首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper, we test the hypothesis that male sand crickets, Gryllus firmus, experience a trade-off between flight capability and reproductive potential expressed as reduced testis weight in flight-capable morphs. We used a half-sib design with 130 sires, three dams per sire and an average of 5.66 males per dam family, for a total of 2206 F1 offspring. Traits measured were head width, somatic dry weight, testis weight, wing morph (micropterous/macropterous), weight of the dorso-longitudinal flight muscles (DLM) and the functional status of these muscles. Heritabilities of all traits were significant and ranged from 0.14 to 0.43. All traits were positively correlated with body size, but removal of this covariance revealed a highly significant trade-off, both phenotypically and genetically, between testes size and flight capability as measured by wing morph, DLM size or DLM status. The possible implications of this for morph-specific reproductive tactics are discussed.  相似文献   

2.
    
1. Alternative life histories may be maintained in populations due to variation in the costs and benefits of the underlying strategies. In this study, potential costs of dispersal by flight were investigated as an alternative life‐history strategy in the mountain‐living chrysomelid beetle Oreina cacaliae. 2. In this species, previous mark–recapture studies showed a dispersal dimorphism in both males and females. While a fraction of the population engages in flight in autumn and spring (in the following referred to as ‘flyers’), the other part does not fly (non‐flyers). Flyers emerge earlier than non‐flyers and feed on a spring host plant before the emergence of the main host plant. 3. In this study, the overwintering and dispersal locations were recorded over 7 years in the field, flyers from the spring host plant were collected, and morphology and lifetime reproductive output and survival of collected flyers and non‐flyers were compared. 4. A potential trade‐off between flight and life‐history traits was observed: flyers were smaller in size, lighter in body mass, had a lower lifetime fecundity and a higher mortality. 5. Mating experiments of field‐caught beetles in the laboratory showed that larger beetles had a higher (multiple) mating success, but there was no evidence for size‐assortative mating. It is hypothesized that one reason for small beetles to disperse by flight might be to escape competition for mates with larger non‐flyers. 6. The overwhelming quantity of beetles found on the spring host every year reveals that the flying strategy is successful, despite the costs and risks.  相似文献   

3.
Male field crickets (Gryllus texensis) that differ in flight ability incur a life history trade-off between flight ability and reproduction, where flight ability comes with a male fitness cost. In courtship trials, flight-capable males produced courtship song, a necessary signal for mating success, with a significantly lower probability than flight-incapable males. The trade-off was evident in young males, and a similar trend occurred in older males. Males that lost the ability to fly through histolysis of flight muscles produced courtship song with a similar probability as males incapable of flight for their entire lives. Time of day did not affect the expression of the trade-off. Neither male morph nor time of day influenced female mating behavior.  相似文献   

4.
    
As a result of increased habitat fragmentation in anthropogenic landscapes, flying insects may be required to travel over larger distances in search of resources such as suitable host plants for oviposition. The oögenesis–flight syndrome hypothesis predicts that physiological constraints caused by an overlap in the resources used by thoracic muscles during flight and during oögenesis (e.g. carbohydrates, lipids and water) result in a resource trade‐off, with any resources used during flight no longer available for reproduction. Increased flight costs could therefore potentially result in a decrease in maternal provisioning of eggs. In the present study, the speckled wood butterfly Pararge aegeria (L.) is used to investigate whether increased flight during oviposition results in changes in maternal investment in eggs and whether this contributes to variation in the development of offspring in subsequent life stages. Forcing females to fly during oviposition directly influences egg size and embryonic development time, and indirectly influences (through changes in egg size) egg hatching success and larval development time. These effects are mediated through ‘selfish maternal effects’, with mothers forced to fly maximizing their fecundity at the expense of investment to individual egg size. The present study demonstrates that a change in maternal provisioning as a result of increased flight during oviposition has the potential to exert nongenetic cross‐generational fitness effects in P. aegeria. This could have important consequences for population dynamics, particularly in fragmented anthropogenic landscapes.  相似文献   

5.
[目的]翅多型雄虫在繁殖方面的能量投入与雌虫相异,这种差异可能会导致雄虫飞行与繁殖权衡的生理机制发生改变.因此,本研究旨在探究翅二型长颚斗蟋Velarifictorus aspersus雄成虫在营养物质积累与分配方面是否存在飞行与繁殖的权衡关系.[方法]选取长颚斗蟋V.aspersus头幅相近的长翅和短翅型雄成虫,对羽...  相似文献   

6.
Reproduction, a basic property of biological life, entails costs for an organism, ultimately detectable as reduction in survival prospects. Telomeres are an excellent candidate biomarker for explaining these reproductive costs, because their shortening correlates with increased mortality risk. For similar reasons, telomeres are perceived as biomarkers of individual “quality.” The relationship between reproduction and telomere dynamics is reviewed, emphasizing that cost and quality perspectives, commonly presented in isolation, should be integrated. While a majority of correlative studies have confirmed the relationship between telomere dynamics and various reproductive outputs, only limited experimental support exists showing that reproduction causes telomeres to shorten. A shift of focus to experimental manipulations of reproductive effort/telomere dynamics is crucial. However, the observation of survival reduction in response to these manipulations is essential for establishing telomeres as genuine biomarkers, allowing to unravel trade‐offs related to reproduction.  相似文献   

7.
    
Ageing and the resulting increased likelihood mortality are the inescapable fate of organisms because selection pressures on genes that exert their function late in life is weak, promoting the evolution of genes that enhance early‐life reproductive performance at the same time as sacrificing late survival. Heat shock proteins (HSP) are known to buffer various environmental stresses and are also involved in protein homeostasis and longevity. The characteristics of genes for HSPs (hsp) imply that they affect various life‐history traits, which in turn affect longevity; however, little is known about the effects of hsp genes on life‐history traits and their interaction with longevity. In the present study, the effects of hsp genes on multiple fitness traits, such as locomotor activity, total fecundity, early fecundity and survival time, are investigated in Drosophila melanogaster Meigen using RNA interference (RNAi). In egg‐laying females, RNAi knockdown of six hsp genes (hsp22, hsp23, hsp67Ba, hsp67Bb, hsp67Bc and hsp27‐like) does not shorten survival but rather increases it. Knockdown of five of those genes on an individual basis reduces early‐life reproduction, suggesting that several hsp genes mediate the trade‐off between early reproduction and late survival. The data indicate a positive effect of hsp genes on early reproduction and also negative effects on survival time, supporting the antagonistic pleiotropic effects predicted by the optimality theory of ageing.  相似文献   

8.
1. Functional wing polymorphism in insects is an intriguing topic, especially with respect to the adaptive advantage of each wing morph. The common pygmy grasshopper in Germany, Tetrix subulata, displays wing polymorphism skewed towards macropterous (LW) individuals capable of flight. Furthermore, T. subulata is known to undergo adult diapause in winter and reproduce in spring. 2. Morphometric and biochemical parameters were examined in field‐collected grasshoppers during autumn and spring to obtain a ‘snapshot’ from the same/one cohort of grasshoppers in the wild. 3. Flight muscles are largely reduced in brachypterous (SW) specimens, whereas they are well developed in LW individuals. Body mass measurements indicated gain in female T. subulata in spring, especially in LW morphs, which could be attributed to increased reproductive activity (egg production). 4. Metabolic fuel in haemolymph is differentially distributed in autumn: the concentration of lipids is highest in males, while carbohydrates are most abundant in LW specimens. The metabolic data imply that dispersal in T. subulata is predominantly in autumn, by flight in the case of LW specimens and by hopping/walking in males. 5. The season seems to be an important factor for the reproductive versus dispersal trade‐off in this species. Moreover, this study shows that morphological differences in T. subulata individuals are reflected in physiological differences that may ultimately affect behaviour and ecology.  相似文献   

9.
    
For ectotherms, environmental temperatures influence numerous life history characteristics, and the body temperatures (Tb) selected by individuals can affect offspring fitness and parental survival. Reproductive trade‐offs may therefore ensue for gravid females, because temperatures conducive to embryonic development may compromise females' body condition. We tested whether reproduction influenced thermoregulation in female Arizona Bark Scorpions (Centruroides sculpturatus). We predicted that gravid females select higher Tb and thermoregulate more precisely than nonreproductive females. Gravid C. sculpturatus gain body mass throughout gestation, which exposes larger portions of their pleural membrane, possibly increasing their rates of transcuticular water loss in arid environments. Accordingly, we tested whether gravid C. sculpturatus lose water faster than nonreproductive females. We determined the preferred Tb of female scorpions in a thermal gradient and measured water loss rates using flow‐through respirometry. Gravid females preferred significantly higher Tb than nonreproductive females, suggesting that gravid C. sculpturatus alter their thermoregulatory behaviour to promote offspring fitness. However, all scorpions thermoregulated with equal precision, perhaps because arid conditions create selective pressure on all females to thermoregulate effectively. Gravid females lost water faster than nonreproductive animals, indicating that greater exposure of the pleural membrane during gestation enhances the desiccation risk of reproductive females. Our findings suggest that gravid C. sculpturatus experience a trade‐off, whereby selection of higher Tb and increased mass during gestation increase females' susceptibility to water loss, and thus their mortality risk. Elucidating the mechanisms that influence thermal preferences may reveal how reproductive trade‐offs shape the life history of ectotherms in arid environments.  相似文献   

10.
Life history theory provides a powerful tool to study an organism's biology within an evolutionary framework. The notion that males face a longevity cost of competing for and displaying to females lies at the core of sexual selection theory. Likewise, recent game theory models of the evolution of ejaculation strategies assume that males face a trade-off between expenditure on the ejaculate and expenditure on gaining additional matings. Males of the dung beetle Onthophagus binodis adopt alternative reproductive tactics in which major males fight for and help provision females, and minor males sneak copulations with females that are guarded by major males. Minor males are always subject to sperm competition, and consistent with theoretical expectation, minor males have a greater expenditure on their ejaculate than major males. We used this model system to seek evidence that mating comes at a cost for future fertility and/or male expenditure on courtship and attractiveness, and to establish whether these traits vary between alternative mating tactics. We monitored the lifespan of males exposed to females and nonmating populations, and sampled males throughout their lives to assess their fertility and courtship behaviour. We found a significant longevity cost of reproduction, but no fertility cost. On average, males from mating populations had a lower courtship rate than those from nonmating populations. This small effect, although statistically nonsignificant, was associated with significant increases in the time males required to achieve mating. Minor males had lower courtship rates than major males, and took longer to achieve mating. Although we did not measure ejaculate expenditure in this study, the correlation between lower courtship rate and longer mating speed of minor males documented here with their greater expenditure on the ejaculate found in previous studies, is consistent with game theory models of ejaculate expenditure which assume that males trade expenditure on gaining matings for expenditure on gaining fertilizations.  相似文献   

11.
    
Selection is expected to optimize reproductive investment resulting in characteristic trade‐offs among traits such as brood size, offspring size, somatic maintenance, and lifespan; relative patterns of energy allocation to these functions are important in defining life‐history strategies. Freshwater mussels are a diverse and imperiled component of aquatic ecosystems, but little is known about their life‐history strategies, particularly patterns of fecundity and reproductive effort. Because mussels have an unusual life cycle in which larvae (glochidia) are obligate parasites on fishes, differences in host relationships are expected to influence patterns of reproductive output among species. I investigated fecundity and reproductive effort (RE) and their relationships to other life‐history traits for a taxonomically broad cross section of North American mussel diversity. Annual fecundity of North American mussel species spans nearly four orders of magnitude, ranging from < 2000 to 10 million, but most species have considerably lower fecundity than previous generalizations, which portrayed the group as having uniformly high fecundity (e.g. > 200000). Estimates of RE also were highly variable, ranging among species from 0.06 to 25.4%. Median fecundity and RE differed among phylogenetic groups, but patterns for these two traits differed in several ways. For example, the tribe Anodontini had relatively low median fecundity but had the highest RE of any group. Within and among species, body size was a strong predictor of fecundity and explained a high percentage of variation in fecundity among species. Fecundity showed little relationship to other life‐history traits including glochidial size, lifespan, brooding strategies, or host strategies. The only apparent trade‐off evident among these traits was the extraordinarily high fecundity of Leptodea, Margaritifera, and Truncilla, which may come at a cost of greatly reduced glochidial size; there was no relationship between fecundity and glochidial size for the remaining 61 species in the dataset. In contrast to fecundity, RE showed evidence of a strong trade‐off with lifespan, which was negatively related to RE. The raw number of glochidia produced may be determined primarily by physical and energetic constraints rather than selection for optimal output based on differences in host strategies or other traits. By integrating traits such as body size, glochidial size, and fecundity, RE appears more useful in defining mussel life‐history strategies. Combined with trade‐offs between other traits such as growth, lifespan, and age at maturity, differences in RE among species depict a broad continuum of divergent strategies ranging from strongly r‐selected species (e.g. tribe Anodontini and some Lampsilini) to K‐selected species (e.g. tribes Pleurobemini and Quadrulini; family Margaritiferidae). Future studies of reproductive effort in an environmental and life‐history context will be useful for understanding the explosive radiation of this group of animals in North America and will aid in the development of effective conservation strategies.  相似文献   

12.
    
Central to evolutionary theory is the idea that living organisms face phenotypic and/or genetic trade‐offs when allocating resources to competing life‐history demands, such as growth, survival, and reproduction. These trade‐offs are increasingly considered to be crucial to further our understanding of cancer. First, evidences suggest that neoplastic cells, as any living entities subject to natural selection, are governed by trade‐offs such as between survival and proliferation. Second, selection might also have shaped trade‐offs at the organismal level, especially regarding protective mechanisms against cancer. Cancer can also emerge as a consequence of additional trade‐offs in organisms (e.g., eco‐immunological trade‐offs). Here, we review the wide range of trade‐offs that occur at different scales and their relevance for understanding cancer dynamics. We also discuss how acknowledging these phenomena, in light of human evolutionary history, may suggest new guidelines for preventive and therapeutic strategies.  相似文献   

13.
Immune defence is hypothesized to be a trait that bears significant fitness costs as well as benefits in that mounting a defence depreciates the value of other life‐history traits. Thus the cost of mounting an immune response could affect the evolution of both the immune system and correlated life history traits. In this study we examined, by means of a diallel cross of four inbred lines, the genetic basis of two measures of immune function, metabolic rate and several traits in the sand cricket, Gryllus firmus. We specifically addressed the following questions: (1) is immune function determined primarily by genetic constitution or correlations with phenotypic traits that could reduce the effectiveness of the immune response; (2) do the two measures of immune function covary; (3) What are the contributions of additive, nonadditive and maternal effects to the immune function? As estimates of immune function, we used lytic activity and encapsulation rate. We found that inbred crickets were smaller than individuals from the crossed lines and took longer to develop. However, inbred lines did not differ from the crossed lines in immune function nor metabolic rates, suggesting that increased homozygosity has little or no effect on these traits in G. firmus. We found that both immune parameters showed significant genetic variation but no consistent relationships with the other phenotypic traits (metabolic rate, head width, body mass, development time and activity). There was significant additive genetic variation only in encapsulation rate, but, with the exception of the activity measure, significant nonadditive and reciprocal variances were found in all traits. Metabolic rate of crickets was heritable, but there was neither phenotypic nor genetic association between metabolic rate and the two parameters of immune function. Further, there was no correlation between these two measures. Females showed a higher encapsulation response than males, but there was no sex differences in lytic activity. Our study indicates that genetic variation in immune parameters can be a very significant contributor to phenotypic variation in immune function.  相似文献   

14.
    
The Beta species complex shows a gradient of life histories from pronounced semelparity (big‐bang reproduction) to pronounced iteroparity (repeated reproduction). Models assume a trade‐off between investment in reproduction and survival. Reproductive effort is thought to increase with decreasing life span, and to be invariable in semelparous plants and susceptible to environmental conditions in iteroparous plants. These assumptions and hypotheses were verified by a greenhouse experiment testing six different life cycles at three contrasting nutrient levels. This study suggests that reproductive effort is negatively correlated with mean life span along the life‐cycle gradient. Unlike semelparous beets, reproductive effort in iteroparous beets is extremely sensitive to nutrient level. Phenotypic correlation between allocation to reproduction and allocation to survival generally appeared significantly negative in the longest‐lived iteroparous beets, nonsignificant in intermediate life histories and obviously positive in semelparous beets (no trade‐off control).  相似文献   

15.
16.
    
The ability of bottom‐dwelling marine epifauna to regenerate injured or lost body parts is critical to the survival of individuals from disturbances that inflict wounds. Numerous studies on marine sponges (Phlyum Porifera) and corals (of the orders Scleractinia and Alcyonacea) suggest that regeneration is limited by many intrinsic (individual‐dependent) and extrinsic (environment‐dependent) factors, and that other life history processes may compete with regeneration for energetic and cellular resources. We review how intrinsic (size, age, morphology, genotype) and extrinsic (wound characteristics, water temperature, food availability, sedimentation, disturbance history, selection) factors limit regeneration in sponges and corals. We then review the evidence for impaired somatic growth and sexual reproduction, and altered outcomes of interactions (anti‐predator defenses, competitive abilities, self‐ and non‐self recognition abilities) with other organisms in regenerating sponges and corals. We demonstrate that smaller, older sponges and corals of decreasing morphological complexities tend to regenerate less well than others, and that regeneration can be modulated by genotype. Large wounds with small perimeters inflicted away from areas where resources are located tend to be regenerated less well than others, as are injuries inflicted when food is limited and when the animal has been previously or recently injured. We also demonstrate that regeneration strongly impairs somatic growth, reduces aspects of sexual reproduction, and decreases the ability for sponges and corals to defend themselves against predators, to compete, and to recognize conspecifics. Effects of limited regeneration and impaired life histories may manifest themselves in higher levels of biological assembly e.g., reduced accretion of epifaunal biomass, reduced recruitment and altered biotic associations, and thus affect marine community and ecosystem recovery from disturbances. (© 2005 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

17.
Evolutionary costs of parasite resistance arise if genes conferring resistance reduce fitness in the absence of parasites. Thus, parasite-mediated selection may lead to increased resistance and a correlated decrease in fitness, whereas relaxed parasite-mediated selection may lead to reverse evolution of increased fitness and a correlated decrease in resistance. We tested this idea in experimental populations of the protozoan Paramecium caudatum and the parasitic bacterium Holospora undulata. After eight years, resistance to infection and asexual reproduction were compared among paramecia from (1) "infected" populations, (2) uninfected "naive" populations, and (3) previously infected, parasite-free "recovered" populations. Paramecia from "infected" populations were more resistant (+12%), but had lower reproduction (-15%) than "naive" paramecia, indicating an evolutionary trade-off between resistance and fitness. Recovered populations showed similar reproduction to naive populations; however, resistance of recently (<3 years) recovered populations was similar to paramecia from infected populations, whereas longer (>3 years) recovered populations were as susceptible as naive populations. This suggests a weak, convex trade-off between resistance and fitness, allowing recovery of fitness, without complete loss of resistance, favoring the maintenance of a generalist strategy of intermediate fitness and resistance. Our results indicate that (co)evolution with parasites can leave a genetic signature in disease-free populations.  相似文献   

18.
    
The oriental mole cricket Gryllotalpa orientalis exhibits variation in wing dimorphism. In an Okinawa population, no short‐winged individuals were observed, and wing dimorphism has not been detected. Flight behavior of G. orientalis was observed from April to October in Okinawa. In contrast, a Hyogo population exhibited seasonal wing dimorphism and long‐winged individuals appear from June to September. The flight period of the long‐winged morph coincided with this period. Short‐winged individuals appeared from September to the following June and they never fly. Both populations showed univoltine life cycles. Considering the possible flight period, wing pattern and life cycle of mole crickets in these two areas, it is presumed that flightlessness is expected to arise when adults can not experience suitable temperatures for flight activity.  相似文献   

19.
    
Predation can drive morphological divergence in prey populations, although examples of divergent selection are typically limited to nonreproductive individuals. In livebearing females, shape often changes drastically during pregnancy, reducing speed and mobility and enhancing susceptibility to predation. In the present study, we document morphological divergence among populations of nonreproductive female livebearing fish (Brachyrhaphis rhabdophora) in predator and nonpredator environments. We then test the hypothesis that shape differences among nonreproductive females are maintained among reproductive females between predator and nonpredator environments. Nonreproductive females in predator environments had larger caudal regions and more fusiform bodies than females in nonpredator environments; traits that are associated with burst speed in fish. Shape differences were maintained in reproductive females, although the magnitude of this difference declined relative to nonreproductive females, suggesting morphological convergence during pregnancy. Phenotypic change vector analysis revealed that females in predator environments became more similar to females in nonpredator environments in the transition from nonreproductive to reproductive. Furthermore, the level of reproductive allocation affected shape similarly between predator environments. These results suggest a life‐history constraint on morphology, in which predator‐driven morphological divergence among nonreproductive B. rhabdophora is not maintained at the same level during pregnancy. © 2011 The Linnean Society of London, Biological Journal of the Linnean Society, 2011, 104 , 386–392.  相似文献   

20.
We used horn measurements from natural and hunted mortalities of male thinhorn sheep Ovis dalli from Yukon Territory, Canada, to examine the relationship between rapid growth early in life and longevity. We found that rapid growth was associated with reduced longevity for sheep aged 5 years and older for both the hunted and natural mortality data sets. The negative relationship between growth rate and longevity in hunted sheep can at least partially be explained by morphologically biased hunting regulations. The same trend was evident from natural mortalities from populations that were not hunted or underwent very limited hunting, suggesting a naturally imposed mortality cost directly or indirectly associated with rapid growth. Age and growth rate were both positively associated with horn size at death for both data sets, however of the two growth rate appeared to be a better predictor. Large horn size can be achieved both by individuals that grow horns rapidly and by those that have greater longevity, and the trade-off between growth rate and longevity could limit horn size evolution in this species. The similarity in the relationship between growth rate and longevity for hunted and natural mortalities suggests that horn growth rate should not respond to artificial selection. Our study highlights the need for the existence and study of protected populations to properly assess the impacts of selective harvesting.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号