首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The existence of airborne mycotoxins in mold-contaminated buildings has long been hypothesized to be a potential occupant health risk. However, little work has been done to demonstrate the presence of these compounds in such environments. The presence of airborne macrocyclic trichothecene mycotoxins in indoor environments with known Stachybotrys chartarum contamination was therefore investigated. In seven buildings, air was collected using a high-volume liquid impaction bioaerosol sampler (SpinCon PAS 450-10) under static or disturbed conditions. An additional building was sampled using an Andersen GPS-1 PUF sampler modified to separate and collect particulates smaller than conidia. Four control buildings (i.e., no detectable S. chartarum growth or history of water damage) and outdoor air were also tested. Samples were analyzed using a macrocyclic trichothecene-specific enzyme-linked immunosorbent assay (ELISA). ELISA specificity was tested using phosphate-buffered saline extracts of the fungal genera Aspergillus, Chaetomium, Cladosporium, Fusarium, Memnoniella, Penicillium, Rhizopus, and Trichoderma, five Stachybotrys strains, and the indoor air allergens Can f 1, Der p 1, and Fel d 1. For test buildings, the results showed that detectable toxin concentrations increased with the sampling time and short periods of air disturbance. Trichothecene values ranged from <10 to >1,300 pg/m3 of sampled air. The control environments demonstrated statistically significantly (P < 0.001) lower levels of airborne trichothecenes. ELISA specificity experiments demonstrated a high specificity for the trichothecene-producing strain of S. chartarum. Our data indicate that airborne macrocyclic trichothecenes can exist in Stachybotrys-contaminated buildings, and this should be taken into consideration in future indoor air quality investigations.  相似文献   

2.
Highly respirable particles (diameter, <1 microm) constitute the majority of particulate matter found in indoor air. It is hypothesized that these particles serve as carriers for toxic compounds, specifically the compounds produced by molds in water-damaged buildings. The presence of airborne Stachybotrys chartarum trichothecene mycotoxins on particles smaller than conidia (e.g., fungal fragments) was therefore investigated. Cellulose ceiling tiles with confluent Stachybotrys growth were placed in gas-drying containers through which filtered air was passed. Exiting particulates were collected by using a series of polycarbonate membrane filters with decreasing pore sizes. Scanning electron microscopy was employed to determine the presence of conidia on the filters. A competitive enzyme-linked immunosorbent assay (ELISA) specific for macrocyclic trichothecenes was used to analyze filter extracts. Cross-reactivity to various mycotoxins was examined to confirm the specificity. Statistically significant (P < 0.05) ELISA binding was observed primarily for macrocyclic trichothecenes at concentrations of 50 and 5 ng/ml and 500 pg/ml (58.4 to 83.5% inhibition). Of the remaining toxins tested, only verrucarol and diacetylverrucarol (nonmacrocyclic trichothecenes) demonstrated significant binding (18.2 and 51.7% inhibition, respectively) and then only at high concentrations. The results showed that extracts from conidium-free filters demonstrated statistically significant (P < 0.05) antibody binding that increased with sampling time (38.4 to 71.9% inhibition, representing a range of 0.5 to 4.0 ng/ml). High-performance liquid chromatography analysis suggested the presence of satratoxin H in conidium-free filter extracts. These data show that S. chartarum trichothecene mycotoxins can become airborne in association with intact conidia or smaller particles. These findings may have important implications for indoor air quality assessment.  相似文献   

3.
Dampness in buildings has been linked to adverse health effects, but the specific causative agents are unknown. Mycotoxins are secondary metabolites produced by molds and toxic to higher vertebrates. In this study, mass spectrometry was used to demonstrate the presence of mycotoxins predominantly produced by Aspergillus spp. and Stachybotrys spp. in buildings with either ongoing dampness or a history of water damage. Verrucarol and trichodermol, hydrolysis products of macrocyclic trichothecenes (including satratoxins), and trichodermin, predominately produced by Stachybotrys chartarum, were analyzed by gas chromatography-tandem mass spectrometry, whereas sterigmatocystin (mainly produced by Aspergillus versicolor), satratoxin G, and satratoxin H were analyzed by high-performance liquid chromatography-tandem mass spectrometry. These mycotoxin analytes were demonstrated in 45 of 62 building material samples studied, in three of eight settled dust samples, and in five of eight cultures of airborne dust samples. This is the first report on the use of tandem mass spectrometry for demonstrating mycotoxins in dust settled on surfaces above floor level in damp buildings. The direct detection of the highly toxic sterigmatocystin and macrocyclic trichothecene mycotoxins in indoor environments is important due to their potential health impacts.  相似文献   

4.
Highly respirable particles (diameter, <1 μm) constitute the majority of particulate matter found in indoor air. It is hypothesized that these particles serve as carriers for toxic compounds, specifically the compounds produced by molds in water-damaged buildings. The presence of airborne Stachybotrys chartarum trichothecene mycotoxins on particles smaller than conidia (e.g., fungal fragments) was therefore investigated. Cellulose ceiling tiles with confluent Stachybotrys growth were placed in gas-drying containers through which filtered air was passed. Exiting particulates were collected by using a series of polycarbonate membrane filters with decreasing pore sizes. Scanning electron microscopy was employed to determine the presence of conidia on the filters. A competitive enzyme-linked immunosorbent assay (ELISA) specific for macrocyclic trichothecenes was used to analyze filter extracts. Cross-reactivity to various mycotoxins was examined to confirm the specificity. Statistically significant (P < 0.05) ELISA binding was observed primarily for macrocyclic trichothecenes at concentrations of 50 and 5 ng/ml and 500 pg/ml (58.4 to 83.5% inhibition). Of the remaining toxins tested, only verrucarol and diacetylverrucarol (nonmacrocyclic trichothecenes) demonstrated significant binding (18.2 and 51.7% inhibition, respectively) and then only at high concentrations. The results showed that extracts from conidium-free filters demonstrated statistically significant (P < 0.05) antibody binding that increased with sampling time (38.4 to 71.9% inhibition, representing a range of 0.5 to 4.0 ng/ml). High-performance liquid chromatography analysis suggested the presence of satratoxin H in conidium-free filter extracts. These data show that S. chartarum trichothecene mycotoxins can become airborne in association with intact conidia or smaller particles. These findings may have important implications for indoor air quality assessment.  相似文献   

5.
We examined 12,026 fungal air samples (9,619 indoor samples and 2,407 outdoor samples) from 1,717 buildings located across the United States; these samples were collected during indoor air quality investigations performed from 1996 to 1998. For all buildings, both indoor and outdoor air samples were collected with an Andersen N6 sampler. The culturable airborne fungal concentrations in indoor air were lower than those in outdoor air. The fungal levels were highest in the fall and summer and lowest in the winter and spring. Geographically, the highest fungal levels were found in the Southwest, Far West, and Southeast. The most common culturable airborne fungi, both indoors and outdoors and in all seasons and regions, were Cladosporium, Penicillium, nonsporulating fungi, and Aspergillus. Stachybotrys chartarum was identified in the indoor air in 6% of the buildings studied and in the outdoor air of 1% of the buildings studied. This study provides industrial hygienists, allergists, and other public health practitioners with comparative information on common culturable airborne fungi in the United States. This is the largest study of airborne indoor and outdoor fungal species and concentrations conducted with a standardized protocol to date.  相似文献   

6.
Dampness in buildings has been linked to adverse health effects, but the specific causative agents are unknown. Mycotoxins are secondary metabolites produced by molds and toxic to higher vertebrates. In this study, mass spectrometry was used to demonstrate the presence of mycotoxins predominantly produced by Aspergillus spp. and Stachybotrys spp. in buildings with either ongoing dampness or a history of water damage. Verrucarol and trichodermol, hydrolysis products of macrocyclic trichothecenes (including satratoxins), and trichodermin, predominately produced by Stachybotrys chartarum, were analyzed by gas chromatography-tandem mass spectrometry, whereas sterigmatocystin (mainly produced by Aspergillus versicolor), satratoxin G, and satratoxin H were analyzed by high-performance liquid chromatography-tandem mass spectrometry. These mycotoxin analytes were demonstrated in 45 of 62 building material samples studied, in three of eight settled dust samples, and in five of eight cultures of airborne dust samples. This is the first report on the use of tandem mass spectrometry for demonstrating mycotoxins in dust settled on surfaces above floor level in damp buildings. The direct detection of the highly toxic sterigmatocystin and macrocyclic trichothecene mycotoxins in indoor environments is important due to their potential health impacts.  相似文献   

7.
Stachybotrys was found to be associated with idiopathic pulmonary hemorrhage in infants in Cleveland, Ohio. Since that time, considerable effort has been put into finding the toxic components responsible for the disease. The name Stachybotrys chartarum has been applied to most of these isolates, but inconsistent toxicity results and taxonomic confusion prompted the present study. In this study, 122 Stachybotrys isolates, mainly from water-damaged buildings, were characterized and identified by combining three different approaches: morphology, colony characteristics, and metabolite production. Two different Stachybotrys taxa, S. chartarum and one undescribed species, were found in water-damaged buildings regardless of whether the buildings were in Denmark, Finland, or the USA. Furthermore, two chemotypes could be distinguished in S. chartarum. One chemotype produced atranones, whereas the other was a macrocyclic trichothecene-producer. The second undescribed taxon produced atranones and could be differentiated from S. chartarum by its growth characteristics and pigment production. Our results correlate with different inflammatory and toxicological properties reported for these same isolates and show that the three taxa/chemotypes should be treated separately. The co-occurrence of these three taxa/chemotypes in water-damaged buildings explains the inconsistent results in the literature concerning toxicity of Stachybotrys isolated from that environment.  相似文献   

8.
Twenty-five Stachybotrys isolates from two previous studies have been examined and compared, using morphological, chemical and phylogenetic methods. The results show that S. chartarum sensu lato can be segregated into two chemotypes and one new species. The new species, S. chlorohalonata, differs morphologically from S. chartarum by having smooth conidia, being more restricted in growth and producing a green extracellular pigment on the medium CYA. S. chlorohalonata and S. chartarum also have different tri5, chs1 and tub1 gene fragment sequences. The two chemotypes of S. chartarum, chemotype S and chemotype A, have similar morphology but differ in production of metabolites. Chemotype S produces macrocyclic trichothecenes, satratoxins and roridins, while chemotype A produces atranones and dolabellanes. There is no difference between the two chemotypes in the tub1 gene fragment, but there is a one nucleotide difference in each of the tri5 and the chs1 gene fragments.  相似文献   

9.
The occurrence of Stachybotrys chartarum in indoor environments has been linked to adverse health effects as well as few cases of pulmonary haemorrhages in humans. Although the highly toxic secondary metabolites of this fungus, like satratoxin G and H, were frequently claimed with outbreaks of such diseases, these toxins have hardly been identified in the air of naturally contaminated indoor environments. Herein, a case of a LC-MS/MS-confirmed occurrence of airborne S. chartarum-toxins in a water-damaged dwelling is reported. Satratoxin G (0.25 ng/m(3)) and satratoxin H (0.43 ng/m(3)) were detected. This provides further evidence that Stachybotrys-toxins can be transferred from mouldy indoor materials into air, which could be a factor in the aetiology of health symptoms related to the sick building syndrome.  相似文献   

10.
Thirty-one isolates of Stachybotrys chartarum from indoor and outdoor environments were analyzed for the presence of the trichodiene synthase (Tri5) gene, trichothecenes, boar sperm cell motility inhibition, and randomly amplified polymorphic DNA banding patterns (RAPDs). Twenty-two S. chartarum isolates tested positive for the Tri5 gene and nine were negative when tested using novel Tri5 gene-specific PCR primer pair. The Tri5 gene positive isolates contained satratoxins (five isolates) or the simple trichothecene, trichodermol (11 isolates). The Tri5 gene negative isolates did not produce satratoxins or trichodermol. Nineteen S. chartarum isolates, distributed among the Tri5 gene negative and positive groups, inhibited boar spermatozoan motility at concentrations of < or = 60 microg of crude cell extract/mL. The inhibition of motility was independent of satratoxins or atranones. Unweighted pair group method of arithmetic averages (UPGMA) cluster analysis of RAPD fragments clustered the 31 S. chartarum isolates in two distinct groups designated as RAPD groups 1 and 2. The grouping of S. chartarum isolates obtained by UPGMA cluster analysis of RAPD fragments was identical to the grouping obtained by Tri5 gene-specific PCR. This indicates that the S. chartarum isolates belonging to different groups were genetically distinct in a much wider area than just the Tri5 gene.  相似文献   

11.
We examined 12,026 fungal air samples (9,619 indoor samples and 2,407 outdoor samples) from 1,717 buildings located across the United States; these samples were collected during indoor air quality investigations performed from 1996 to 1998. For all buildings, both indoor and outdoor air samples were collected with an Andersen N6 sampler. The culturable airborne fungal concentrations in indoor air were lower than those in outdoor air. The fungal levels were highest in the fall and summer and lowest in the winter and spring. Geographically, the highest fungal levels were found in the Southwest, Far West, and Southeast. The most common culturable airborne fungi, both indoors and outdoors and in all seasons and regions, were Cladosporium, Penicillium, nonsporulating fungi, and Aspergillus. Stachybotrys chartarum was identified in the indoor air in 6% of the buildings studied and in the outdoor air of 1% of the buildings studied. This study provides industrial hygienists, allergists, and other public health practitioners with comparative information on common culturable airborne fungi in the United States. This is the largest study of airborne indoor and outdoor fungal species and concentrations conducted with a standardized protocol to date.  相似文献   

12.
Recent studies have correlated the presence of Stachybotrys chartarum in structures with SBS. S. chartarum produces mycotoxins that are thought to produce some of the symptoms reported in sick-building syndrome (SBS). The conidia (spores) produced by Stachybotrys species are not commonly found in the air of buildings that have been found to contain significant interior growth of this organism. This could be due in part to the large size of the Stachybotrys spores, or the organism growing in hidden areas such as wall cavities. However, individuals in buildings with significant Stachybotrys growth frequently display symptoms that may be attributed to exposure to the organism's mycotoxins. In addition, Stachybotrys colonies produce a "slime" or polysaccharide (carbohydrate) matrix that coats the hyphae and the spores. The intent of this project was to determine whether the carbohydrate matrix and the mycotoxins embedded in it could be removed from the spores by repeated washings with either aqueous or organic solvents. The results demonstrated that the process of spore washing removed compounds that were toxic in a protein translation assay as compared to spores that were washed with an organic solution, however a correlation between carbohydrate removal during the washing process and the removal of mycotoxins from the spore surface was not observed. These data demonstrated that mycotoxins are not likely to be found exclusively in the carbohydrate matrix of the spores. Therefore, mycotoxin removal from the spore surface can occur without significant loss of polysaccharide. We also showed that toxic substances may be removed from the spore surface with an aqueous solution. These results suggest that satratoxins are soluble in aqueous solutions without being bound to water-soluble moieties, such as the carbohydrate slime matrix.  相似文献   

13.
Stachybotrys chartarum, a fungus found in damp buildings and sometimes ascribed a role in building-related illnesses, produces a variety of secondary metabolites including trichothecenes, triprenylated phenolics, and a new class of diterpenoids called atranones. A related fungus, Memnoniella echinata also produces trichothecenes and the triprenylated phenolics. Herein the production of these compounds from cultures of the above are reviewed.  相似文献   

14.
The growth of indoor molds and their resulting products (e.g., spores and mycotoxins) can present health hazards for human beings. The efficacy of chlorine dioxide gas as a fumigation treatment for inactivating sick building syndrome-related fungi and their mycotoxins was evaluated. Filter papers (15 per organism) featuring growth of Stachybotrys chartarum, Chaetomium globosum, Penicillium chrysogenum, and Cladosporium cladosporioides were placed in gas chambers containing chlorine dioxide gas at either 500 or 1,000 ppm for 24 h. C. globosum was exposed to the gas both as colonies and as ascospores without asci and perithecia. After treatment, all organisms were tested for colony growth using an agar plating technique. Colonies of S. chartarum were also tested for toxicity using a yeast toxicity assay with a high specificity for trichothecene mycotoxins. Results showed that chlorine dioxide gas at both concentrations completely inactivated all organisms except for C. globosum colonies which were inactivated an average of 89%. More than 99% of ascospores of C. globosum were nonculturable. For all ascospore counts, mean test readings were lower than the controls (P < 0.001), indicating that some ascospores may also have been destroyed. Colonies of S. chartarum were still toxic after treatment. These data show that chlorine dioxide gas can be effective to a degree as a fumigant for the inactivation of certain fungal colonies, that the perithecia of C. globosum can play a slightly protective role for the ascospores and that S. chartarum, while affected by the fumigation treatment, still remains toxic.  相似文献   

15.
The fungus Stachybotrys chartarum has been implicated in cases of nonspecific indoor air quality complaints in adults and in cases of pulmonary hemorrhaging in infants. The effects that have been described have been attributed to mycotoxins. Previous dose-effect studies focused on exposure to a single mycotoxin in a solvent, a strategy which is unlikely to accurately characterize the effects of inhaled spores. In this study we examined the role of mycotoxins in the pulmonary effects caused by S. chartarum spores and the dose dependency of these effects. S. chartarum spores were extracted in methanol to reduce the mycotoxin content of the spores. Then either untreated (toxin-containing) or methanol-extracted S. chartarum spores were intratracheally instilled into male 10-week-old Charles River-Dawley rats. After 24 h, the lungs were lavaged, and the bronchoalveolar lavage fluid was analyzed to determine differences in lactic dehydrogenase, albumin, hemoglobin, myeloperoxidase, and leukocyte differential counts. Weight change was also monitored. Our data show that methanol extraction dramatically reduced the toxicity of S. chartarum spores. No statistically significant effects were observed in the bronchoalveolar lavage fluids of the animals that were treated with methanol-extracted spores at any dose. Conversely, dose-dependent effects of the toxin-containing spores were observed when we examined the lactic dehydrogenase, albumin, and hemoglobin concentrations, the polymorphonuclear leukocyte counts, and weight loss. Our findings show that a single, intense exposure to toxin-containing S. chartarum spores results in pulmonary inflammation and injury in a dose-dependent manner. Importantly, the effects are related to methanol-soluble toxins in the spores.  相似文献   

16.
Twenty seven isolates of Stachybotrys chartarum, S. albipes, S. kampalensis and S. microspora from Egypt and Eastern Europe were tested for production of macrocyclic trichothecenes. Twenty of the 27 isolates, grown on rice seeds, were toxic to brine shrimp larvae. Based on TLC and HPLC analyses, 5 macrocyclic trichothecenes (verrucarin J, roridin E, satratoxins F, G & H) as well as trichoverrols were identified. When grown in liquid culture on rice extract medium, only 3 isolates were toxic and produced verrucarin J, roridin E and satratoxins G & H. Extracts from mycelial mats were more toxic than culture filterates of two isolates grown on rice extract and both contained the same macrocyclic trichothecenes (285.5 mg/4 L), in addition to trichoverrols A & B (31 mg/4 L) found in mycelial mats only. When grown on 3% sucrose Czapek's medium supplemented with peptone and yeast extract (still cultures), all isolates were non-toxic to brine shrimp and no trichothecenes could be detected in the extracts.  相似文献   

17.
Stachybotrys chartarum is one of several species of filamentous fungi capable of producing mycotoxins under certain environmental conditions. In some observational studies, the growth of this toxigenic mold in the indoor environment has been implicated as a cause of building-related illness. Following reports of a cluster of cases of pulmonary hemosiderosis and hemorrhage associated with exposure to Stachybotrys, public health measures have been recommended which have far-reaching implications. Although the hazards associated with exposure to some mycotoxins have been well studied, the health risks from environmental exposure to Stachybotrys remain poorly defined. The purpose of this review is to critically evaluate the current body of epidemiologic knowledge regarding Stachybotrys and to increase physician awareness regarding this emerging environmental health issue.  相似文献   

18.
Mycotoxin production by indoor molds   总被引:9,自引:0,他引:9  
Fungal growth in buildings starts at a water activity (a(w)) near 0.8, but significant quantities of mycotoxins are not produced unless a(w) reaches 0.95. Stachybotrys generates particularly high quantities of many chemically distinct metabolites in water-damaged buildings. These metabolites are carried by spores, and can be detected in air samples at high spore concentrations. Very little attention has been paid to major metabolites of Stachybotrys called spirocyclic drimanes, and the precise structures of the most abundant of these compounds are unknown. Species of Aspergillus and Penicillium prevalent in the indoor environment produce relatively low concentrations of mycotoxins, with the exception of sterigmatocystins that can represent up to 1% of the biomass of A. versicolor at a(w)'s close to 1. The worst-case scenario for homeowners is produced by consecutive episodes of water damage that promote fungal growth and mycotoxin synthesis, followed by drier conditions that facilitate the liberation of spores and hyphal fragments.  相似文献   

19.
20.
Limited data are currently available on the concentrations of airborne bacteria, fungi, and endotoxins in indoor environments. The levels of aerial bacteria and fungi were measured at several microenvironments within a well-ventilated residential apartment in Singapore including the living room, kitchen, bedroom, toilet, and at a workplace environment by sampling indoor air onto culture medium plates using the 6-stage Andersen sampler. Total microbial counts were determined by collecting the air samples in water with the Andersen sampler, staining the resultant extracts with a fluorescent dye, acridine orange, and counting the microbes using a fluorescent microscope. The levels of airborne endotoxins were also determined by sampling the airborne microorganisms onto 0.4?μm polycarbonate membrane filter using the MiniVol sampler at 5?l/min for 20?h with a PM2.5 cut-off device. The aerial bacterial and fungal concentrations were found to be in the ranges of 117–2,873?CFU/m3 and 160–1,897?CFU/m3, respectively. The total microbial levels ranged from 49,000 to 218,000?microbes/m3. The predominant fungi occurring in the apartment were Aspergillus and Penicillium while the predominant bacterial strains appeared to be Staphylococcus and Micrococcus. The average indoor endotoxin level was detectable in the range of 6–39?EU/m3. The amount of ventilation and the types of human activities carried out in the indoor environment appeared to be important factors affecting the level of these airborne biological contaminants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号