首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Temporins are a novel family of small (10-13 residues) cationic antimicrobial peptides recently isolated from the skin of the European red frog Rana temporaria. Although recently acquired evidence shows that temporins have the potential to kill bacteria by permeabilizing the cytoplasmic membrane, the molecular mechanisms of membrane selectivity and permeabilization are largely unknown. In this study, it was found that temporins cause the release of fluorescent markers entrapped in phosphatidylcholine liposomes in a manner that depends significantly on the size of the solute. Temporins were also shown to lack a detergent-like effect on lipid vesicles, indicating that marker leakage caused by these peptides is not due to total membrane disruption but to perturbation of bilayer organization on a local scale. Binding of temporins to liposomes did lead to a small increase in lipid hydrocarbon chain mobility, as revealed by EPR spectroscopy of nitroxide-labeled fatty acids incorporated in the bilayer. Reference experiments were conducted using the bee venom peptide melittin, whose properties and behavior in natural and model membrane systems are well known. Our findings for temporins are discussed in relation to the models proposed to date to account for the action of antimicrobial peptides on membranes.  相似文献   

2.
Melittin (MLT), the 26-residue toxic peptide from the European honeybee Apis mellifera, is widely used for studying the principles of membrane permeabilization by antimicrobial and other host-defense peptides. A striking property of MLT is that its ability to permeabilize zwitterionic phospholipid vesicles is dramatically reduced upon the addition of anionic lipids. Because the mechanism of permeabilization may be fundamentally different for the two types of lipids, we examined MLT-induced release of entrapped fluorescent dextran markers of two different molecular masses (4 and 50 kDa) from anionic palmitoyloleoylphosphatidylglycerol (POPG) vesicles. Unlike release from palmitoyloleoylphosphatidylcholine (POPC) vesicles, which is highly selective for the 4 kDa marker, implying release through pores of about 25 A diameter [Ladokhin et al., Biophys. J. 72 (1997) 1762], release from POPG vesicles was found to be non-selective, i.e., 'detergent-like'. Oriented circular dichroism measurements of MLT in oriented POPG and POPC multilayers disclosed that alpha-helical MLT can be induced to adopt a transbilayer orientation in POPC multilayers, but not in POPG multilayers. The apparent inhibition of MLT permeabilization by anionic membranes may thus be due to suppression of translocation ability.  相似文献   

3.
The selectivity of the antibiotic nystatin towards ergosterol compared to cholesterol is believed to be a crucial factor in its specificity for fungi. In order to define the structural features of sterols that control this effect, nystatin interaction with ergosterol-, cholesterol-, brassicasterol- and 7-dehydrocholesterol-containing palmitoyloleoylphosphocholine vesicles was studied by fluorescence spectroscopy. Variations in sterol structure were correlated with their effect on nystatin photophysical and activity properties. Substitution of cholesterol by either 7-dehydrocholesterol or brassicasterol enhance nystatin ability to dissipate a transmembrane K+ gradient, showing that the presence of additional double bonds in these sterols-carbon C7 and C22, plus an additional methyl group on C-24, respectively-as compared to cholesterol, is fundamental for nystatin-sterol interaction. However, both modifications of the cholesterol molecule, like in the fungal sterol ergosterol, are critical for the formation of very compact nystatin oligomers in the lipid bilayer that present a long mean fluorescence lifetime and induce a very fast transmembrane dissipation. These observations are relevant to the molecular mechanism underlying the high selectivity presented by nystatin towards fungal cells (with ergosterol) as compared to mammalian cells (with cholesterol).  相似文献   

4.
We have investigated the interaction of Pseudomonas exotoxin A with small unilamellar vesicles comprised of different phospholipids as a function of pH, toxin, and lipid concentration. We have found that this toxin induces vesicle permeabilization, as measured by the release of a fluorescent dye. Permeabilization is due to the formation of ion-conductive channels which we have directly observed in planar lipid bilayers. The toxin also produces vesicle aggregation, as indicated by an increase of the turbidity. Aggregation and permeabilization have completely different time course and extent upon toxin dose and lipid composition, thus suggesting that they are two independent events. Both time constants decrease by lowering the pH of the bulk phase or by introducing a negative lipid into the vesicles. Our results indicate that at least three steps are involved in the interaction of Pseudomonas exotoxin A with lipid vesicles. After protonation of one charged group the toxin becomes competent to bind to the surface of the vesicles. Binding is probably initiated by an electrostatic interaction because it is absolutely dependent on the presence of acidic phospholipids. Binding is a prerequisite for the subsequent insertion of the toxin into the lipid bilayer, with a special preference for phosphatidylglycerol-containing membranes, to form ionic channels. At high toxin and vesicle concentrations, bound toxin may also induce aggregation of the vesicles, particularly when phosphatidic acid is present in the lipid mixture. A quenching of the intrinsic tryptophan fluorescence of the protein, which is induced by lowering the pH of the solution, becomes more drastic in the presence of lipid vesicles. However, this further quenching takes so long that it cannot be a prerequisite to either vesicle permeabilization or aggregation. Pseudomonas exotoxin A shares many of these properties with other bacterial toxins like diphtheria and tetanus toxin.  相似文献   

5.
The selectivity of the antibiotic nystatin towards ergosterol compared to cholesterol is believed to be a crucial factor in its specificity for fungi. In order to define the structural features of sterols that control this effect, nystatin interaction with ergosterol-, cholesterol-, brassicasterol- and 7-dehydrocholesterol-containing palmitoyloleoylphosphocholine vesicles was studied by fluorescence spectroscopy. Variations in sterol structure were correlated with their effect on nystatin photophysical and activity properties. Substitution of cholesterol by either 7-dehydrocholesterol or brassicasterol enhance nystatin ability to dissipate a transmembrane K+ gradient, showing that the presence of additional double bonds in these sterols-carbon C7 and C22, plus an additional methyl group on C-24, respectively-as compared to cholesterol, is fundamental for nystatin-sterol interaction. However, both modifications of the cholesterol molecule, like in the fungal sterol ergosterol, are critical for the formation of very compact nystatin oligomers in the lipid bilayer that present a long mean fluorescence lifetime and induce a very fast transmembrane dissipation. These observations are relevant to the molecular mechanism underlying the high selectivity presented by nystatin towards fungal cells (with ergosterol) as compared to mammalian cells (with cholesterol).  相似文献   

6.
Ternary lipid compositions in model membranes segregate into large-scale liquid-ordered (Lo) and liquid-disordered (Ld) phases. Here, we show μm-sized lipid domain separation leading to vesicle formation in unperturbed human HaCaT keratinocytes. Budding vesicles in the apical portion of the plasma membrane were predominantly labelled with Ld markers 1,1′-dioctadecyl-3,3,3′,3′-tetramethylindocarbocyanine perchlorate, 1,1′-dilinoleyl-3,3,3′,3′-tetramethylindocarbocyanine perchlorate, 1,1′-didodecyl-3,3,3′,3′-tetramethylindocarbocyanine perchlorate and weakly stained by Lo marker fluorescein-labeled cholera toxin B subunit which labels ganglioside GM1 enriched plasma membrane rafts. Cholesterol depletion with methyl-β-cyclodextrin enhanced DiI vesiculation, GM1/DiI domain separation and was accompanied by a detachment of the subcortical cytoskeleton from the plasma membrane. Based on these observations we describe the energetic requirements for plasma membrane vesiculation. We propose that the decrease in total ‘Lo/Ld’ boundary line tension arising from the coalescence of smaller Ld-like domains makes it energetically favourable for Ld-like domains to bend from flat μm-sized surfaces to cap-like budding vesicles. Thus living cells may utilize membrane line tension energies as a control mechanism of exocytic events.  相似文献   

7.
The passive sodium permeability of pure lipid vesicles and dispersions has a large peak at the bilayer phase transition temperature. We discuss this anomaly in terms of density fluctuations, which can open up cavities in the headgroup region into which small ions can enter, and which may be large if bilayer conditions at the melting point are similar to those near the critical point which seems to exist in monolayers. We present two arguments, one thermodynamic and one microscopic, which suggest that the permeability is proportional to the lateral compressibility. We then calculate the lateral compressibility for two previously published theoretical models and compare the results with experiment.  相似文献   

8.
《New biotechnology》2015,32(6):665-672
Superparamagnetic iron oxide nanoparticles are used in a rapidly expanding number of research and practical applications in biotechnology and biomedicine. We highlight how recent developments in iron oxide nanoparticle design and understanding of nanoparticle membrane interactions have led to applications in magnetically triggered, liposome delivery vehicles with controlled structure. Nanoscale vesicles actuated by incorporated nanoparticles allow for controlling location and timing of compound release, which enables e.g. use of more potent drugs in drug delivery as the interaction with the right target is ensured. This review emphasizes recent results on the connection between nanoparticle design, vesicle assembly and the stability and release properties of the vesicles. While focused on lipid vesicles magnetically actuated through iron oxide nanoparticles, these insights are of general interest for the design of capsule and cell delivery systems for biotechnology controlled by nanoparticles.  相似文献   

9.
Phospholipid vesicles were entrapped in gel beads of Sepharose 6B and Sephacryl S-1000 during vesicle preparation by dialysis. Egg-yolk phospholipids solubilized with cholate or octyl glucoside were dialysed together with gel beads for 2.5 days in a flat dialysis bag. Some vesicles were formed in gel bead pores and vesicles of sufficient size became trapped. Red cell membrane protein-phospholipid vesicles could be immobilized in the same way. Non-trapped vesicles were carefully removed by chromatographic procedures and by centrifugation. The amount of entrapped vesicles increased with the initial lipid concentration and was dependent on the relative sizes of vesicles and gel pores. The largest amount of trapped vesicles, corresponding to 9.5 mumol of phospholipids per ml gel, was achieved when Sepharose 6B gel beads were dialysed with cholate-solubilized lipids at a concentration of 50 mM. In this case the vesicles had an average diameter of 60 nm and an internal volume of 15 microliters/ml gel. The amount of vesicles trapped in Sephacryl S-1000 gel beads upon dialysis under the same conditions was smaller: 2.2 mumol of phospholipids per ml gel. Probably most of the gel pores were too large to trap such vesicles. Larger vesicles, with an average diameter of 230 nm, were entrapped in the Sephacryl S-1000 matrix in an amount corresponding to 3.0 mumol phospholipids per ml gel upon dialysis of the gel beads and octyl glucoside-solubilized lipids at a concentration of 20 mM. The internal volume of these vesicles was 22 microliters/ml gel. The yield of immobilized phospholipids was up to 19%. The entrapped vesicles were somewhat unstable: 9% of the phospholipids were released during 9 days of storage at 4 degrees C. By the dialysis entrapment method vesicles can be immobilized in the gel beads without using hydrophobic ligands or covalent coupling.  相似文献   

10.
Photon correlation spectroscopy has been used to study capillary waves on black lipid membranes of glycerol monooleate at temperatures above the lipid transition. For the first time the tension and viscosity of solvent-free bilayers have been observed to display a frequency dependence. The variations of both parameters can be accounted for by a Maxwell viscoelastic fluid model having a relaxation time of 37 microseconds. The equilibrium (omega = 0) tension is compatible with literature values. The present results do not suffice to precisely define the specific molecular processes involved, but relaxation times similar to the present are associated with certain phenomena in phospholipid vesicles. Bilayers containing hydrocarbon solvent do not show such relaxation, presumably due to their weaker intermolecular interactions.  相似文献   

11.
The mechanism of action of lytic peptides on membranes is widely studied and is important in view of potential medical applications. Previously (I. V. Polozov, A. I. Polozova, E. M. Tytler, G. M. Anantharamaiah, J. P. Segrest, G. A. Woolley, and R. M., Biochemistry, 36:9237--9245) we analyzed the mechanism of membrane permeabilization by 18L, the archetype lytic peptide featuring the class L amphipathic alpha-helix, according to the classification of Segrest et al. (J. P. Segrest, G. de Loof, J. G. Dohlman, C. G. Brouillette, and G. M. Anantharamaiah, 1990, Proteins, 8:103--117). We concluded that the 18L peptide destabilizes membranes, leading to a transient formation of large defects that result in contents leakage and, in the presence of bilayer-bilayer contact, could lead to vesicle fusion. Here we report that this defect formation is strongly enhanced by the membrane tension induced by osmotic swelling of vesicles. Even below standard leakage-inducing peptide/lipid ratios, membrane resistance to osmotic tension drops from hundreds to tens of milliosmoles. The actual decrease is dependent on the peptide/lipid ratio and on the type of lipid. We propose that under membrane tension a peptidic pore serves as a nucleation site for the transient formation of a lipidic pore. The tension is released upon pore expansion with inclusion of more peptides and lipids into the pore lining. This tension modulation of leakage was observed for other class L peptides (mastoparan, K18L) and thus may be of general applicability for the action of membrane active lytic peptides.  相似文献   

12.
Microvillus membrane vesicles from pig small intestine were isolated by a method based on hypotonic lysis, Mg2+-aggregation of contaminants and differential centrifugation. The purity of the membrane vesicles were established by measuring the activity of marker enzymes and the RNA and DNA content. The membranes were found free of contamination by other subcellular membrane fragments, except for a minor contamination with basolateral plasma membranes. The lipid composition was established and, based on weight percentage, the membrane contained neutral lipids, phospholipids, neutral glycolipids and gangliosides in the weight ratio of 18 : 50 : 29 : 2%. The amount of individual phospholipids and glycolipids were quantitated. Phosphatidylethanolamine, -choline, -serine, -inositol and sphingomyelin made up 17, 17, 6, 5 and 5%, respectively of the total lipid. The major glycolipids were two monohexosylceramides containing glucose and galactose as the carbohydrate component, a dihexosylceramide containing galactose as the only carbohydrate component and two pentahexosylceramides containing fucose, galactose, glucose and hexosamine (either N-acetylglucosamine or N-acetylgalactosamine) in the molar ratio of 1 : 2 : 1 : 1.  相似文献   

13.
Cytotoxic lymphocytes (CL) induce death of their targets by granule exocytosis. During this process, enzymes contained within cytotoxic granules (granzymes) are delivered to the target cell where the enzymes trigger the cell death by cleaving specific substrates. Granzyme B is the only granzyme that has been shown to induce cell death by apoptosis, but the exact pathway by which this is achieved has been the subject of hot debate. Furthermore, several other death-inducing granzymes have been identified; therefore, the exact contribution of granzyme B to CL-induced death is unclear. In this study, we discuss our recent findings on granzyme B-induced cell death and discuss the potential relevance of this pathway to CL-induced death of viral-infected and transformed cells.  相似文献   

14.
An externally applied electric field across vesicles leads to transient perforation of the membrane. The distribution and lifetime of these pores was examined using 1,2-di-oleoyl-sn-glycero-3-phosphocholine (DOPC) phospholipid vesicles using a standard fluorescent microscope. The vesicle membrane was stained with a fluorescent membrane dye, and upon field application, a single membrane pore as large as approximately 7 microm in diameter was observed at the vesicle membrane facing the negative electrode. At the anode-facing hemisphere, large and visible pores are seldom found, but formation of many small pores is implicated by the data. Analysis of pre- and post-field fluorescent vesicle images, as well as images from negatively stained electron micrographs, indicate that pore formation is associated with a partial loss of the phospholipid bilayer from the vesicle membrane. Up to approximately 14% of the membrane surface could be lost due to pore formation. Interestingly, despite a clear difference in the size distribution of the pores observed, the effective porous areas at both hemispheres was approximately equal. Ca(2+) influx measurements into perforated vesicles further showed that pores are essentially resealed within approximately 165 ms after the pulse. The pore distribution found in this study is in line with an earlier hypothesis (E. Tekle, R. D. Astumian, and P. B. Chock, 1994, Proc. Natl. Acad. Sci. U.S.A. 91:11512--11516) of asymmetric pore distribution based on selective transport of various fluorescent markers across electroporated membranes.  相似文献   

15.
Potential dependent riigidity changes in lipid membrane vesicles   总被引:2,自引:0,他引:2  
Steady-state fluorescence depolarization measurements of the hydrophobic probe, 1,6-diphenyl-1,3,5-hexatriene (DPH), embedded into lipid membrane vesicles, reveal an increase in the membrane rigidity in the presence of transmembrane potential gradients. The effect depends on the lipid head-group structure and its charge. Additionally, the curvature of the vesicle membrane leads to an asymmetry in the observed phenomena. In consistence with several theories and experiments, it is concluded that besides a possible electrostriction of the membrane the electric field causes alterations in the orientation of the surface dipoles of the lipid molecules. The biological significance of these observations is briefly discussed.  相似文献   

16.
The absorption of lipids is generally accepted to be mediated by a process of passive diffusion, although some recent data have raised the possibility of a mediated component. Brush border membrane vesicles (BBMV) have been widely used to study nutrient transport, but have only recently been used to examine the uptake of lipids. Using a BBMV technique validated with studies of the uptake of D-glucose, we examined the uptake of linoleic acid into the jejunum of adult rabbits. The uptake of 100 microM linoleic acid was constant between 2 and 20 min, with no overshoot observed at earlier periods. Linoleic acid uptake was suppressed by 88% with 0.6 mM phloridzin and by 58% with 0.2 mM phloretin, but uptake of linoleic acid was unaffected by the absence of sodium, by the presence of a sodium gradient, or by varying the osmolarity of the buffer. Lysis of the BBMV incubated with linoleic acid by the addition of ice-cold deionized water did not alter the amount of linoleic acid associated with the BBMV. The linoleic acid concentration curve was linear up to 160 microM, when carried out under initial rate conditions and in the presence of 2 mM taurocholic acid. These results are compatible with the process of passive uptake of linoleic acid into BBMV of rabbit jejunum, but do not exclude the possible physiological importance of a membrane fatty acid binding protein.  相似文献   

17.
The magainins, peptide antibiotics secreted by the frog Xenopus laevis, have previously been shown to permeabilize phospholipid vesicles. To elucidate the mechanism of permeabilization, we have conducted detailed kinetic studies of magainin 2 amide (mgn2a)-induced release of 6-carboxyfluorescein from vesicles of phosphatidylserine. The results show that dye release occurs in (at least) two stages--an initial rapid phase, with t1/2 approximately 3 s, followed by a much slower phase that approaches zero leakage rate before all the dye is released. Light-scattering studies showed that mgn2a does not cause gross changes in vesicle structure. The peptide was found to rapidly equilibrate between vesicles; this was demonstrated by determining a binding isotherm for the peptide-lipid interaction, and by showing that addition of unloaded vesicles rapidly quenches peptide-induced leakage from loaded vesicles. Transient dye release in the presence of an equilibrating peptide can be explained in two ways: (1) the peptide exists only transiently in an active form; (2) the vesicles are only transiently leaky. Preincubation of mgn2a at assay concentrations in buffer alone or with unloaded vesicles did not inactivate the peptide. Therefore, rapid leakage is probably due to transient destabilization of the vesicle upon addition of mgn2a.  相似文献   

18.
The effect of pH of electrolyte solution on the interfacial tension of lipid membrane formed of phosphatidylcholine (PC, lecithin)–phosphatidylserine (PS) system was studied. In this article, three models describing the H+ and OH ions adsorption in the bilayer lipid surface are presented. In Model I and Model II, the surface is continuous with uniformly distributed functional groups constituting the centres of H+ and OH ions adsorption while in the other the surface is built of lipid molecules, free or with attached H+ and OH ions. In these models contribution of the individual lipid molecule forms to interfacial tension of the bilayer were assumed to be additive. In Model III the adsorption of the H+ and OH ions at the PC–PS bilayer surface was described in terms of the Gibbs isotherm. Theoretical equations are derived to describe this dependence in the whole pH range.  相似文献   

19.
The dependence of the interfacial tension of a lipid membrane on the pH of the aqueous solution has been studied. Interfacial tension measurements of phosphatidylethanolamine (PE) were carried out. A theoretical equation is derived to describe this dependence in the whole pH range. A maximum corresponding to the isoelectric point appears both in the theoretical equation and in the experimental data.  相似文献   

20.
We have investigated the permeabilization of POPC unilamellar vesicle bilayers upon the addition of melittin. This process was measured in an early time range of a few minutes by means of monitoring the release of an entrapped marker, the self-quenching fluorescent dye carboxyfluorescein. Pore formation is indicated by an apparent 'all-or-none' efflux out of individual vesicles and a higher than linear dependence on melittin concentration. Applying a recently developed evaluation procedure, the data are readily converted into the gross number of pores per vesicle formed within the elapsed measuring time t. The results can be generally described in terms of a fast initial rate of pore formation that slows down to a much lower value after a period of about 1 to 2 minutes, following a single exponential time course. The three rate parameters involved are shown to be power functions of the concentration of melittin that is actually associated with the vesicle membrane. These findings are in excellent quantitative agreement with a proposed scheme of reaction steps where the formation of lipid associated peptide dimers becomes rate determining once an initial fast deposit is exhausted.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号