Interaction of homologous fatty acids (C3-C18) with sodium deoxycholate was investigated. From NMR and ultrasonic results it was found that short chain homologues (up to C9) do not participate in the formation of mixed micelles with sodium deoxycholate. Fatty acid homologues with longer chains (starting with C9) form mixed micelles by "burying" hydrophobic chains in hydrophobic environment of a sodium deoxycholate micelle.  相似文献   

9.
Calcium ion (Ca2+) is one of the key regulatory elements for ciliary movements in the Paramecium species. It has long been known that members of Paramecium species including green paramecia (Paramecium bursaria) exhibit galvanotaxis which is the directed movement of cells toward the anode by swimming induced in response to an applied voltage. However, our knowledge on the mode of Ca2+ action during green paramecia anodic galvanotactic response is still largely limited. In the present study, quantification of anodic galvanotaxis was carried out in the presence and absence of various inhibitors of calcium signaling and calcium channels. Interestingly, galvanotactic movement of the cells was completely inhibited by a variety of Ca2+-related inhibitors. Such inhibitors include a Ca2+ chelator (EGTA), general calcium channel blockers (such as lanthanides), inhibitors of intracellular Ca2+ release (such as ruthenium red and neomycin), and inhibitors of T-type calcium channels (such as NNC 55-0396, 1-octanol and Ni2+). However, L-type calcium channel inhibitors such as nimodipine, nifedipine, verapamil, diltiazem and Cd2+ showed no inhibitory action. This may be the first implication for the involvement of T-type calcium channels in protozoan cellular movements.  相似文献   

10.
The toxicity of fatty acid salts to German, Blattella germanica (L.), and American cockroaches, Periplaneta americana (L.), was evaluated. Potassium and sodium laurate caused up to 95% mortality of German cockroaches and 100% mortality of American cockroaches. Even-numbered potassium fatty acid salts, C8-C18 were assessed for toxicity at 0.125, 0.25, 0.5, 1, and 2% concentrations by a 30-s immersion of cockroaches. The more soluble of the fatty acid salts at 2% concentration caused 65-95% mortality of German cockroaches and 100% mortality of American cockroaches. Potassium oleate, C18, was most toxic to both German (LC50 = 0.36%) and American (LC50 = 0.17%) cockroaches. Fatty acid salt solutions on a substrate were tested by placing cockroaches in contact with treated floor tiles immediately after application (wet) or after the solutions had dried. Sodium laurate and potassium caprate caused mortality of German (62 +/- 17.4 and 58 +/- 12.6%, respectively) and American cockroaches (52 +/- 18.5 and 28 +/- 4.9%, respectively) on wet tiles, whereas potassium oleate caused mortality of German cockroaches (67 +/- 14.1%) only. Dry fatty acids caused no mortality among exposed cockroaches. Fatty acid salt solutions can be effective in killing German and American cockroaches but only when insects are thoroughly wetted with 1-2% fatty acid salt solutions.  相似文献   

11.
Deterioration of pulmonary surfactant function has been reported in interstitial lung disease; however, the molecular basis is presently unclear. We analyzed fatty acid (FA) profiles of several surfactant phospholipid classes isolated from large-surfactant aggregates of patients with idiopathic pulmonary fibrosis (IPF; n = 12), hypersensitivity pneumonitis (n = 5), and sarcoidosis (n = 12). Eight healthy individuals served as controls. The relative content of palmitic acid in phosphatidylcholine was significantly reduced in IPF (66.8 +/- 2.5%; means +/- SE; P < 0.01) but not in hypersensitivity pneumonitis (78.5 +/- 1.8%) and sarcoidosis (78.2 +/- 3.1%; control 80.1 +/- 0.7%). In addition, the phosphatidylglycerol FA profile was significantly altered in the IPF patients, with a lower relative content of its major FA, oleic acid, at the expense of saturated FA. In the phosphatidylcholine class, a significant correlation between the impairment of biophysical surfactant function and decreased percentages of palmitic acid was noted. We conclude that significant alterations in the FA profile of pulmonary surfactant phospholipids occur predominantly in IPF and may contribute to the disturbances of alveolar surface activity in this disease.  相似文献   

12.
Rat hepatocytes were maintained in a serum-free, hormonally defined medium supplemented with 50-500 microM albumin-bound 20:1 (n-9) vs 20:4 (n-6). The induction of fatty acid synthase mRNA by a mix of insulin/dexamethasone/T3 was inhibited in a dose dependent fashion by 20:4 (n-6). The abundance of beta-actin mRNA was not suppressed by 20:4 (n-6). The expression of fatty acid synthase was actually stimulated 2-fold by 20:1 (n-9). It would appear that the in vivo inhibition of fatty acid synthase gene expression by dietary polyunsaturated fatty acids is a specific hepatocelluar event.  相似文献   

13.
Utilization of fatty acid supplements by cultured animal cells   总被引:8,自引:0,他引:8  
  相似文献   

14.
15.
Other than in children diagnosed with attention deficit hyperactivity disorder (ADHD), the connection between ADHD and lipids has not been sufficiently investigated so far in adults. Blood serum lipoproteins and fatty acids (FA) composition were measured and analyzed by colorimetry and gaschromatography in eight male and seven female adults diagnosed with ADHD as well as in 15 age- and gender-matched healthy control subjects. In ADHD patients, polyunsaturated FAs [docosahexaenoic, arachidonic and dihomogammalinolenic acid (p = 0.048; 0.003; 0.012)] showed lower concentrations, while monounsaturated acids (palmitoleic and oleic acid) as well as total and LDL cholesterol showed higher concentrations (p = 0.011; 0.005). ADHD scores positively correlated with palmitoleic (R = ?0.56; p = 0.032), stearic (R = 0.53; p = 0.044), eicosapentaenoic (R = 0.62; p = 0.014), docosahexaenoic (R = 0.51; p = 0.050), gammalinolenic (R = 0.62; p = 0.018) and alphalinolenic acid (R = 0.56; p = 0.031) concentration. Even though the total and LDL cholesterol concentrations in blood serum were significantly higher among the ADHD patients than in controls, none of the ADHD symptom scores were significantly associated with any of the lipoproteine measures. We could demonstrate that a lack of polyunsaturated FAs in blood serum of subjects with ADHD persists into adulthood. Furthermore, we could show that adult ADHD symptomatology positively correlates with elevated levels of saturated stearic and monounsaturated FAs.  相似文献   

16.
Polyunsaturated free fatty acids (PUFAs) participate in normal functioning of the cell, particularly in control intracellular cell signalling. As nutritional components they compose a human diet with an indirect promoting influence on tumourogenesis. The PUFAs level depends on the functional state of the membrane. This work is focused on changes only of free unsaturated fatty acids amount (AA – arachidonic acid, LA – linoleic acid, ALA – α-linolenic acid, palmitoleic acid (PA) and oleic acid) in cell membranes of colorectal cancer of pT3 stage, G2 grade without metastasis. Qualitative and quantitative composition of free unsaturated fatty acids in the membrane was determined by high-performance liquid chromatography. It was shown that the malignant transformation was accompanied by a decrease in amount of LA and ALA while arachidonic and oleic acids increased. It is of interest that free AA levels are elevated in colon cancer, as AA is the precursor to biologically active eicosanoids.  相似文献   

17.
Glucocorticoid therapy is often associated with impaired insulin sensitivity and cardiovascular disease. The present study was designed to evaluate cardiac fatty acid (FA) composition and metabolism following acute dexamethasone (Dex) treatment. Using the euglycemic hyperinsulinemic clamp, rats injected with Dex demonstrated a reduced glucose infusion rate. This whole body insulin resistance was also associated with a heart-specific increase in pyruvate dehydrogenase kinase 4 gene expression and a reduction in the rate of glucose oxidation. Dex treatment increased basal and postheparin plasma lipolytic activity. In the heart, palmitic and oleic acid levels were higher after 4 h of Dex and decreased to control (CON) levels within 8 h. Measurement of polyunsaturated FAs demonstrated a drop in linoleic and gamma-linolenic acid, with an increase in arachidonic acid (AA) after acute Dex injection. Tissue FA can be either oxidized or stored as triglyceride (TG). At 4 h, Dex augmented cardiac TG accumulation. However, this increase in tissue TG could not be maintained, such that at 8 h following Dex, TG declined to CON levels. AMP-activated protein kinase (AMPK) activation is known to promote FA oxidation through its control of acetyl-CoA carboxylase (ACC). Acute Dex promoted ACC phosphorylation, and increased cardiac palmitate oxidation, likely through its effects in increasing AMPK phosphorylation and total AMPK protein and gene expression. Whether these acute effects of Dex on FA oxidation, TG storage, and arachidonic acid accumulation can be translated into increased cardiovascular risk following chronic therapy has yet to be determined.  相似文献   

18.

Background

Biofuel has been the focus of intensive global research over the past few years. The development of 4th generation biofuel production (algae-to-biofuels) based on metabolic engineering of algae is still in its infancy, one of the main barriers is our lacking of understanding of microalgal growth, metabolism and biofuel production. Although fatty acid (FA) biosynthesis pathway genes have been all cloned and biosynthesis pathway was built up in some higher plants, the molecular mechanism for its regulation in microalgae is far away from elucidation.

Results

We cloned main key genes for FA biosynthesis in Haematococcus pluvialis, a green microalga as a potential biodiesel feedstock, and investigated the correlations between their expression alternation and FA composition and content detected by GC-MS under different stress treatments, such as nitrogen depletion, salinity, high or low temperature. Our results showed that high temperature, high salinity, and nitrogen depletion treatments played significant roles in promoting microalgal FA synthesis, while FA qualities were not changed much. Correlation analysis showed that acyl carrier protein (ACP), 3-ketoacyl-ACP-synthase (KAS), and acyl-ACP thioesterase (FATA) gene expression had significant correlations with monounsaturated FA (MUFA) synthesis and polyunsaturated FA (PUFA) synthesis.

Conclusions

We proposed that ACP, KAS, and FATA in H. pluvialis may play an important role in FA synthesis and may be rate limiting genes, which probably could be modified for the further study of metabolic engineering to improve microalgal biofuel quality and production.  相似文献   

19.
Essential fatty acid metabolism in cultured human airway epithelial cells.   总被引:3,自引:0,他引:3  
To characterize essential fatty acid metabolism of human airway epithelium, we examined the capacity of epithelial cells to incorporate and desaturate/elongate 18:2(n - 6) and the turnover of phospholipid fatty acyl chains in these cells. Epithelial cells were cultured for 5-7 days and incubated with [1-14C]18:2(n - 6) (1 microCi, 100 nmol). The essential fatty acid profile of the cells was readily modified by 18:2(n - 6) supplementation to culture medium. After 4 h incubation, 32 +/- 5.6 nmol of [1-14C]18:2(n - 6) was incorporated into phospholipids (65 +/- 9.5%, of which 74% was incorporated into phosphatidylcholine (PC)) and neutral lipid (31 +/- 10%) per mg protein of cultured cells. 30 +/- 8% of [1-14C]18:2(n - 6) incorporated, was converted to homologous trienes, tetraenes and pentaenes, the major products being 20:3(n - 6) and 20:4(n - 6). The conversion of 18:2(n - 6) was time-dependent and donor age-related. A higher proportion of 20:3(n - 6) and 20:4(n - 6) was incorporated into phosphatidylinositol (PI) and phosphatidylethanolamine (PE). About 10-15% of total products formed from 18:2(n - 6) was released from membrane to culture medium. Both 20:4(n - 6) and 20:5(n - 3) inhibited 18:2(n - 6) incorporation and desaturation. Rate of incorporation of 18:2(n - 6) was more than either 18:1(n - 9) or 16:0. With pulse-chase studies, the half-life of 18:2(n - 6) in PC, PI and PE was estimated to be 5.5, 6.0 and 7.3 h, respectively. These data indicate active metabolism of essential fatty acids in human airway epithelial cells. This metabolism may play a key role in the regulation of membrane properties and function in these cells.  相似文献   

20.
Whereas the role of liver fatty acid-binding protein (L-FABP) in the uptake, transport, mitochondrial oxidation, and esterification of normal straight-chain fatty acids has been studied extensively, almost nothing is known regarding the function of L-FABP in peroxisomal oxidation and metabolism of branched-chain fatty acids. Therefore, phytanic acid (most common dietary branched-chain fatty acid) was chosen to address these issues in cultured primary hepatocytes isolated from livers of L-FABP gene-ablated (-/-) and wild type (+/+) mice. These studies provided three new insights: First, L-FABP gene ablation reduced maximal, but not initial, uptake of phytanic acid 3.2-fold. Initial uptake of phytanic acid uptake was unaltered apparently due to concomitant 5.3-, 1.6-, and 1.4-fold up-regulation of plasma membrane fatty acid transporter/translocase proteins (glutamic-oxaloacetic transaminase, fatty acid transport protein, and fatty acid translocase, respectively). Second, L-FABP gene ablation inhibited phytanic acid peroxisomal oxidation and microsomal esterification. These effects were consistent with reduced cytoplasmic fatty acid transport as evidenced by multiphoton fluorescence photobleaching recovery, where L-FABP gene ablation reduced the cytoplasmic, but not membrane, diffusional component of NBD-stearic acid movement 2-fold. Third, lipid analysis of the L-FABP gene-ablated hepatocytes revealed an altered fatty acid phenotype. Free fatty acid and triglyceride levels were decreased 1.9- and 1.6-fold, respectively. In summary, results with cultured primary hepatocytes isolated from L-FABP (+/+) and L-FABP (-/-) mice demonstrated for the first time a physiological role of L-FABP in the uptake and metabolism of branched-chain fatty acids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号