首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
During early embryonic development, cranial neural crest cells emerge from the developing mid- and hindbrain. While numerous studies have focused on integrin involvement in trunk neural crest cell migration, comparatively little is known about mechanisms of cranial neural crest cell migration. We show that fibronectin, but not laminin, vitronectin, or type I collagen can support cranial neural crest cell migration and segmentation in vitro. These behaviors require both the RGD and "synergy" sites located within the central cell-binding domain of fibronectin. While these two sites are sufficient for cranial neural crest cell migration, we find that the second Heparin-binding domain of fibronectin can provide additional support for cranial neural crest cell migration in vitro. Finally, using a function blocking monoclonal antibody, we show that cranial neural crest cell migration on fibronectin requires the integrin alpha5beta1.  相似文献   

2.
3.
Cranial neural crest cells are a pluripotent population of cells derived from the neural tube that migrate into the branchial arches to generate the distinctive bone, connective tissue and peripheral nervous system components characteristic of the vertebrate head. The highly conserved segmental organisation of the vertebrate hindbrain plays an important role in patterning the pathways of neural crest cell migration and in generating the distinct or separate streams of crest cells that form unique structures in each arch. We have used focal injections of DiI into the developing mouse hindbrain in combination with in vitro whole embryo culture to map the patterns of cranial neural crest cell migration into the developing branchial arches. Our results show that mouse hindbrain-derived neural crest cells migrate in three segregated streams adjacent to the even-numbered rhombomeres into the branchial arches, and each stream contains contributions of cells from three rhombomeres in a pattern very similar to that observed in the chick embryo. There are clear neural crest-free zones adjacent to r3 and r5. Furthermore, using grafting and lineage-tracing techniques in cultured mouse embryos to investigate the differential ability of odd and even-numbered segments to generate neural crest cells, we find that odd and even segments have an intrinsic ability to produce equivalent numbers of neural crest cells. This implies that inter-rhombomeric signalling is less important than combinatorial interactions between the hindbrain and the adjacent arch environment in specific regions, in the process of restricting the generation and migration of neural crest cells. This creates crest-free territories and suggests that tissue interactions established during development and patterning of the branchial arches may set up signals that the neural plate is primed to interpret during the progressive events leading to the delamination and migration of neural crest cells. Using interspecies grafting experiments between mouse and chick embryos, we have shown that this process forms part of a conserved mechanism for generating neural crest-free zones and contributing to the separation of migrating crest populations with distinct Hox expression during vertebrate head development.  相似文献   

4.
Summary Immunoperoxidase labelling for fibronectin (FN) in chick embryos showed FN-positive basement membranes surrounding the neural crest cell population prior to crest-cell migration. At cranial levels, crest cells migrated laterally into a large cell-free space. Initially they moved as a tongue of cells contacting the FN-positive basement membrane of the ectoderm, but later the crest cell population expanded into space further from the ectoderm, until eventually the entire cranial cell-free space was occupied by mesenchyme cells. This was accompanied by the appearance of FN among the crest cells. At trunk levels, crest cells entered a relatively small space already containing FN-positive extracellular material. At later stages the migration of trunk crest cells broadly matched the distribution of FN. In vitro, chick and quail embryo ectoderm, endoderm, somites, notochord and neural tube synthesized and organized fibrous FN-matrices, as shown by immunofluorescence. Ectoderm and endoderm deposited this matrix only on the substrate face. The FN content of endoderm and neural tube matrices was transient, the immunofluorescence intensity declining after 1–2 days in culture. Some crest cells of cranial and sacral axial levels synthesized FN. Our data suggests that these were the earliest crest cells to migrate from these levels. This ability may be the first expression of mesenchymal differentiation in these crest cells, and in vivo enable them to occupy a large space. Almost all crest cells from cervico-lumbar axial levels were unable to synthesize FN. In vivo, this inability may magnify the response of these crest cells to FN provided by the neighbouring embryonic tissues.  相似文献   

5.
The trunk neural crest originates by transformation of dorsal neuroepithelial cells into mesenchymal cells that migrate into embryonic interstices. Fibronectin (FN) is thought to be essential for the process, although other extracellular matrix (ECM) molecules are potentially important. We have examined the ability of three dimensional (3D) ECM to promote crest formation in vitro. Neural tubes from stage 12 chick embryos were suspended within gelling solutions of either basement membrane (BM) components or rat tail collagen, and the extent of crest outgrowth was measured after 22 hr. Fetal calf serum inhibits outgrowth in both gels and was not used unless specified. Neither BM gel nor collagen gel contains fibronectin. Extensive crest migration occurs into the BM gel, whereas outgrowth is less in rat tail collagen. Addition of fibronectin or embryo extract (EE), which is rich in fibronectin, does not increase the extent of neural crest outgrowth in BM, which is already maximal, but does stimulate migration into collagen gel. Removal of FN from EE with gelatin-Sepharose does not remove the ability of EE to stimulate migration. Endogenous FN is localized by immunofluorescence to the basal surface of cultured neural tubes, but is not seen in the proximity of migrating neural crest cells. Addition of the FN cell-binding hexapeptide GRGDSP does not affect migration into either the BM gel or the collagen gel with EE, although it does block spreading on FN-coated plastic. Thus, although crest cells appear to use exogenous fibronectin to migrate on planar substrata in vitro, they can interact with 3D collagenous matrices in the absence of exogenous or endogenous fibronectin. In BM gels, the laminin cell-binding peptide, YIGSR, completely inhibits migration of crest away from the neural tube, suggesting that laminin is the migratory substratum. Indeed, laminin as well as collagen and fibronectin is present in the embryonic ECM. Thus, it is possible that ECM molecules in addition to or instead of fibronectin may serve as migratory substrata for neural crest in vivo.  相似文献   

6.
The possible role of a 140-kD cell surface complex in neural crest adhesion and migration was examined using a monoclonal antibody JG22, first described by Greve and Gottlieb (1982, J. Cell. Biochem. 18:221-229). The addition of JG22 to neural crest cells in vitro caused a rapid change in morphology of cells plated on either fibronectin or laminin substrates. The cells became round and phase bright, often detaching from the dish or forming aggregates of rounded cells. Other tissues such as somites, notochords, and neural tubes were unaffected by the antibody in vitro even though the JG22 antigen is detectable in embryonic tissue sections on the surface of the myotome, neural tube, and notochord. The effects of the JG22 on neural crest migration in vivo were examined by a new perturbation approach in which both the antibody and the hybridoma cells were microinjected onto neural crest pathways. Hybridoma cells were labeled with a fluorescent cell marker that is nondeleterious and that is preserved after fixation and tissue sectioning. The JG22 antibody and hybridoma cells caused a marked reduction in cranial neural crest migration, a build-up of neural crest cells within the lumen of the neural tube, and some migration along aberrant pathways. Neural crest migration in the trunk was affected to a much lesser extent. In both cranial and trunk regions, a cell free zone of one or more cell diameters was generally observed between neural crest cells and the JG22 hybridoma cells. Two other monoclonal antibodies, 1-B and 1-N, were used as controls. Both 1-B and 1-N bind to bands of the 140-kD complex precipitated by JG22. Neither control antibody affected neural crest adhesion in vitro or neural crest migration in situ. This suggests that the observed alterations in neural crest migration are due to a functional block of the 140-kD complex.  相似文献   

7.
Different anteroposterior (AP) regions of the neural crest normally produce different cell types, both in vivo and in vitro. AP differences in neural crest cell fates appear to be specified in part by mechanisms that act prior to neural crest cell migration. We, therefore, examined the possibility that the fates of neural crest cells, like those of neural tube cells, can be regulated by interactions with Hensen's node. Using a transfilter co-culture system, we found that young (stage 3+ to 4) Hensen's node up-regulates the expression of two cranial-specific phenotypes (fibronectin and smooth muscle actin immunoreactivities) in mass cultures of trunk neural crest cells, and down-regulates the expression of a trunk-specific phenotype (melanin synthesis). The changes in phenotype produced by exposure to young Hensen's node were not accompanied by changes in the proliferation of either fibronectin immunoreactive cells or melanocytes. The capacity of Hensen's node to elicit changes in trunk neural crest cell phenotype decreased as the developmental age of the node increased and was lost by stage 6. In addition, old Hensen's node did not stimulate the expression of trunk-specific phenotypes in cranial neural crest cells, suggesting that cranial- and trunk-specific phenotypes are induced by different mechanisms. © 1996 John Wiley & Sons, Inc.  相似文献   

8.
It has long been thought that the same molecules guide both trunk neural crest cells and motor axons as these cell types grow and extend to their target regions in developing embryos. There are common territories that are navigated by these cell types: both cells grow through the rostral portion of the somitic sclerotomes and avoid the caudal half of the sclerotomes. However, these cell types seem to use different molecules to guide them to their target regions. In this Review, I will discuss the common and distinct methods of migration taken by trunk neural crest cells and motor axons as they grow and populate their target regions through chick embryos at the level of the trunk.Key words: migration, axon, motor neuron, trunk neural crest cells, chick  相似文献   

9.
Although numerous in vitro experiments suggest that extracellular matrix molecules like laminin can influence neural crest migration, little is known about their function in the embryo. Here, we show that laminin alpha5, a gene up-regulated during neural crest induction, is localized in regions of newly formed cranial and trunk neural folds and adjacent neural crest migratory pathways in a manner largely conserved between chick and mouse. In laminin alpha5 mutant mice, neural crest migratory streams appear expanded in width compared to wild type. Conversely, neural folds exposed to laminin alpha5 in vitro show a reduction by half in the number of migratory neural crest cells. During gangliogenesis, laminin alpha5 mutants exhibit defects in condensing cranial sensory and trunk sympathetic ganglia. However, ganglia apparently recover at later stages. These data suggest that the laminin alpha5 subunit functions as a cue that restricts neural crest cells, focusing their migratory pathways and condensation into ganglia. Thus, it is required for proper migration and timely differentiation of some neural crest populations.  相似文献   

10.
It has long been thought that the same molecules guide both trunk neural crest cells and motor axons as these cell types grow and extend to their target regions in developing embryos. There are common territories that are navigated by these cell types: both cells grow through the rostral portion of the somitic sclerotomes and avoid the caudal half of the sclerotomes. However, these cell types seem to use different molecules to guide them to their target regions. In this review, I will talk about the common and distinct methods of migration taken by trunk neural crest cells and motor axons as they grow and populate their target regions through chick embryos at the level of the trunk.  相似文献   

11.
The precise expression patterns of two IgLON genes, CEPU-1 and limbic system-associated membrane protein (LAMP), were studied during early embryogenesis. It was found that expression of both was localized to restricted regions of the brain and neural crest. In the developing neural tube, CEPU-1 was expressed in the isthmus and a restricted region of the hindbrain, whereas LAMP was expressed in the anterior midbrain. Most neural crest cells expressed LAMP, whereas CEPU-1 expression was limited to crest cells derived from the hindbrain. These results suggest that members of the IgLON family have important roles during embryogenesis, particularly in brain formation and differentiation.  相似文献   

12.
Neural crest cells are considered a key vertebrate feature that is studied intensively because of their relevance to development and evolution. Here we report the expression of Pax7 in the dorsal non‐neural ectoderm and in the trunk neural crest of the early chick embryo. Pax7 is expressed in the trunk neural crest migrating along the ventral and dorsolateral routes. Pax7 is first downregulated in the neural crest‐derived neuronal precursors, secondly in the glial, and finally in the melanocyte precursors. Conserved developmental expression in the melanocyte lineage of both Pax3 and Pax7 was evidenced in chick and quail, but only Pax3 in mouse and rat.  相似文献   

13.
In vertebrates, the peripheral nervous system arises from the neural crest by a multistep process involving epithelium-mesenchyme interconversions and cell migrations. These successive events are associated with profound and controlled reorganization of the expression of both cell-cell and cell-substratum adhesion molecules responsible for the direct interaction of neural crest cells with their neighbours or the extracellular matrix. Thus, at the onset of emigration of neural crest cells from the neural tube, the cell-cell adhesion systems mediated by N-cadherin and N-CAM are lost by cells. This is accompanied by the complete reorganization of the extracellular matrix in the immediate environment of neural crest cells and by changes in cell shape. Later, as crest cells undergo migration towards their differentiation sites, they are found associated with fibronectin. Cell adhesion molecules are reaquired by neural crest cells following specific sequences as they coalesce into primordia of the various ganglia. In vitro, fibronectin constitutes the most appropriate substrate for migration of neural crest cells. The migration-promoting effect of fibronectin can be specifically inhibited both in vivo and in vitro by antibodies to fibronectin, integrin receptors, or by peptides containing the Arg-Gly-Asp-Ser sequence. Neural crest cells recognize two major adhesion sites along fibronectin molecules; these are the Arg-Gly-Asp-Ser sequence located in the medial part of the molecule and the CS1 site situated in the alternatively spliced IIICS region. These two sequences are required to permit full motile behavior of cells.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
The neural crest is a multipotent population of migratory cells that arises in the central nervous system and subsequently migrates along defined stereotypic pathways. In the present work, we analyzed the role of a repulsive axon guidance protein, draxin, in the migration of neural crest cells. Draxin is expressed in the roof plate of the chick trunk spinal cord and around the early migration pathway of neural crest cells. Draxin modulates chick neural crest cell migration in vitro by reducing the polarization of these cells. When exposed to draxin, the velocity of migrating neural crest cells was reduced, and the cells changed direction so frequently that the net migration distance was also reduced. Overexpression of draxin also caused some early migrating neural crest cells to change direction to the dorsolateral pathway in the chick trunk region, presumably due to draxin’s inhibitory activity. These results demonstrate that draxin, an axon guidance protein, can also affect trunk neural crest migration in the chick embryo.  相似文献   

15.
Avian neural crest cells migrate on precise pathways to their target areas where they form a wide variety of cellular derivatives, including neurons, glia, pigment cells and skeletal components. In one portion of their pathway, trunk neural crest cells navigate in the somitic mesoderm in a segmental fashion, invading the rostral, while avoiding the caudal, half-sclerotome. This pattern of cell migration, imposed by the somitic mesoderm, contributes to the metameric organization of the peripheral nervous system, including the sensory and sympathetic ganglia. At hindbrain levels, neural crest cells also travel from the neural tube in a segmental manner via three migratory streams of cells that lie adjacent to even-numbered rhombomeres. In this case, the adjacent mesoderm does not possess an obvious segmental organization, compared to the somitic mesoderm at trunk levels. Thus, the mechanisms by which the embryo controls segmentally-organized cell migrations have been a fascinating topic over the past several years. Here, I discuss findings from classical and recent studies that have delineated several of the tissue, cellular and molecular elements that contribute to the segmental organization of neural crest migration, primarily in the avian embryo. One common theme is that neural crest cells are prohibited from entering particular territories in the embryo due to the expression of inhibitory factors. However, permissive, migration-promoting factors may also play a key role in coordinating neural crest migration.  相似文献   

16.
目的 初步探讨PTEN基因在早期神经嵴细胞迁移中的作用.方法 首先胚胎整体的原位杂交和免疫荧光方法检测鸡胚胎内源性的PTEN基因及蛋白水平的表达情况;其次,利用鸡胚胎体内半侧神经管转染的方法,使神经管一侧PTEN基因过表达,对侧神经管为正常对照侧;最后,通过Pax7的整体胚胎免疫荧光表达观察PTEN基因对其标记的部分神经嵴细胞迁移的影响.结果 内源性PTEN基因在mRNA和蛋白水平表达显示,其在早期胚胎HH4期的神经板即开始明显的表达;通过半侧过表达PTEN基因后观察到过表达PTEN基因侧的头部神经嵴细胞迁移与对照侧相比明显受到抑制,但对躯干部的影响并不明显.结论 PTEN基因可能抑制早期胚胎头部神经嵴细胞的迁移.  相似文献   

17.
In this review, we describe the results of recent experiments designed to investigate various aspects of neural crest cell lineage and migration. We have analyzed the lineage of individual premigratory neural crest cells by injecting a fluorescent lineage tracer dye, lysinated fluorescein dextran, into cells within the dorsal neural tube. Individual clones contained cells that were located in very diverse sites consistent with their being sensory neurons, prepigment cells, Schwann cells, adrenergic cells, and neural tube cells. These results suggest that some neural crest cells in the trunk and cranial regions are multipotent prior to their emigration from the neural tube. The environment through which neural crest cells move influences both the pattern and direction of their migration. We have shown that the sclerotomal portion of the somites are responsible for the rostrocaudal pattern of trunk neural crest cell movement, whereas the neural tube appears to govern the dorsoventral position of neural crest-derived ganglia. In addition, the notochord inhibits the movement of neural crest cells. In order to understand necessary cell-matrix interactions in neural crest migration, we have performed perturbation experiments, in which antibodies directed against cell surface or extracellular matrix molecules were introduced along neural crest pathways. We find that integrins, fibronectin, laminin, and tenascin all play some role in cranial neural crest emigration. Thus, multiple factors may be involved in controlling neural crest cell migration, and different factors may be important for migration in different regions of the embryo.  相似文献   

18.
The cardiac neural crest contains ectomesenchymal and neural anlagen that are necessary for normal heart development. It is not known whether other regions of the neural crest are capable of supporting normal heart development. In the experiments reported herein, quail donor embryos provided cardiac, trunk, or mesencephalic neural crest to replace or add to the chick host cardiac neural crest. Neither trunk nor mesencephalic neural crest was capable of generating ectomesenchyme competent to effect truncal septation. Addition of mesencephalic neural crest resulted in a high incidence of persistent truncus arteriosus, suggesting that ectomesenchyme derived from the mesencephalic region interferes with ectomesenchyme derived from the cardiac neural crest. Derivatives from the trunk neural crest, on the other hand, did not result in abnormal development of the truncal septum. While mesencephalic neural crest seeded the cardiac ganglia with both neurons and supporting cells, this capability was limited in the trunk neural crest to the more mature regions. These studies indicate a predetermination of the ectomesenchymal derivatives of the cranial neural crest and a possible competition of neural anlagen to form neurons and supporting cells in the cardiac ganglia.  相似文献   

19.
Draxin is a repulsive axon guidance protein that plays important roles in the formation of three commissures in the central nervous system and dorsal interneuron 3 (dI3) in the chick spinal cord. In the present study, we report the expression pattern of mouse draxin in the embryonic mouse trunk spinal cord. In the presence of draxin, the longest net migration length of a migrating mouse trunk neural crest cell was significantly reduced. In addition, the relative number of apolar neural crest cells increased as the draxin treatment time increased. Draxin caused actin cytoskeleton rearrangement in the migrating trunk neural crest cells. Our data suggest that draxin may regulate mouse trunk neural crest cell migration by the rearrangement of cell actin cytoskeleton and by reducing the polarization activity of these cells subsequently.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号