首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The localization of glutamine synthetase within the cells ofbarley and pea leaves has been reinvestigated using either amechanical technique or rupturing of isolated protoplasts torelease the cellular organelles, and both differential and densitygradient centrifugation to separate them. In no case could wefind evidence for any significant association between glutaminesynthetase and the mitochondria; our results suggest that theenzyme is present in the chloroplast and the cytoplasm of bothspecies. Experiments with isolated mitochondria from spinachalso failed to provide any suggestion that these organellesmight contain glutamine synthetase. Thus there is no evidenceto support the hypothesis, published by others, that mitochondriareassimilate ammonia, released from glycine oxidation, by meansof their own glutamine synthetase. Further experiments werecarried out to see if glutamate dehydrogenase present in themitochondria could reassimilate ammonia under conditions inwhich the electron transport chain to oxygen was blocked. Althoughthere was some evidence for a small amount of assimilatory glutamatedehydrogenase activity under these conditions it was dependenton adding relatively high concentrations of ammonia and wasinsufficient to sustain the rate of recycling of NAD requiredfor glycine oxidation. The results were thus considered to becompatible with the operation of the photorespiratory nitrogencycle as previously published.  相似文献   

2.
The production of recombinant proteins using mammalian cell expression systems is of growing importance within biotechnology, largely due to the ability of specific mammalian cells to carry out post-translational modifications of the correct fidelity. The Glutamine Synthetase-NS0 system is now one such industrially important expression system.Glutamine synthetase catalyses the formation ofglutamine from glutamate and ammonia. NS0 cellscontain extremely low levels of endogenous glutaminesynthetase activity, therefore exogenous glutaminesynthetase can be used efficiently as a selectablemarker to identify successful transfectants in theabsence of glutamine in the media. In addition, theinclusion of methionine sulphoximine, an inhibitor ofglutamine synthetase activity, enables furtherselection of those clones producing relatively highlevels of transfected glutamine synthetase and henceany heterologous gene which is coupled to it. Theglutamine synthetase system technology has been usedfor research and development purposes during thisdecade and its importance is clearly demonstrated nowthat two therapeutic products produced using thissystem have reached the market place.  相似文献   

3.
Aquaporin-8 (AQP8) is a membrane channel permeable to water and ammonia. As AQP8 is expressed in the inner mitochondrial membrane of several mammalian tissues, we studied the effect of the AQP8 expression on the mitochondrial transport of ammonia. Recombinant rat AQP8 was expressed in the yeast Saccharomyces cerevisiae. The presence of AQP8 in the inner membrane of yeast mitochondria was demonstrated by subcellular fractionation and immunoblotting analysis. The ammonia transport was determined in isolated mitochondria by stopped flow light scattering using formamide as ammonia analog. We found that the presence of AQP8 increased by threefold mitochondrial formamide transport. AQP8-facilitated mitochondrial formamide transport in rat native tissue was confirmed in liver (a mitochondrial AQP8-expressing tissue) vs. brain (a mitochondrial AQP8 non-expressing tissue). Comparative studies indicated that the AQP8-mediated mitochondrial movement of formamide was markedly higher than that of water. Together, our data suggest that ammonia diffusional transport is a major function for mitochondrial AQP8.  相似文献   

4.
Release and refixation of ammonia during photorespiration   总被引:1,自引:0,他引:1  
Photorespiratory ammonia metabolism in isolated spinach ( Spinacia oleracea L. cv. Viking II) mitochondria was measured using a selective ammonia electrode. The mitochondria showed high rates of ammonia production in the presence of glycine. The isolated mitochondria contained less than 0.02% of the glutamine synthetase activity present in the original homogenate and no significant reassimilation of the released ammonia could be observed with added glutamate or α-ketogluterate. Exogenous added glutamine synthetase did reassimilate the released ammonia. In a recombinated system, with a chlorophyll to mitochondrial protein ratio equal to the ratio in vivo, chloroplasts could very effectively reassimilate the ammonia released in the mitochondria during oxidation of glycine.  相似文献   

5.
The activity of cholinephosphotransferase was measured in the subcellular fractions of guinea-pig lung. The specific activity of the enzyme was highest in a fraction, intermediate in density between mitochondria and microsomes. Similar subcellular distribution patterns were observed for both cholinephosphotransferase and rotenone-insensitive NADH-cytochrome c reductase, an enzyme associated with the outer membrane of mitochondria and endoplasmic reticulum, suggesting that cholinephosphotransferase may be localized in both of these organelles. The distribution of cholinephosphotransferase activity in the subfractions of mitochondria and the intermediate fractions recovered by linear density gradient paralleled that of the mitochondrial outer membrane marker enzyme, monoamine oxidase. RNA content of a subfraction enriched in cholinephosphotransferase and monoamine oxidase was not typical to that of either rough or smooth endoplasmic reticulum. The results of this study suggest that in guinea-pig lung, cholinephosphotransferase is localized in both the outer membrane of mitochondria, and the endoplasmic reticulum.  相似文献   

6.
Chromatin prepared from liver tissue contains a histone-degrading enzyme activity with a pH optimum of 7.5-8.0, whereas chromatin isolated from purified nuclei is devoid of it. The histone-degrading enzyme activity was assayed with radioactively labelled total histones from Ehrlich ascites tumor cells. Among the different subcellular fractions assayed, only lysosomes and mitochondria exhibited histone-degrading enzymes. A pH optimum around 4.0-5.0 was found for the lysosomal fraction, whereas 7.5-8.0 has been found for mitochondria. Binding studies of frozen and thawed lysosomes or mitochondria to proteinase-free chromatin demonstrate that the proteinase associated with chromatin isolated from frozen tissue originates from damaged mitochondria. The protein degradation patterns obtained after acrylamide gel electrophoresis are similar for the chromatin-associated and the mitochondrial proteinase and different from that obtained after incubation with lysosomes. The chromatin-associated proteinase as well as the mitochondrial proteinase are strongly inhibited by 1.0 mM phenylmethanesulfonyl fluoride. Weak inhibition is found for lysosomal proteinases at pH 5. Kallikrein-trypsin inhibitor, however, inhibits lysosomal proteinase activity and has no effect on either chromatin-associated or mitochondrial proteinases. The higher template activity of chromatin isolated from a total homogenate compared to chromatin prepared from nuclei may be due to the presence of this histone-degrading enzyme activity.  相似文献   

7.
8.
L-Methionine-DL-sulfoximine (MSO), a specific inhibitor of glutaminesynthetase (GS), severely inhibited germination of New York515 Improved and of Grand Rapids lettuce seeds. However, theelongation of excised axes was not affected by MSO. MSO (1 mM)decreased the growth potential of the axes to a level nearlyequal to the restraining force of the seed coats (about 0.4M). When seeds were treated with MSO at 25?C free ammonia accumulatedin the seeds. MSO inhibited germination of several other light-sensitiveor light-hard seeds, but not light-indifferent seeds. (Received June 10, 1983; Accepted October 6, 1983)  相似文献   

9.
1. Studies on the distribution of alkaline inorganic pyrophosphatase (pyrophosphate phosphohydrolase, EC 3.6.1.1) in the subcellular fractions of maize leaves showed that the enzyme is present in cytoplasm, chloroplasts and mitochondria. The activity observed in nuclei and microsomes may result from contamination with the mitochondrial fraction. 2. Alkaline pyrophosphatases from three subcellular fractions were purified by fractionation with (NH4)2SO4, followed by ion-exchange and gel-filtration chromatography, and by isoelectric focusing. Highly purified enzyme preparations, with specific activities ranging from 55 to 188 micronmoles/min/mg protein, were obtained. 3. All the enzymes exhibited the maximum activity at pH 8.5 and the Mg2+/PPi ratio of 5. They differed in electrophoretic mobility, pI, and susceptibility to urea and thermal denaturation. This indicates that they represent isoenzymes compartmentized in particular subcellular fractions.  相似文献   

10.
Abstract— A microscale modification for the preparation of subcellular fractions employing milligram and submilligram amounts of neuronal tissue (brain nuclei and autonomic ganglia) is described.
Electron microscope characterization and enzymic studies were carried out on the six subcellular fractions of sympathetic ganglia of cat thus prepared.
The synaptosomal preparations obtained from individual ganglia were poorer in their nerve ending content than those obtained from brain by previous investigators. The highest RSA for AChE was found in layer L2 which was rich in membranes and vesicle components. ChAc activity was also highly concentrated in layers L2 and L3 (membranes, nerve ending-like particles, mitochondria and 'ghosts'). MAO activity was particularly high in the layers L4 and L5 which contained a large number of mitochondria. Layer L1 (membrane fragments) and particularly layer L6 which contained mainly collagen fibres, were low in activity of all three enzymes.
After preganglionic denervation, both ChAc and AChE activities were significantly reduced in the purest nerve ending fraction, L3 while MAO activity was practically unchanged.  相似文献   

11.
The subcellular distribution of carnitine acetyl-, octanoyl-, and palmitoyltransferase in the livers of normal and clofibrate-treated male rats was studied with isopycnic sucrose density gradient fraction.In normal liver 48% of total carnitine acetyltransferase activity was peroxisomal, 36% of the activity located in mitochondria and 16% in a membranous fraction containing microsomes. Carnitine octanoyltransferase and carnitine palmitoyltransferase were confined almost totally (77–81%) to mitochondria in normal liver.Clofibrate treatment increased the total activity of carnitine acetyltransferase over 30 times, whereas the total activities of the other two transferases were increased only 5-fold.From the three different subcellular carnitine acetyltransferases the mitochondrial one was not responsive to clofibrate treatment, i.e. the rise in mitochondrial activity was over 70-fold as contrasted to the 6- and 14-fold rises in peroxisomal and microsomal activities, respectively. After treatment mitochondria contained 79% of total activity.It is concluded that the clofibrate-induced increase of carnitine acetyltransferase activity is not due to the peroxisomal proliferation that occurs during clofibrate treatment. The rise in peroxisomal activity contributed only 8% to the total increase.After clofibrate treatment the greatest part of carnitine octanoyl- and palmitoyltrnasferase activities were located in mitochondria but a considerable amount of both activities was found also in the soluble fraction of liver.  相似文献   

12.
The total cooling ef rats down to the rectal temperature 30 degrees and 20 degrees C does not change significantly the ratio of the relative specific activity of cathepsin D in subcellular fractions of the rat brain. The gel chromatographic analysis of heterogeneity of cathepsin D molecular forms in subcellular fractions established the presence of a high-molecular (in the fractions of lysosome and microsome mitochondria) and a low-molecular (in the fractions of lysosome and cytosol mitochondria) enzyme forms. Under hypothermia (20 degrees C) in the brain cytosol fraction there arises a minor zone of the cathepsin D activity corresponding to the high-molecular enzyme form.  相似文献   

13.
Subcellular localization of superoxide dismutase in rat liver.   总被引:6,自引:0,他引:6       下载免费PDF全文
The subcellular localization of superoxide dismutase was investigated in rat liver homogenates. Most of the superoxide dismutase activity is present in the soluble fraction (84%), the rest being associated with mitochondria. No indications for the occurrence of superoxide dismutase in other subcellular structures, particularly in peroxisomes, was found. Mitochondrial activity is not due to adsorption, since the sedimentable activity is essentially latent. Subfractionation of mitochondria by hypo-osmotic shock and sonication shows that half of the mitochondrial superoxide dismutase activity is localized in the intermembrane space, the rest of the enzyme being a component of the matrix space. In non-ionic media the matrix enzyme is, however, adsorbed to the inner membrane, from which it can be desorbed by low (0.04M) concentration of KCl. Superoxide dismutase activity was found in all rat organs investigated. Maximal activity of the enzyme is observed in liver, adrenals and kidney. In adrenals, the highest specific activity is associated with the medulla.  相似文献   

14.
A new technique for single-step subcellular fractionation of adipose tissue homogenates by analytical sucrose density gradient centrifugation in a vertical pocket reorientating rotor is described. The density gradient distributions of mitochondrial and peroxisomal marker enzymes in brown and white adipose tissue of control and cold exposed rats are compared. The equilibrium density of brown fat mitochondria was found to be significantly increased compared with white fat mitochondria. GDP binding activity was localized solely to the mitochondria in both control and cold-adapted brown adipose tissue. Brown and white fat mitochondria fractions were isolated by differential centrifugation and the specific activities of various enzymes in the homogenate and mitochondrial preparations determined. The specific activity of creatine kinase in brown adipose tissue was found to be ten-fold higher than in white fat and subcellular fractionation studies showed the activity to have an exclusively cytosolic distribution in both tissues. GDP binding activity and some of the mitochondrial enzymes showed, in brown adipose, a striking increase in total activity in cold adapted rats compared to control animals. For some enzyme activities there was a small increase when expressed per mg tissue or per mg mitochondrial protein. When expressed per mg DNA i.e. per cell, there was a reduced specific activity of the mitochondrial and peroxisomal enzymes in both brown and white adipose tissue on cold adaptation.  相似文献   

15.
16.
The subcellular localization of O-acetyiserine(thiol)lyase (EC 4.2.99.8) in nongreen tissue from higher plants has been studied using purified proplastids, mitochondria, and protoplasts from cauliflower (Brassica oleracea L.) buds as a source of subcellular fractions. O-Acetylserine(thiol)lyase has been detected in both organelles (proplastids and mitochondria) and a cytosolic extract obtained by protoplast fractionation. We confirmed these observations, demonstrating that a form of the enzyme different in global charge and separated from others by anion-exchange chromatography corresponded to each subcellular location. Our observations are consistent with the need for cysteine biosynthesis in each subcellular compartment where the synthesis of proteins occurs.  相似文献   

17.
The tissue distribution and subcellular location of branched chain aminotransferase was analyzed using polyclonal antibodies against the enzyme purified from rat heart mitochondria (BCATm). Immunoreactive proteins were visualized by immunoblotting. The antiserum recognized a 41-kDa protein in the 100,000 x g supernatant from a rat heart mitochondrial sonicate. The 41-kDa protein was always present in mitochondria which contained branched chain aminotransferase activity, skeletal muscle, kidney, stomach, and brain, but not in cytosolic fractions. In liver mitochondria, which have very low levels of branched chain aminotransferase activity, the 41-kDa protein was not present. However, two immunoreactive proteins of slightly higher molecular masses were identified. These proteins were located in hepatocytes. The 41-kDa protein was present in fetal liver mitochondria but not in liver mitochondria from 5-day neonates. Thus disappearance of the 41-kDa protein coincided with the developmental decline in liver branched chain aminotransferase activity. Two-dimensional immunoblots of isolated BCATm immunocomplexes showed that the liver immunoreactive proteins were clearly different from the heart and kidney proteins which exhibited identical immunoblots. Investigation of BCATm in subcellular fractions prepared from different skeletal muscle fiber types revealed that branched chain aminotransferase is exclusively a mitochondrial enzyme in skeletal muscles. Although total detergent-extractable branched chain aminotransferase activity was largely independent of fiber type, branched chain aminotransferase activity and BCATm protein concentration were highest in mitochondria prepared from white gastrocnemius followed by mixed skeletal muscles with lowest activity and protein concentration found in soleus mitochondria. These quantitative differences in mitochondrial branched chain aminotransferase activity and enzyme protein content suggest there may be differential expression of BCATm in different muscle fiber types.  相似文献   

18.
Synthesis of phosphatidylglycerol from CDPdiacylglycerol and glycerol 3-phosphate by membranous subcellular fractions of rat lung and liver was optimal when assayed in the presence of bovine serum albumin and Triton X-100. Specific activities of glycerolphosphate phosphatidyltransferase in all membranous subcellular fractions of lung were several times higher than the corresponding fractions from liver. Distribution of this enzyme in subcellular fractions of lung or liver closely parallel the activity of the mitochondrial enzymes monoamine oxidase and succinate cytochrome c reductase. The phosphatidylglycerol-synthesizing activity in microsomes of both lung and liver was a minor fraction of total tissue activity and could be interpreted as due either to contamination with outer mitochondrial membrane or to a small amount of activity innate to microsomes. These results suggest that phosphatidylglycerol, which is believed to be a component of pulmonary surfactant, is synthesized by lung at a rapid rate relative to liver and that the subcellular distribution of its synthesis is similar in both tissues, with mitochondria as the major site.  相似文献   

19.
Two published subcellular subfractionation techniques employing Ficoll-sucrose or sucrose-density gradient centrifugation, respectively, are evaluated for their capacity to yield fractions containing free mitochondria and synaptosomes from a single rat forebrain. The enzymes lactate dehydrogenase, acetylcholinesterase, NAD(P)H-cytochrome c reductase, and citrate synthase, markers of different subcellular components, were used to assess the purity and integrity of the fractions. Judged by the distribution of these specific enzymatic markers, the free mitochondria obtained by the Ficoll-sucrose gradient technique were less contaminated by synaptosomes and had greater biochemical integrity than those obtained by the sucrose-gradient technique. By contrast, the synaptosomes obtained by the Ficoll-sucrose gradient technique resulted in more contamination by microsomes than those prepared in a sucrose gradient.  相似文献   

20.
The effect of ammonia and calcium on the activity of monoamine oxidase (MAO) was studied. The enzyme activity in nonsynaptic brain mitochondria isolated from the rats treated with ammonium acetate was estimated from the release of H2O2using spectrophotometry. The effect of calcium on MAO was assayed directly after adding Ca2+to the nonsynaptic mitochondria isolated from the forebrain of control rats. Both ammonium acetate injectionin vivoand Ca2+additionin vitrostimulated the activity of MAO A but not that of MAO B in mitochondria. This is the first evidence for ammonia and Ca2+regulation of MAO A in the forebrain nonsynaptic mitochondria and for their contribution to oxidative stress in the neurons via MAO A activation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号