首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The review summarizes the authors’ and literature data on accumulation of DNA breaks in differentiating cells. Large 50-kb free DNA fragments were observed by several research teams in non-apoptotic insect, mammal, and plant cells. More intense DNA breakage was observed during maturation of spermatides, embryo development, and differentiation of myotubes, epidermal cells, lymphocytes, and neutrophils. In general, accumulation of DNA breaks in differentiating cells cannot be attributed to a decrease in the DNA repair efficiency. Poly(ADP)ribose synthesis often follows the DNA breakage in differentiating cells. We hypothesize that DNA fragmentation is an epigenetic tool for regulating the differentiation process. Scarce data on localization of the differentiation-associated DNA breaks indicate their preferable accumulation in specific DNA sequences including the nuclear matrix attachment sites. The same sites are degraded at early stages of apoptosis. Recent data on non-apoptotic function of caspases provide more evidence for possible existence of a DNA breakage mechanism in differentiating cells, resembling the initial stage of apoptosis. Excision of methylated cytosine and recombination are other possible explanations of the phenomenon. Elucidation of mechanisms of differentiation-induced DNA breaks appears to be a prospective research direction.  相似文献   

2.
The present review summarizes data on the accumulation of DNA strand breaks in differentiating cells. Large 50 Kbp free DNA fragments were observed by several research teams in non-apoptotic insect, mammal and plant cells. A more intensive DNA breakage was observed during maturation of spermatides, embryo development, and differentiation of myotubes, epidermal cells, lymphocytes and neutrophils. In general, accumulation of DNA strand breaks in differentiating cells cannot be attributed to decrease of the DNA repair efficiency. Poly(ADP)ribose synthesis often follows the DNA breakage in differentiating cells. We hypothesize that DNA fragmentation is an epigenetic tool for regulation of the differentiation process. Scarce data on localization of the differentiation-associated DNA strand breaks indicate their preferred accumulation in specific DNA sequences including the nuclear matrix attachment sites and repeats. Recent data on non-apoptotic functions of caspases provide more evidence for possible existence of a DNA breakage mechanism in differentiating cells resembling the initial stage of apoptosis. Excision of methylated cytosine and recombination are other possible explanations of the phenomenon. Elucidation of mechanisms of differentiation-induced DNA strand breaks appears to possess considerable research potential.  相似文献   

3.
Immunodeficiency, centromeric region instability, and facial anomalies (ICF), a rare recessive chromosome instability syndrome, involves the loss of DNA methyltransferase 3B activity and the consequent hypomethylation of a small portion of the genome. We demonstrate for the first time that ICF cells are strongly hypersensitive to a genotoxic agent, namely, ionizing radiation. However, unlike cell lines from patients with ataxia telangiectasia or Nijmegen breakage syndrome, chromosome instability syndromes also associated with unusual sensitivity to ionizing radiation, ICF cells did not show any deficiencies in their cell cycle checkpoints. ICF lymphoblastoid cell lines demonstrated increased apoptosis, long-term cell cycle arrest, and loss of viability in clonogenicity assays after irradiation compared to analogous normal cell lines. Also, the ICF cell lines were subject to high frequencies of rapid non-apoptotic cell death upon irradiation but not to abnormally high levels of radiation-induced, cytogenetically detectable chromosome abnormalities. ICF-associated undermethylation of some regulatory gene(s) might lead to an exaggerated response to radiation-induced breaks in DNA yielding increased rates of cell death and irreversible cell cycle arrest. As a defense against their frequent spontaneous breaks in chromosomes 1 and 16, ICF patients may be abnormally prone to chromosome break-induced apoptosis, non-apoptotic cell death, and permanent cell cycle arrest so as to minimize the number of cycling cells with spontaneous rearrangements. A similarly increased cell death and cycle-arrest response to chromosome breaks due to cancer-linked DNA hypomethylation might occur during carcinogenesis.  相似文献   

4.
N I S'iakste 《Ontogenez》1987,18(3):229-238
The published and author's data on the involvement of DNA breaks in cell proliferation, differentiation and senescence are reviewed. During senescence, exogenous unrepaired DNA breaks are irreversibly accumulated. During differentiation, DNA breaks are also accumulated, but against the background of active reparation processes in the cell on the principle of a dynamic equilibrium between DNA breakage and reparation. When modelling the state of cell quiescence, both types of DNA breaks may take place. It is suggested that DNA breakage in the replicative complex is specific for the state of quiescence.  相似文献   

5.
Common fragile sites are loci that preferentially form gaps and breaks on metaphase chromosomes when DNA synthesis is perturbed, particularly after treatment with the DNA polymerase inhibitor, aphidicolin. We and others have identified several cell cycle checkpoint and DNA repair proteins that influence common fragile site stability. However, the initial events underlying fragile site breakage remain poorly understood. We demonstrate here that aphidicolin-induced gaps and breaks at fragile sites are prevented when cells are co-treated with low concentrations of the topoisomerase I inhibitor, camptothecin. This reduction in breakage is accompanied by a reduction in aphidicolin-induced RPA foci, CHK1 and RPA2 phosphorylation, and PCNA monoubiquitination, indicative of reduced levels of single stranded DNA. Furthermore, camptothecin reduces spontaneous fragile site breakage seen in cells lacking ATR, even in the absence of aphidicolin. These data from cultured human cells demonstrate that topoisomerase I activity is required for DNA common fragile site breaks and suggest that polymerase–helicase uncoupling is a key initial event in this process.  相似文献   

6.
The anthracycline doxorubicin (adriamycin) is an important chemotherapeutic agent used in the treatment of solid epithelial and mesenchymal tumors as well as leukemias. A variety of mechanisms has been proposed to be involved in doxorubicin-induced cytotoxicity such as DNA intercalation, oxidative stress, DNA strand breakage by inhibition of topoisomerase II, activation of death receptors, and altered p53 expression. Concerning doxorubicin resistance and p53 status data reported are contradictory. Here, we show that mouse fibroblasts deficient in p53 (p53(-/-)) are more resistant to doxorubicin than p53 wild-type (p53 wt) cells. This is in contrast to other genotoxic agents (UV-light, alkylating drugs) for which p53(-/-) fibroblasts proved to be more sensitive. Resistance of p53(-/-) cells to doxorubicin is related to reduced induction of apoptosis. This is not likely to be due to altered apoptotic signaling since the expression of Bax and Bcl-2 was unchanged and the induction of Fas/CD95/APO-1 receptor and caspase-8 was the same in p53(-/-) and p53 wt cells on treatment with doxorubicin. However, we observed a clearly lower level of doxorubicin-induced DNA strand breaks in p53(-/-) cells compared to the wt. P170 glycoprotein was equally expressed and the accumulation and elimination of the drug occurred with identical kinetics in both cell types. p53 deficient cells were cross-resistant to another topoisomerase II inhibitor etoposide, which also provoked increased DNA strand breakage in p53 wt cells. Based on the data we conclude that the p53 status significantly impacts the generation of DNA strand breaks because of drug-induced topoisomerase inhibition rather than death receptor signaling. Since human tumors are frequently mutated in p53 the findings bear clinical implications.  相似文献   

7.
Analysis of the distribution of published chromosome breaks in cells with constitutional chromosome aberrations showed a nonrandom distribution of breaks among chromosomes and chromosome regions. A significant amount of breakage occurred at Giemsa-negative bands. In addition, chromosome sites associated with a number of fragile sites and cellular oncogene sites were affected nonrandomly. The data are consistent with the hypothesis that chromosome breakage occurs in somatic or germ cells as a result of recombinational errors involving actively transcribing chromatin regions or regions of unstable DNA sequence structure placed in proximity during interphase.  相似文献   

8.
Targeted disruption of the mouse Hus1 cell cycle checkpoint gene results in embryonic lethality and proliferative arrest in cultured cells. To investigate the essential functions of Hus1, we developed a system for the regulated inactivation of mouse Hus1 in primary fibroblasts. Inactivation of a loxP site-flanked conditional Hus1 allele by using a cre-expressing adenovirus resulted in reduced cell doubling, cell cycle alterations, and increased apoptosis. These phenotypes were associated with a significantly increased frequency of gross chromosomal abnormalities and an S-phase-specific accumulation of phosphorylated histone H2AX, an indicator of double-stranded DNA breaks. To determine whether these chromosomal abnormalities occurred randomly or at specific genomic regions, we assessed the stability of common fragile sites, chromosomal loci that are prone to breakage in cells undergoing replication stress. Hus1 was found to be essential for fragile site stability, because spontaneous chromosomal abnormalities occurred preferentially at common fragile sites upon conditional Hus1 inactivation. Although p53 levels increased after Hus1 loss, deletion of p53 failed to rescue the cell-doubling defect or increased apoptosis in conditional Hus1 knockout cells. In summary, we propose that Hus1 loss leads to chromosomal instability during DNA replication, triggering increased apoptosis and impaired proliferation through p53-independent mechanisms.  相似文献   

9.
In this article we describe a novel effect of formamide on DNA of apoptotic nuclei and present a method for specific detection of apoptotic cells based on this effect. Our observations show that formamide induces DNA denaturation in apoptotic nuclei but has no such effect on DNA of non-apoptotic cells. Formamide-induced DNA denaturation combined with detection of denatured DNA with a monoclonal antibody (MAb) against single-stranded DNA made it possible to specifically identify the apoptotic cells. This procedure produced intense staining of the condensed chromatin in the apoptotic nuclei. In contrast, necrotic cells from cultures treated with sodium azide, saponin, or hyperthermia did not bind this antibody, demonstrating the specificity of the formamide-MAb assay for the apoptotic cells. However, TUNEL stained 90-100% of necrotic cells in all three models of necrosis. Because the MAb did not stain cells with single- or double-stranded DNA breaks in the absence of apoptosis, we conclude that staining of the apoptotic nuclei is not influenced by DNA breaks and is induced by specific changes in condensed chromatin, such as damage to the DNA-histone interactions. Importantly, the formamide-MAb technique identified apoptotic cells in frozen sections and in histological sections of formalin-fixed, paraffin-embedded tissues.  相似文献   

10.
Interstitial telomeric sites (ITSs) in chromosomes from DNA repair-proficient mammalian cells are sensitive to both spontaneous and radiation-induced chromosome breakage. Exact mechanisms of this chromosome breakage sensitivity are not known. To investigate factors that predispose ITSs to chromosome breakage we used murine scid cells. These cells lack functional DNA-PKcs, an enzyme involved in the repair of DNA double-strand breaks. Interestingly, our results revealed lack of both spontaneous and radiation-induced chromosome breakage at ITSs found in scid chromosomes. Therefore, it is possible that increased sensitivity of ITSs to chromosome breakage is associated with the functional DNA double-strand break repair machinery. To investigate if this is the case we used scid cells in which DNA-PKcs deficiency was corrected. Our results revealed complete disappearance of ITSs in scid cells with functional DNA-PKcs, presumably through chromosome breakage at ITSs, but their unchanged frequency in positive and negative control cells. Therefore, our results indicate that the functional DNA double-strand break machinery is required for elevated sensitivity of ITSs to chromosome breakage. Interestingly, we observed significant differences in mitotic chromosome condensation between scid cells and their counterparts with restored DNA-PKcs activity suggesting that lack of functional DNA-PKcs may cause a defect in chromatin organization. Increased condensation of mitotic chromosomes in the scid background was also confirmed in vivo. Therefore, our results indicate a previously unanticipated role of DNA-PKcs in chromatin organisation, which could contribute to the lack of ITS sensitivity to chromosome breakage in murine scid cells.  相似文献   

11.
Changes in molecular weight of newly synthesized DNA was studied after bleomycin treatment of Escherichia coli cells. The treatment by this drug causes only the increase of dispersion in sedimentation profiles of daughter DNA strands in wild type cells. There are two alternative explanation of this fact. First, single-strand breakage does not occur in newly synthesized DNA, i.e. bleomycin-induced athyminic sites do not block cellular DNA polymerases. Second, it is possible to explain it by quick rejoining of given breaks by cell repair systems. The sedimentation profile of daughter DNA strands of recA mutant rules out the first possibility. Observed shift to low molecular weight fractions region strongly indicates the formation of single-strand breaks in newly synthesized DNA. Extensive daughter DNA degradation in xthA mutant supports the idea of the existence of very effective excision repair in the case of apyrimidinic sites. Thus, non-eliminated bleomycin-induced damage causes the formation of single-strand breaks in newly synthesized DNA strands. These breaks may be repaired in the course of recA-dependent post-replication repair.  相似文献   

12.
The previously reported extensive DNA strand breakage in resting murine splenic lymphocytes is not an artifact of the extraction or assay procedure. The benzamide inhibitors of poly(ADP ribose) synthetase (pADPRS), such as 5-methoxybenzamide (MBA), had been shown to block the strand break repair occurring within 2 h of activation of splenic lymphocytes by the mitogen concanavalin A (conA); the inhibitors also blocked early events in proliferation, such as blast formation, as well as entry into S phase. Inhibitors of pADPRS blocked lymphocyte proliferation by inhibiting the activity of this enzyme, rather than by non-specific effects. Aphidicolin, an inhibitor of alpha-polymerase, also prevented DNA strand break repair in conA-stimulated cells but, unlike MBA, did not prevent blast formation. DNA strand breaks accumulated in the presence of MBA at the same linear rate (300-400/h) in both resting and conA-treated cells. We and others had hypothesized that this accumulation was due to a continuous production of strand breaks in lymphocytes, leading to their accumulation in presence of repair inhibitors. However, incubation of the cells with aphidicolin at concentrations that inhibited repair did not result in any increase in strand breaks. The hypothesis of continuous cycling of breaks is incorrect; accumulation of breaks was due to some indirect effect of MBA, such as a possible disinhibition of an ADP-ribosylation-sensitive endonuclease described in other cell types. All of the early stages of lymphocyte proliferation, including blast transformation (but not DNA synthesis) require ADP ribosylation. Repair of DNA strand breaks is not a precondition for blast formation, though experiments involving the combined effects of MBA and aphidicolin showed that repair of the breaks is essential in order for the cells to replicate their DNA. Our data are consistent with a model suggesting that DNA strand breaks introduced into differentiated cells act as an additional safety-catch mechanism that restrains them from replicating their genetic material but not from undergoing the early stages of proliferation.  相似文献   

13.
BACKGROUND: KRN5500, a derivative of spicamycin, shows antitumor activity against a variety of tumor cell lines. However, the mechanism of cytotoxic action has remained unclear. METHODS: The viability of HL-60 human leukemic cells treated with KRN5500 was studied by the dye exclusion assay. Induction of apoptosis and effects on the cell cycle were investigated by flow cytometry: We measured cellular DNA content after extraction of fragmented DNA, and apoptosis-induced DNA strand breaks. Cell morphology was observed by light microscopy. DNA strand breaks at a nucleosomal unit were analyzed by electrophoresis. RESULTS: Our data demonstrated that KRN5500 caused inhibition of cell growth, and that apoptosis was the mode of cell death. G(1) phase cells were more susceptible to KRN5500 induced apoptosis. In addition, KRN5500 induced cell differentiation at lower concentration. CONCLUSIONS: It is anticipated that KRN5500 will be used clinically as an anti-leukemic agent. Its mechanism of antitumor action is to induce apoptosis or cell differentiation.  相似文献   

14.
Mutants of Diplococcus pneumoniae that lack a membrane-localized DNAase are defective in transformation because entry of DNA into the cell is blocked. Such mutants still bind DNA on the outside of the cell. The bound DNA is double-stranded and its double-stranded molecular weight is unchanged. Its sedimentation behavior in alkali, however, shows that it has undergone single-strand breakage. The breaks are located randomly in both strands of the bound DNA at a mean separation of 2 × 106 daltons of single-stranded DNA. Both binding and single-strand breakage occur in the presence of EDTA. Single-strand breaks are similarly formed on binding of DNA to normally transformable cells in the presence of EDTA. The single-strand breaks appear to be a consequence of attachment. DNA may be bound to the cell surface at the point of breakage.A mutant that is partially blocked in entry also binds DNA mainly on the outside of the cell. In the presence of EDTA, DNA bound by this mutant undergoes only single-strand breaks. In the absence of EDTA, however, double-strand breaks occur, apparently as a result of the initiation of entry. It is possible that the double-strand breaks arise from additional single-strand breaks opposite those that occurred on binding. The double-strand breaks presumably result from action of the membrane DNAase as it begins to release oligonucleotides from one strand segment while drawing the complementary strand segment into the cell.  相似文献   

15.
Onconase (Onc) is a ribonuclease from amphibian oocytes that is cytostatic and cytotoxic to many tumour lines. It shows in vivo antitumour activity in mouse tumour models and is currently in Phase III clinical trials. The present study was designed to test whether cytotoxic effects of ONC can be modulated by differentiating agents. Human leukaemic HL-60 and prostate cancer LNCaP and JCA-1 cells were treated with Onc in the absence and presence of several inducers of differentiation and frequency of apoptosis was assessed using three different cytometric methods and confirmed by analysis of cell morphology. A moderate degree of apoptosis observed after 48-72 h incubation of HL-60 cells in the presence of 0.42 microM Onc alone was markedly potentiated by administration of retinoic acid (all trans), sodium butyrate or dimethylsulfoxide at concentrations known to induce differentiation but be minimally cytotoxic. Likewise, the frequency of apoptosis of LNCaP and JCA-1 cells treated with Onc was increased in the cultures to which phenylbutyrate was added. Although cell treatment with Onc alone, with each of the differentiating agents alone or with Onc in combination with the differentiating agents led to an increase in the proportion of G1 cells, no specific cell cycle phase preference in induction of apoptosis was observed. The data suggest that cells undergoing differentiation are particularly vulnerable to Onc; a combination of Onc and differentiating agents should be considered for further in vivo tests to assess its possible usefulness in the clinic.  相似文献   

16.
Poly(ADP-ribosyl)ation is a cellular response to DNA strand breaks by which a large array of proteins becomes covalently modified for a brief period during the lifetime of the DNA breaks. Inhibition of poly(ADP-ribose) polymerase by 3-aminobenzamide after many types of DNA damage leads to a marked increase in DNA strand breakage, repair replication, cytogenetic damage, mutagenesis, and cell killing. It has been hypothesized that poly(ADP-ribose) polymerase may modify potentially degradative endogenous nucleases that can reduce cellular viability. Thus, in the presence of DNA strand breakage, the polymer would bind these enzymes to inhibit their activity. When synthesis of the polymerase is inhibited, the enzymes would act randomly to produce nonspecific damage in the DNA. We tested this hypothesis by electroporating restriction enzymes into human cells containing the shuttle vector pHAZE. Restriction enzymes cleave at specific recognition sequences in the lacZ target gene of pHAZE, and mutations result from rejoining errors at the cleavage sites. If the hypothesis were correct, enzyme-treated cells cultured with 3-aminobenzamide to inhibit synthesis of poly(ADP-ribose) polymers would result in a significant increase in mutations outside the restriction enzyme sites. The spectrum of mutations observed after electroporation of PvuII (which produces blunt-end double-strand breaks) or PvuI (which produces cohesive-end double-strand breaks) was similar in untreated and 3-aminobenzamide-treated cells. Thus, our results do not support the hypothesis that the increase in damage observed when poly(ADP-ribosyl)ation is inhibited is due to a chaotic, nonspecific attack on DNA by endogenous cellular nucleases.  相似文献   

17.
During the induced differentiation of the human promyelocytic leukaemic cell line, HL-60, along the myelocytic lineage, DNA strand-breaks are formed. These breaks which are formed in the face of a proficient DNA repair mechanism, are only transiently maintained and subsequently become religated. The ligation of these breaks requires the activity of the nuclear adenosine diphosphoribosyl transferase (ADPRT). Inhibition of nuclear ADPRT, an enzyme totally dependent on the presence of DNA strand-breaks for its activity and required for efficient DNA repair in eukaryotic cells, blocks the religation of these breaks but not their formation. The inhibition of DNA strand ligation in the differentiating HL-60 cells results in loss of viability and cell death.  相似文献   

18.
Illumination of Chinese hamster cells with fluorescent light after 5-bromodeoxyuridine incorporation leads to extensive single-strand breakage in the DNA of the exposed cells. The rate of production of single-strand breaks is dependent on the extent to which thymine is replaced by 5-bromouracil. At least some of the breaks observed with alkaline gradients are probably produced in vivo and are probably not contingent upon alkaline hydrolysis since breakage can be demonstrated with neutral gradients also. Cells are able to rejoin most of the single-strand breaks within 60 min; however, damage to the DNA-containing material (the “complex”) initially released from cells is repaired more slowly. Cysteamine protects against single-strand breakage with a dose-modifying factor of 2.8. A comparison is made between the production of single-strand breaks by fluorescent light and X-rays, and the significance of such breaks relative to cell survival is discussed.  相似文献   

19.
Deoxyadenosine plus deoxycoformycin (dCf) causes increased DNA breaks in lymphoid cells. This study explored the possible inhibition of repair synthesis of DNA by dAdo plus dCf as a cause of DNA breakage. It was shown that DNA breaks accumulated in a human T-lymphoblast cell line, CCRF-CEM, following incubation with dAdo plus dCf and were not fully repaired 20 h after their removal. Analysis of the density distribution of radiolabeled DNA on alkaline CsCl gradient showed that incubation of CCRF-CEM cells with dAdo plus dCf caused inhibition of semiconservative, but not repair synthesis of DNA. Semiconservative synthesis of DNA was also inhibited in CCRF-CEM nuclei isolated from cells pretreated with dAdo and dCf, suggesting damage to DNA replicative machinery. However, no such inhibition was observed in the nuclei of a similarly treated CCRF-CEM mutant that was deficient in adenosine kinase and deoxycytidine kinase. This suggests that dAdo must be phosphorylated in intact cells to exert its effect. Using [3H]dTTP incorporation in isolated CCRF-CEM nuclei to measure DNA synthesis, it was found that a high concentration (greater than 100 microM) of dATP inhibits semiconservative but not repair synthesis of DNA. The present studies thus indicate that accumulation of DNA strand breaks induced by dAdo plus dCf is not the consequence of inhibition of repair DNA synthesis. This implies the mechanism may involve perturbation of DNA ligation or activation of a certain process which causes DNA strand breaks. In addition, dATP may interfere with some steps of semiconservative DNA synthesis, but not the repair synthesis of DNA.  相似文献   

20.
The nitrosoureas including BCNU are potent chemotherapeutic drugs and have been used extensively for treatment of brain tumors and other neoplasias but the mechanisms of action for the DNA lesions created and their repair are still unclear. We have recently determined the in vitro repair of BCNU-treated DNA with cellular extracts and with DNA modifying enzymes. BCNU not only caused an increase in breaks in plasmid DNA, but an increase in cross-linked DNA was also observed after restriction enzyme digestion followed by gel electrophoresis. When HeLa cell-extracts were incubated with BCNU-treated DNA, 5-10 fold increases in DNA repair synthesis were observed as compared with untreated control. Substantial increases in 5'OH and 3'OH sites of the breaks were also found in BCNU-treated DNA as determined by the 10-20 fold increases in labeling with T4-DNA kinase and by endogenous polymerases, while the amount of ligatable sites were at a minimal. When the repair capacity of two glioma cell lines (UWR1 and UWR3) with differential BCNU sensitivity, and cells from a chromosomal breakage disease, Bloom's syndrome (BS), were assessed, the activities of the two glioma cells were about 20-30% of the normal lymphoblastoid cells and HeLa cells, whereas no difference was observed in BS cells. However, differential patterns of DNA bands were observed in the glioma samples suggesting cell-type specific capacities of repair synthesis. These data are in accordance with the concept that BCNU creates multiple DNA lesions and suggests different cell types may develop a variety of repair capabilities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号