首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Melanin synthesis in the myxomycete Physarum polycephalum occurs during sporulation but not during spherule formation. Melanin-like pigment was extracted from spores. An almost identical substance of polyphenols was extracted from spherules and characterized by its ultraviolet and infrared absorbance spectra. Polyphenol oxidase activity in spherules was very low and showed only one weak isoenzyme band in isoelectric focusing polyacrylamide gels. A much higher activity, and an increasing number of isoenzymes, were detected in sporulating cultures after illumination during the differentiation process. The addition of melanin precursors resulted in the synthesis of brownish-yellow spherules, probably containing dopachrome, whereas the addition of polyphenol oxidase inhibitors resulted in yellow sporangia. The results indicate that melanin synthesis is probably only a stage in maturation but not an essential part of the morphogenetic process itself.  相似文献   

2.
The spherule walls Physarum polucephalum have been reexamined and found to contain 88% of galactosamine (as anhydrogalactosamine), 6.80% of protein, 4.7% of phosphate groups, and a small proportion of acetyl groups (0.5%). Methylation studies indicated that the spherule-wall polysaccharide is a long-chain galactosamino- glycan linked exclusively (1→4) and without phosphate linkages. The specific optical rotation of this unique glycan. [x]D, + 118° (6M HCI), indicated that it is α-D-linked.  相似文献   

3.
N Kislev  I Chet 《Tissue & cell》1974,6(2):209-214
The ultrastructure and architecture of freeze-fractured sclerotia of Physarum polycephalum was studied by a scanning electron microscope (SEM). The sclerotia are built of many spherules grouped together in a common outer coat. Each spherule has hard walls which separate it from its neighbors. The spherules are rounded in 2-day-old sclerotia, and have a lobe-like structure 3 weeks later. A new simple technique for obtaining freeze-fractured biological material is described and compared with freeze-fracture in a freeze-etching apparatus. The ultrastructural details of the fractured sclerotia are described.  相似文献   

4.
The meiosis-specific mug28+ gene of Schizosaccharomyces pombe encodes a putative RNA-binding protein with three RNA recognition motifs (RRMs). Live observations of meiotic cells that express Mug28 tagged with green fluorescent protein (GFP) revealed that Mug28 is localized in the cytoplasm, and accumulates around the nucleus from metaphase I to anaphase II. Disruption of mug28+ generated spores with low viability, due to the aberrant formation of the forespore membrane (FSM). Visualization of the FSM in living cells expressing GFP-tagged Psy1, an FSM protein, indicated that mug28Δ cells harbored abnormal FSMs that contained buds, and had a delayed disappearance of Meu14, a leading edge protein. Electron microscopic observation revealed that FSM formation was abnormal in mug28Δ cells, showing bifurcated spore walls that were thicker than the nonbifurcated spore walls of the wild type. Analysis of Mug28 mutants revealed that RRM3, in particular phenylalanin-466, is of primary importance for the proper localization of Mug28, spore viability, and FSM formation. Together, we conclude that Mug28 is essential for the proper maturation of the FSM and the spore wall.  相似文献   

5.
Melanins and Resistance of Fungi to Lysis   总被引:13,自引:4,他引:9  
Hyphal walls of Aspergillus phoenicis and Sclerotium rolfsii are composed of large amounts of glucose- and N-acetylhexosamine-containing polysaccharides, and the walls are extensively digested by streptomycete culture filtrates or by a mixture of purified chitinase and β-(1 → 3) glucanase preparations with the release of the monomeric units. A. phoenicis conidial walls also contain polymers of glucose and N-acetylhexosamine, but these walls are resistant to digestion by microorganisms or the enzyme combination active on the hyphae. When the melanin-containing spicules were removed from the spore surface, however, the chitinase and glucanase partially digested the underlying structural components. Microorganisms decomposing hyphal walls of S. rolfsii did not attack the melanin-covered sclerotia produced by this fungus. No microorganism capable of lysing two fungi, Rhizoctonia solani and Cladosporium sp., producing hyphae containing abundant melanin was found. The ecological significance of these findings and possible mechanisms for the protective influence associated with melanins are discussed.  相似文献   

6.
7.
Frankia sp., the actinomycetous endophyte in nitrogen-fixing actinorhizal nodules, may differentiate two forms from its hyphae: vesicles and sporangia. In root nodules of Comptonia peregrina (L.) Coult. and Myrica gale L., sporangia may be either absent or present. Nitrogenase activity and symbiotic efficiency were contrasted in spore(+) and spore(−) nodules of these two host genera. Seedlings of C. peregrina nodulated with the spore(+) inoculum showed only 60% of the nitrogenase activity and 50% of the net size of their spore(−) counterparts after 12 weeks of culture. Measurements of acetylene reduction (i.e., nitrogenase activity) were coordinated with samplings of nodules for structural studies. Significant differences in acetylene reduction rates were discernible between spore(+) and spore(−) nodules commencing 4 weeks after nodulation, concomitant with the maturation of sporangia in the nodule. Spore(+) nodules ultimately reached less than half of the rate of nitrogenase activity of spore(−) nodules. Both types of nodules evolved only small amounts of molecular hydrogen, suggesting that both were equally efficient in recycling electrons lost to the reduction of hydrogen ions by nitrogenase. Respiratory cost of nitrogen fixation, expressed as the quotient of micromole CO2 to micromole ethylene evolved by excised nodules, was significantly greater in spore(+) than in spore(−) nodules. M. gale spore(−) nodules showed variable effectivity, though all had low CO2 to ethylene evolution ratios. M. gale spore(+) nodules resembled C. peregrina spore(+), with low effectivity and high respiratory cost for nitrogen fixation.  相似文献   

8.
A sulfated and phosphorylated β-D-galactan ([α]D + 8°) was isolated from the nuclei of the acellular slime mould Physarum polycephalum. The polysaccharide was isolated from cesium chloride gradients during the preparation of ribosomal DNA and purified. The purified galactan contained 89% galactose, 2.5% phosphate and 9.6% sulfate groups and had an average degree of polymerisation of 560. Periodate degradation and permethylation studies indicated the presence of mainly (1 → 4)-, but also of (1 → 3)-, and (1 → 6)-linked galactose units with one branch every 13 units. These results suggested that the intranuclear galactan, apart from its higher sulfate content, is similar to the extra-cellular polysaccharide produced by P. polycephalum.  相似文献   

9.
Sporosarcina halophila forms endospores. Electron micrographs revealed ultrastructural similarity to spores of S. ureae. Spore germination indicated by loss of refractility, darkening, swelling and formation of new vegetative cells was followed by phase contrast light microscopy. To induce spore germination, the endospores needed to be heat avtivated. After activation, they were inoculated into nutrient broth medium supplemented with sea-water. Double concentrated sea-water was found to be optimal for germination. Similar to other bacterial endospores, the spores were found to be resistant to heat and ethanol. An ultraviolet absorbing substance was isolated from suspensions of free spores; it was identified to be pyridine-2,6-dicarboxylic acid (DPA) usually present in bacterial spores. DPA was detected in amounts ranging from 5–7% of the spore dry weight; it was not detected in extracts of vegetative cells.Abbreviation DPA 2,6-pyridine-dicarboxylic acid  相似文献   

10.
A cytochemical study of the spore of Haplosporidium lusitanicum, a haplosporidian parasite recently found in Helcion pellucidus, is described. Cytochemical analysis with Sudan Black B at the light microscope level revealed that the vesicle-like droplets (VLD) situated in the apical and basal zones of the endosporoplasm in close contact with the external membrane is strongly stained dark blue. These structures are partially digested with lipase. Both reactions suggest the presence of lipoid components. The dense bodies of the exosporoplasm seem to be analogous in chemical composition. On the other hand, these two distinct structures, when subjected to Thiéry's test for glycoproteins, gave positive results. We think that these materials are complex structures simultaneously containing lipids and glycoproteins. They may be involved in the formation of the complex membranous system (“spherule”) that develops during spore maturation in this species. The matrix of haplosporosomes submitted to Thiéry's test for glycoproteins was also positive. A comparative cytochemical analysis has revealed that the external membrane of the haplosporosomes is more glycoproteinaceous than the internal one, which is more lipoidal.  相似文献   

11.
Moisture inside walls can facilitate mold growth if left untreated. Once spores become airborne they may interact with pressures inside walls. Two laboratory experiments were conducted to determine if airborne spores have the potential to migrate laterally inside walls with and without wiring installations. A simulated wall was fabricated, and Penicillium chrysogenum spores were aerosolized into a distant stud bay and an adjacent stud bay. The wall was subjected to a typical indoor pressure. Spore levels inside the bays were sampled, and a total of 36 trials (n = 36) were conducted. Results of Kruskal–Wallis tests revealed that spore levels inside the sampling bay and the distant bay with wiring installations were not significantly different. Spore levels inside the sampling bay were significantly lower than the adjacent bay without wiring installations (< 0.05). The findings of the study suggest airborne fungal spores have the potential to move laterally inside walls.  相似文献   

12.
Spore productivity in six entomopathogenic fungal strains isolated from insect cadavers at four locations in Chiang Mai province was evaluated in five cereal grains: white-rice, wheat, rye, corn and sorghum. According to sequence analysis of the internal transcribed spacer regions of these isolates, they were closely related to Beauveria bassiana (2 isolates), Metarhizium flavoviride (1 isolate), Metarhizium anisopliae (1 isolate), Paecilomyces lilacinus (1 isolate) and Isaria tenuipes (1 isolate). Among all fungal isolates, the maximum amount of spores (530.0?×?109 conidia/g) was yielded P. lilacinus CMUCDMT02 on sorghum grain followed by white-rice (399.3?×?109 conidia/g). Moreover, the highest number of spore in M. flavoviride was 102.8?×?109 conidia/g sorghum whereas white-rice yielded the greatest amount of spore for B. bassiana CMUCDMF03 (141.0?×?109 conidia/g) after 60?days incubation. The fungal growth rate was found highest in corn for all strains and rye showed the lowest with the exception of P. lilacinus CMUCDMT02 among the tested grains. Spore viability was over 80?% for all isolates that had been inoculated for 60?days. Fungal conidia suspension of P. lilacinus obtained highest virulence against Bactrocera spp. at a concentration of 1?×?106 spore/ml. The strains isolated, exhibited good production of conidia suggesting a promising strategy for the mass production of inoculum as biocontrol agents with low production cost.  相似文献   

13.
Spore surface antigens of strains of Nosema bombycis were extracted with alkaline solutions and used in an indirect enzyme-linked immunosorbent assay. Treatment of N. bombycis spores with 0.1 n potassium carbonate or potassium hydroxide solution at 27°C for 30 min was sufficient for the extraction of the antigens. Usually, 108 spores of N. bombycis liberated ca. 30 μg spore surface proteins. The indirect enzyme-linked immunosorbent assay detected as little as 60 ng of spore surface proteins (ca. 2000 spore-equivalent antigen). The alkali-soluble spore surface antigens of N. bombycis contained a specific antigen and were stable under storage at −20°C for more than 1 year. The serological assay separated the Nosema isolates pathogenic to the silkworm into three groups.  相似文献   

14.
The survival of germinating spores of vesicular-arbuscular endophytes after treatments with oxidizing agents, antibiotics, moist heat, ultrasonic radiation, and ultraviolet radiation was compared with that of their contaminating microbes. Spores of three species were rapidly decontaminated by treatment with 0.42% (wt/vol) chlorine available from 5.0% (wt/vol) chloramine-T at 30°C for 20 to 40 min depending on the species and the soil from which they were extracted. This treatment did not change spore viability. The survival of spores was reduced by exposure for 20 min to 1.11% chlorine at 30°C for Glomus caledonius or at 35°C for Acaulospora laevis. Growth of any bacteria surviving treatment with oxidizing agents was inhibited by 100 μg of chloramphenicol per ml in agar; however, spore germination and germ tube growth were reduced only by concentrations greater than 200 μg/ml in agar. Spore germination was decreased by concentration of pimaracin, which controlled fungal growth. The spores survived moist heat at 40°C for 80 min, 55°C for 10 min, and 60°C for less than 1 min. The viability of spores was unaffected by ultrasonic irradiation for up to 4 min. Spores of G. caledonius and A. laevis were extremely resistant to ultraviolet radiation. Their viability was unaffected by exposure to 5 × 108 ergs cm−2 from an ultraviolet source of 253.7nm. The spores had very thick, pigmented walls, and the possibility that these provided some protection against the physical and chemical treatments is discussed. The degree of physiological damage to the spores caused by the treatments demonstrated some adverse effects of basic laboratory procedures. This information, together with that on the comparative sensitivity of contaminating microbes to the treatments, was used in the development of protocol for producing large numbers of uncontaminated spores.  相似文献   

15.
The effects of temperature and dosage on a new microsporidian species, Vairimorpha sp. 696, were examined in H. virescens. The pathogen was evaluated for tissue specificity, spore size, cumulative percentage mortality, and spore production. All tissues examined bore infection at 32°C. Spore length was significantly longer at 19°C (5.9 μm) than at 32°C (4.7 μm). Spore widths at these two temperatures did not differ significantly. Octospores were not found at either temperature at 8 or 12 days postinoculation. One hundred percent mortality was attained in all dosages administered, but the initial rate of mortaily was more rapid in the higher dosages. Finally, spore yield was greater in larvae administered lower dosages. Maximum spore yield at 27°C was 4.87 × 109 spores/larva.  相似文献   

16.
The physiology of spore-negative and spore-positive nodules ofMyrica gale   总被引:1,自引:1,他引:0  
The physiology of spore-negative and spore-positive root nodules was investigated inMyrica gale L. grown in water culture in a growth chamber. Spore(–) nodules were induced withFrankia cultures and spore(+) nodules with crushed nodules. Gas exchange was measured in a flow-through system.The time course of acetylene reduction following addition of acetylene was essentially the same in both spore(–) and spore(+) nodules with a stable maximum between 2 and 4 minutes followed by a steep decline to a minimum (37% of the maximum) between 9 and 30 minutes depending on the plant. The minimum was followed by a partial recovery. Nodule CO2 evolution showed a similar pattern but the minimum rate (83% of the maximum) was not nearly as low.Plants nodulated with one spore(–) and one spore(+) strain were compared at 6, 8 and 10 weeks after inoculation. At 6 weeks the spore(–) plants had 52% greater specific nitrogenase activity and 46% more biomass than the spore(+) plants. At 8 and 10 weeks, however, the differences between plants with spore(–) and spore(+) nodules became smaller.Plants nodulated with 4 spore(–) and 5 spore(+) strains were compared at 8 weeks after inoculation. Collectively the spore(–) plants exhibited a 32% greater specific nitrogenase activity, a 15% lower energy cost of nitrogenase activity (CO2/C2H4), and invested 31% less biomass in nodules than the spore(+) plants. The spore(–) plants also produced 16% more biomass indicating that spore(–) strains are generally more desirable than spore(+) strains. However, two spore(+) strains were as effective as the spore(–) strains.  相似文献   

17.
Spore yields were measured for various fungal entomopathogens grown in six nutritionally different liquid media with low and high carbon concentrations (8 and 36 g l–1, respectively) at carbon-to-nitrogen (C:N) ratios of 10:1, 30:1 and 50:1. Six fungi were tested: two Beauveria bassiana strains, three Paecilomyces fumosoroseus strains and one Metarhizium anisopliae strain. Spore yields were examined after 2, 4 or 7 days growth. In general, highest spore yields were obtained in media containing 36 g/l and a C:N ratio of 10:1. After 4 days growth, highest spore yields were measured in the three Paecilomyces isolates (6.9–9.7 × 108 spores ml–1). Spore production by the B. bassiana isolates was variable with one isolate producing high spore yields (12.2 × 108 spores ml–1) after 7 days growth. The M. anisopliae isolate produced low spore concentrations under all conditions tested. Using a commercial production protocol, a comparison of spore yields for the coffee berry borer P. fumosoroseus and a commercial B. bassiana isolate showed that highest spore concentrations (7.2 × 108 spores ml–1) were obtained with the P. fumosoroseus isolate 2-days post-inoculation. The ability of the P. fumosoroseus strain isolated from the coffee berry borer to rapidly produce high concentrations of spores prompted further testing to determine the desiccation tolerance of these spores. Desiccation studies showed that ca. 80% of the liquid culture produced P. fumosoroseus spores survived the air-drying process. The virulence of freshly produced, air-dried and freeze-dried coffee berry borer P. fumosoroseus blastospores preparations were tested against silverleaf whiteflies (Bemisia argentifolii). While all preparations infected and killed B. argentifolii, fresh and air-dried preparations were significantly more effective. These results suggest that screening potential fungal biopesticides for amenability to liquid culture spore production can aid in the identification of commercially viable isolates. In this study, P. fumosoroseus was shown to possess the production and stabilization attributes required for commercial development.  相似文献   

18.
The chemical composition of isolated endodermal cell walls from the roots of the five monocotyledoneous species Monstera deliciosa Liebm., Iris germanica L., Allium cepa L., Aspidistra elatior Bl. and Agapanthus africanus (L.) Hoffmgg. was determined. Endodermal cell walls isolated from aerial roots of M. deliciosa were in their primary developmental state (Casparian bands). They contained large amounts of lignin (6.5% w/w) and only traces of suberin (0.5% w/w). Endodermal cell walls isolated from the other four species were in their tertiary developmental state. Lignin was still the more abundant cell wall polymer with amounts ranging from 3.8% (w/w, A. cepa) to 4.5% (w/w, I. germanica). However, compared to endodermal cell walls in their primary state of development (Casparian bands), tertiary endodermal cell walls contained significantly higher amounts of suberin, ranging from 1.8% (w/w, I. germanica) to 3.0% (w/w, A. africanus). Thus, chemical characterization of endodermal cell walls from five different species revealed that lignin was the dominant cell wall polymer in the Casparian band of M. deliciosa, whereas tertiary endodermal cell walls contained, in addition to lignin, increasing amounts of suberin (I. germanica, A. cepa, A. elatior and A. africanus). Besides the two biopolymers lignin and suberin, cell wall carbohydrates in the range of between 40 and 60% were also quantified. The sum of all cell wall compounds investigated by gas chromatography resulted in a recovery of 50–80% of the dry weight of the isolated cell wall material. Quantitative chromatographic results in combination with microscopic studies are consistent with the existence of a distinct suberin lamella and lignified tertiary wall deposits. From these data it can be concluded that the barrier properties of the endodermis towards the apoplastic transport of ions and water will increase from primary to tertiary endodermal cell walls due to their increasing amounts of suberin. Received: 23 August 1997 / Accepted: 28 January 1998  相似文献   

19.
The partial purification and characterization of cell wall polysaccharides isolated from suspension-cultured Douglas fir (Pseudotsuga menziesii) cells are described. Extraction of isolated cell walls with 1.0 m LiCl solubilized pectic polysaccharides with glycosyl-linkage compositions similar to those of rhamnogalacturonans I and II, pectic polysaccharides isolated from walls of suspension-cultured sycamore cells. Treatment of LiCl-extracted Douglas fir walls with an endo-α-1,4-polygalacturonase released only small, additional amounts of pectic polysaccharide, which had a glycosyl-linkage composition similar to that of rhamnogalacturonan I. Xyloglucan oligosaccharides were released from the endo-α-1,4-polygalacturonase-treated walls by treatment with an endo-β-1,4-glucanase. These oligosaccharides included hepta- and nonasaccharides similar or identical to those released from sycamore cell walls by the same enzyme, and structurally related octa- and decasaccharides similar to those isolated from various angiosperms. Finally, additional xyloglucan and small amounts of xylan were extracted from the endo-β-1,4-glucanase-treated walls by 0.5 n NaOH. The xylan resembled that extracted by NaOH from dicot cell walls in that it contained 2,4- but not 3,4-linked xylosyl residues. In this study, a total of 15% of the cell wall was isolated as pectic material, 10% as xyloglucan, and less than 1% as xylan. The noncellulosic polysaccharides accounted for 26% of the cell walls, cellulose for 23%, protein for 34%, and ash for 5%, for a total of 88% of the cell wall. The cell walls of Douglas fir were more similar to dicot (sycamore) cell walls than to those of graminaceous monocots, because they had a predominance of xyloglucan over xylan as the principle hemicellulose and because they possessed relatively large amounts of rhamnogalacturonan-like pectic polysaccharides.  相似文献   

20.
The spore wall of Saccharomyces cerevisiae is a multilaminar extracellular structure that is formed de novo in the course of sporulation. The outer layers of the spore wall provide spores with resistance to a wide variety of environmental stresses. The major components of the outer spore wall are the polysaccharide chitosan and a polymer formed from the di-amino acid dityrosine. Though the synthesis and export pathways for dityrosine have been described, genes directly involved in dityrosine polymerization and incorporation into the spore wall have not been identified. A synthetic gene array approach to identify new genes involved in outer spore wall synthesis revealed an interconnected network influencing dityrosine assembly. This network is highly redundant both for genes of different activities that compensate for the loss of each other and for related genes of overlapping activity. Several of the genes in this network have paralogs in the yeast genome and deletion of entire paralog sets is sufficient to severely reduce dityrosine fluorescence. Solid-state NMR analysis of partially purified outer spore walls identifies a novel component in spore walls from wild type that is absent in some of the paralog set mutants. Localization of gene products identified in the screen reveals an unexpected role for lipid droplets in outer spore wall formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号