首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have characterized the structural organization and catalytic properties of the large nucleolar group I introns (NaSSU1) of the different Naegleria species N. jamiesoni, N. andersoni, N. italica, and N. gruberi. NaSSU1 consists of three distinct RNA domains: an open reading frame encoding a homing-type endonuclease, and a small group I ribozyme (NaGIR1) inserted into the P6 loop of a second group I ribozyme (NaGIR2). The two ribozymes have different functions in RNA splicing and processing. NaGIR1 is an unusual self-cleaving group I ribozyme responsible for intron processing at two internal sites (IPS1 and IPS2), both close to the 5' end of the open reading frame. This processing is hypothesized to lead to formation of a messenger RNA for the endonuclease. Structurally, NaGIR2 is a typical group IC1 ribozyme, catalyzing intron excision and exon ligation reactions. NaGIR2 is responsible for circularization of the excised intron, a reaction that generates full-length RNA circles of wild-type intron. Although it is only distantly related in primary sequence, NaSSU1 RNA has a predicted organization and function very similar to that of the mobile group I intron DiSSU1 of Didymium, the only other group I intron known to encode two ribozymes. We propose that these twin-ribozyme introns define a distinct category of group I introns with a conserved structural organization and function.  相似文献   

2.

Background  

Ribosomal DNA of several species of the free-living Naegleria amoeba harbors an optional group I intron within the nuclear small subunit ribosomal RNA gene. The intron (Nae.S516) has a complex organization of two ribozyme domains (NaGIR1 and NaGIR2) and a homing endonuclease gene (NaHEG). NaGIR2 is responsible for intron excision, exon ligation, and full-length intron RNA circularization, reactions typical for nuclear group I intron ribozymes. NaGIR1, however, is essential for NaHEG expression by generating the 5' end of the homing endonuclease messenger RNA. Interestingly, this unusual class of ribozyme adds a lariat-cap at the mRNA.  相似文献   

3.
The two group I introns Nae.L1926 and Nmo.L2563, found at two different sites in nuclear LSU rRNA genes of Naegleria amoebo-flagellates, have been characterized in vitro. Their structural organization is related to that of the mobile Physarum intron Ppo.L1925 (PpLSU3) with ORFs extending the L1-loop of a typical group IC1 ribozyme. Nae.L1926, Nmo.L2563 and Ppo.L1925 RNAs all self-splice in vitro, generating ligated exons and full-length intron circles as well as internal processed excised intron RNAs. Formation of full-length intron circles is found to be a general feature in RNA processing of ORF-containing nuclear group I introns. Both Naegleria LSU rDNA introns contain a conserved polyadenylation signal at exactly the same position in the 3' end of the ORFs close to the internal processing sites, indicating an RNA polymerase II-like expression pathway of intron proteins in vivo. The intron proteins I-NaeI and I-NmoI encoded by Nae.L1926 and Nmo.L2563, respectively, correspond to His-Cys homing endonucleases of 148 and 175 amino acids. I-NaeI contains an additional sequence motif homologous to the unusual DNA binding motif of three antiparallel beta sheets found in the I-PpoI endonuclease, the product of the Ppo.L1925 intron ORF.  相似文献   

4.
Johansen S  Einvik C  Nielsen H 《Biochimie》2002,84(9):905-912
The group I-like ribozyme GIR1 is a unique example of a naturally occurring ribozyme with an evolved biological function. GIR1 generates the 5'-end of a nucleolar encoded messenger RNA involved in intron mobility. GIR1 is found as a cis-cleaving ribozyme within two very different rDNA group I introns (twin-ribozyme introns) in distantly related organisms. The Didymium GIR1 (DiGIR1) and Naegleria GIR1 (NaGIR1) share fundamental features in structural organization and reactivity, and display significant differences when compared to the related group I splicing ribozymes. GIR1 lacks the characteristic P1 segment present in all group I splicing ribozymes, it has a novel core organization, and it catalyses two site-specific hydrolytic cleavages rather than splicing. DiGIR1 and NaGIR1 appear to have originated from eubacterial group I introns in order to fulfil a common biological challenge: the expression of a protein encoding gene in a nucleolar context.  相似文献   

5.
The first group I intron in the cox1 gene (cox1I1b ) of the mitochondrial genome of the fission yeast Schizosaccharomyces pombe is a mobile DNA element. The mobility is dependent on an endonuclease protein that is encoded by an intronic open reading frame (ORF). The intron-encoded endonuclease is a typical member of the LAGLIDADG protein family of endonucleases with two consensus motifs. In addition to this, analysis of several intron mutants revealed that this protein is required for intron splicing. However, this protein is one of the few group I intron-encoded proteins that functions in RNA splicing simultaneously with its DNA endonuclease activity. We report here on the biochemical characterization of the endonuclease activity of this protein artificially expressed in Escherichia coli. Although the intronic ORF is expressed as a fusion protein with the upstream exon in vivo, the experiments showed that a truncated translation product consisting of the C-terminal 304 codons of the cox1I1b ORF restricted to loop 8 of the intron RNA secondary structure is sufficient for the specific endonuclease activity in vitro. Based on the results, we speculate on the evolution of site-specific homing endonucleases encoded by group I introns in eukaryotes.  相似文献   

6.
We have amplified the large subunit ribosomal DNA (LSUrDNA) of the 12 described Naegleria spp. and of 34 other Naegleria lineages that might be distinct species. Two strains yielded a product that is longer than 3 kb, which is the length of the LSUrDNA of all described Naegleria spp. Sequencing data revealed that the insert in one of these strains is a group I intron without an open reading frame (ORF), while the other strain contains two different group I introns, of which the second intron has an ORF of 175 amino acids. In the latter ORF there is a conserved His-Cys box, as in the homing endonucleases present in group I introns in the small subunit ribosomal DNA (SSUrDNA) of Naegleria spp. Although the group I introns in the LSUrDNA differ in sequence, they are more related to each other than they are to the group I introns in the SSUrDNA of Naegleria spp. The three group I introns in the LSUrDNA in Naegleria are at different locations and are probably acquired by horizontal transfer, contrary to the SSUrDNA group I introns in this genus which are of ancestral origin and are transmitted vertically.  相似文献   

7.
W A Decatur  C Einvik  S Johansen    V M Vogt 《The EMBO journal》1995,14(18):4558-4568
DiSSU1, a mobile intron in the nuclear rRNA gene of Didymium iridis, was previously reported to contain two independent catalytic RNA elements. We have found that both catalytic elements, renamed GIR1 and GIR2, are group I ribozymes, but with differing functionality. GIR2 carries out the several reactions associated with self-splicing. GIR1 carries out a hydrolysis reaction at an internal processing site (IPS-1). These conclusions are based on the catalytic properties of RNAs transcribed in vitro. Mutation of the P7 pairing segment of GIR2 abrogated self-splicing, while mutation of P7 in GIR1 abrogated hydrolysis at the IPS-1. Much of the P2 stem and all of the associated loop could be deleted without effect on self-splicing. These results are accounted for by a secondary structure model, in which a long P2 pairing segment brings the 5' splice site to the GIR2 catalytic core. GIR1 is the smallest natural group I ribozyme yet reported and is the first example of a group I ribozyme whose presumptive biological function is hydrolysis. We hypothesize that GIR1-mediated cleavage of the excised intron RNA functions in the generation and expression of the mRNA for the intron-encoded endonuclease I-DirI.  相似文献   

8.
DiGIR1 is a group I-like ribozyme derived from the mobile twin ribozyme group I intron DiSSU1 in the nuclear ribosomal DNA of the myxomycete Didymium iridis. This ribozyme is responsible for intron RNA processing in vitro and in vivo at two internal sites close to the 5′-end of the intron endonuclease open reading frame and is a unique example of a group I ribozyme with an evolved biological function. DiGIR1 is the smallest functional group I ribozyme known from nature and has an unusual core organization including the 6 bp P15 pseudoknot. Here we report results of functional and structural analyses that identify RNA elements critical for hydrolysis outside the DiGIR1 ribozyme core moiety. Results from deletion analysis, disruption/compensation mutagenesis and RNA structure probing analysis all support the existence of two new segments, named P2 and P2.1, involved in the hydrolysis of DiGIR1. Significant decreases in the hydrolysis rate, kobs, were observed in disruption mutants involving both segments. These effects were restored by compensatory base pairing mutants. The possible role of P2 is to tether the ribozyme core, whereas P2.1 appears to be more directly involved in catalysis.  相似文献   

9.
10.
Small RNAs capable of self-cleavage and ligation might have been the precursors for the much more complex self-splicing group I and II introns in an early RNA world. Here, we demonstrate the activity of engineered hairpin ribozyme variants, which as self-splicing introns are removed from their parent RNA. In the process, two cleavage reactions are supported at the two intron-exon junctions, followed by ligation of the two generated exon fragments. As a result, the hairpin ribozyme, here acting as the self-splicing intron, is cut out. Two self-splicing hairpin ribozyme variants were investigated, one designed by hand, the other by a computer-aided approach. Both variants perform self-splicing, generating a cut-out intron and ligated exons.  相似文献   

11.
12.
13.
Subgenomic regions of hepatitis delta virus (HDV) RNA contains ribozyme whose activities are important to viral life cycles and depend on a unique pseudoknot structure. To explore the characters of HDV ribozyme, antibiotics of the aminoglycoside, which has been shown inhibiting self-splicing of group I intron and useful in elucidating its structure, were tested for their effect on HDV genomic ribozyme. Aminoglycosides, including tobramycin, netromycin, neomycin and gentamicin effectively inhibited HDV genomic ribozyme self-cleavage in vitro at a concentration comparable to that inhibiting group I intron self-splicing. The extent of inhibition depended upon the concentration of magnesium ion. Chemical modification mapping of HDV ribozyme RNA indicated that the susceptibility of nucleotide 703 to the modifying agent was enhanced in the presence of tobramycin, suggesting a conformational shift of HDV ribozyme, probably due to an interaction with the aminoglycoside. Finally, we examined the effect of aminoglycoside on HDV cleavage and replication in cell lines, however, none of the aminoglycoside effective in vitro exerted suppressive effects in vivo. Our results represented as an initial effort in utilizing aminoglycoside to probe the structure of HDV ribozyme and to compare its reaction mechanism with those of other related ribozymes.  相似文献   

14.
Ⅰ型内含子核酶经过设计特定的信号引导序列(IGS),可特异性地定点剪接目的基因RNA,从而在RNA水平达到修复病变基因的目的。以四膜虫材料,克隆了其26S rRNA内含子核酶基因,体外转录证实该I型内含子核酶具有完全的自我剪接的功能。为检测该核酶的反式剪接功能,构建了缺失后半段564bp基因序列的绿色荧光蛋白(GFP)的截短突变体重组质粒XYQ5/XYQ10pEGFP-C-2,并证实其失去了发射绿色荧光的活性。利用PCR和分子克隆技术,构建了以上EGFP突变体的反式剪接修复核酶ptrans-rib-CMV2,该核酶载体以克隆的26S RNA内含子为核心,选择EGFP编码区194位TG为剪接位点,以188-193位设计IGS序列,核酶3′端携带195-890bp的EGFP基因序列,连接于pRC-CMV2真核表达载体中。体外转录突变EGFP的原核表达载体XYQ5/10-pGEM和ptrans-rib-CMV2,以混合转录产物为模板进行RT-PCR,电泳及测序证实产物中含有反式剪接修复的野生型EGFP mRNA,从而证实构建的反式剪接核酶具有体外反式剪接功能。将截短突变重组质粒XYQ5/XYQ10- pEGFP-C2与核酶质粒ptrans-rib-CMV2共转染Hela细胞,用荧光显微镜观察转染结果,发现有少量共转染的Hela细胞发出绿光;RT-PCR检测出野生型EGFP mRNA,证明构建的反式剪接核酶具有体内反式剪接的功能,但其反式剪接效率低。  相似文献   

15.
The Didymium iridis DiSSU1 intron is located in the nuclear SSU rDNA and has an unusual twin-ribozyme organization. One of the ribozymes (DiGIR2) catalyses intron excision and exon ligation. The other ribozyme (DiGIR1), which along with the endonuclease-encoding I-DirI open reading frame (ORF) is inserted in DiGIR2, carries out hydrolysis at internal processing sites (IPS1 and IPS2) located at its 3' end. Examination of the in vivo expression of DiSSU1 shows that after excision, DiSSU1 is matured further into the I-DirI mRNA by internal DiGIR1-catalysed cleavage upstream of the ORF 5' end, as well as truncation and polyadenylation downstream of the ORF 3' end. A spliceosomal intron, the first to be reported within a group I intron and the rDNA, is removed before the I-DirI mRNA associates with the polysomes. Taken together, our results imply that DiSSU1 uses a unique combination of intron-supplied ribozyme activity and adaptation to the general RNA polymerase II pathway of mRNA expression to allow a protein to be produced from the RNA polymerase I-transcribed rDNA.  相似文献   

16.
17.
18.
The P5 or P7 extensions in the group I intron ribozyme serve as "modular activator units" by stabilizing the conserved core of the ribozyme. The P5 extension of a group IC1 intron was introduced to a barely active group IA2 intron lacking its original P7 extension. The inserted P5 extension significantly activated the chimeric construct. Because the CYT-18 protein factor is also known to activate mutant group IA2 and IC1 introns lacking their P7 and P5 extensions, respectively, the RNA and protein activator units function in an analogous manner.  相似文献   

19.
We have recently described an RNA-only gene regulation system for mammalian cells in which inhibition of self-cleavage of an mRNA carrying ribozyme sequences provides the basis for control of gene expression. An important proof of principle for that system was provided by demonstrating the ability of one specific small molecule inhibitor of RNA self-cleavage, toyocamycin, to control gene expression in vitro and vivo. Here, we describe the development of the high-throughput screening (HTS) assay that led to the identification of toyocamycin and other molecules capable of inhibiting RNA self-cleavage in mammalian cells. To identify small molecules that can serve as inhibitors of ribozyme self-cleavage, we established a cell-based assay in which expression of a luciferase (luc) reporter is controlled by ribozyme sequences, and screened 58,076 compounds for their ability to induce luciferase expression. Fifteen compounds able to inhibit ribozyme self-cleavage in cells were identified through this screen. The most potent of the inhibitors identified were toyocamycin and 5-fluorouridine (FUR), nucleoside analogs carrying modifications of the 7-position and 5-position of the purine or pyrimidine bases. Individually, these two compounds were able to induce gene expression of the ribozyme-controlled reporter approximately 365-fold and 110-fold, respectively. Studies of the mechanism of action of the ribozyme inhibitors indicate that the compounds must be incorporated into RNA in order to inhibit RNA self-cleavage.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号