首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A computational study of metal difluorides (MF2; M = Ca to Zn) and their interactions with carbon dioxide and water molecules was performed. The structural parameter values obtained and the results of AIM analysis and energy decomposition analysis indicated that the Ca–F bond is weaker and less ionic than the bonds in the transition metal difluorides. A deformation density plot revealed the stablizing influence of the Jahn–Teller effect in nonlinear MF2 molecules (e.g., where M= Sc, Ti, Cr). An anaysis of the metal K-edge peaks of the difluorides showed that shifts in the edge energy were due to the combined effects of the ionicity, effective nuclear charge, and the spin state of the metal. The interactions of CO2 with ScF2 (Scc3 geometry) and TiF2 (Tic2 geometry) caused CO2 to shift from its usual linear geometry to a bent geometry (η2(C=O) binding mode), while it retained its linear geometry (η1(O) binding mode) when it interacted with the other metal difluorides. Energy decomposition analysis showed that, among the various geometries considered, the Scc3 and Tic2 geometries possessed the highest interaction energies and orbital interaction energies. Heavier transition metal difluorides showed stronger affinities for H2O, whereas the lighter transition metal (Sc and Ti) difluorides preferred CO2. Overall, the results of this study suggest that fluorides of lighter transition metals with partially filled d orbitals (e.g., Sc and Ti) could be used for CO2 capture under moist conditions.
Graphical abstract Interaction of metal difluorides with carbon dioxide and water
  相似文献   

2.
We studied the temporal sequence of changes in the photosynthetic CO2/H2O gas exchange intensity, as well as leaf water status, contents of soluble carbohydrates, starch, proline, pigments, and MDA, in maize seedlings (Zea mays L., cv. Luchistaya) under adaptation to increasing water deficit. The duration of drought was 2, 3, 5, and 6 days. Withholding water from maize plants caused gradual increase in the intensity of water deficit: from mild (2 or 3 days) to moderate (5 days) and nearly severe (6 days) water stress. After 6 days, relative leaf water content decreased by 19.8% as compared to the control. On the second day after the onset of drought, slight reduction in the photosynthetic CO2/H2O gas exchange intensity of the treated plants was observed. After 6 days, photosynthesis and transpiration of leaves synchronously reduced almost threefold due to stomatal closure. The progressive soil drought had substantial impact on the carbohydrate metabolism. After 2 days of water deficit, the content of reducing sugars and sucrose increased slightly, whereas after 6 days, it increased ten and four times, respectively. After 2, 3, and 5 days of drought, the starch content declined slightly; however, under severe drought (6 days), it increased by 30% as compared to the control. Simultaneously with the increase in the content of soluble sugars, proline content increased significantly and it was the highest on the sixth day of drought. At all stages of water deficit, the proline content increased more significantly than the content of reducing carbohydrates and sucrose. Under increasing water deficit (5 and 6 days), the content of MDA was found to rise. At the initial drought stage (2 or 3 days) and under severe water deficit (6 days), no significant changes in the pigment content were observed. Thus, at the initial stages of progressive drought, in the leaves of this maize cultivar, a decline in photosynthetic activity proceeded simultaneously with accumulation of reducing sugars, sucrose, and proline. The results obtained showed that, at the first stages of adaptation of maize seedlings to drought, the changes in carbohydrate and proline metabolism have been observed, which have increased upon further plant dehydration.  相似文献   

3.
The chemistry induced by atmospheric pressure DC discharges above a water surface in CO(2)/N(2)/H(2)O mixtures was investigated. The gaseous mixtures studied represent a model prebiotic atmosphere of the Earth. The most remarkable changes in the chemical composition of the treated gas were the decomposition of CO(2) and the production of CO. The concentration of CO increased logarithmically with the increasing input energy density and an increasing initial concentration of CO(2) in the gas. The highest achieved concentration of CO was 4.0 +/- 0.6 vol. %. The production of CO was crucial for the synthesis of organic species, since reactions of CO with some reactive species generated in the plasma, e. g. H* or N* radicals, were probably the starting point in this synthesis. The presence of organic species (including the tentative identification of some amino acids) was demonstrated by the analysis of solid and liquid samples by high-performance liquid chromatography, infrared absorption spectroscopy and proton-transfer-reaction mass spectrometry. Formation of organic species in a completely inorganic CO(2)/N(2)/H(2)O atmosphere is a significant finding for the theory of the origins of life.  相似文献   

4.
An experimental study has been carried out on the stability of adenine (one of the five nucleic acid bases) under hydrothermal conditions. The experiments were performed in sealed autoclaves at 300 degrees C under fugacities of CO(2), N(2) and H(2) supposedly representative of those in marine hydrothermal systems on the early Earth. The composition of the gas phase was obtained from the degradation of oxalic acid, sodium nitrite and ammonium chloride, and the oxidation of metallic iron. The results of the experiments indicate that after 200 h, adenine is still present in detectable concentration in the aqueous phase. In fact, the concentration of adenine does not seem to be decreasing after approximately 24 h, which suggests that an equilibrium state may have been established with the inorganic constituents of the hydrothermal fluid. Such a conclusion is corroborated by independent thermodynamic calculations.  相似文献   

5.
Measurements of CO2 and H2O fluxes were carried out using two different techniques—eddy-covariance (EC) and open system gas exchange chamber (OC)—during two-years’ period (2003–2004) at three different grassland sites. OC measurements were made during fourteen measurement campaigns. We found good agreement between the OC and EC CO2 flux values (n = 63, r 2 = 0.5323, OC FCO2 = −0.6408+0.9508 EC FCO2). The OC FH2O values were consistently lower than those measured by the EC technique, probably caused by the air stream difference inside and outside the chamber. Adjusting flow rate within the chamber to the natural conditions would be necessary in future OC measurements. In comparison with EC, the OC proved to be a good tool for gas exchange measurements in grassland ecosystems.  相似文献   

6.
Studying the interaction of some atmospheric gases (H2O, HCN, NH3, SO3 and H2S) with 3PT oligomers is important in the development of polymeric sensors for gas detection. In the present study, we studied the relaxed geometries, interaction energies, charge analysis, HOMO–LUMO orbital analysis, and UV–vis spectra of all interacted systems using first-principles density functional theory (DFT). All these analyses indicated the potential of polythiophene as an inexpensive polymeric sensor for the analytes mentioned. Interaction energy values of ?19.90, ?19.66, ?14.01, ?8.70, and ?4.76 kJ mol?1 were achieved for adsorption of SO3, H2O, NH3, HCN, and H2S on 3PT, respectively. Consequently, clarification of their physical parameters became the major focus of this study.  相似文献   

7.
The sensitivity of phytoplankton species for hydrogen peroxide (H2O2) was analyzed by pulse amplitude modulated (PAM) fluorometry. The inhibition of photosynthesis was more severe in five tested cyanobacterial species than in three green algal species and one diatom species. Hence the inhibitory effect of H2O2 is especially pronounced for cyanobacteria. A specific damage of the photosynthetic apparatus was demonstrated by changes in 77 K fluorescence emission spectra. Different handling of oxidative stress and different cell structure are responsible for the different susceptibility to H2O2 between cyanobacteria and other phytoplankton species. This principle may be potentially employed in the development of new agents to combat cyanobacterial bloom formation in water reservoirs.  相似文献   

8.
CO<Subscript>2</Subscript> bio-mitigation using microalgae   总被引:4,自引:0,他引:4  
Microalgae are a group of unicellular or simple multicellular photosynthetic microorganisms that can fix CO(2) efficiently from different sources, including the atmosphere, industrial exhaust gases, and soluble carbonate salts. Combination of CO(2) fixation, biofuel production, and wastewater treatment may provide a very promising alternative to current CO(2) mitigation strategies.  相似文献   

9.
10.
A density functional theory (DFT) study of cct-As, ccc, and cct-CO isomers of the ruthenium dihydride complex RuH2(CO)2(AsMe2Ph)2 is reported (see Scheme for the labeling isomer 34 structures of RuH2(CO)2(AsMe2Ph)2). Complex geometries and relative energies of different isomers have been calculated with both B3LYP and M06-2X functionals. The results show that the B3LYP calculated Boltzmann populations of cct-As, ccc, and cct-CO isomers are 65.5, 34.2, and 0.3%, respectively. These are in better agreement with the experimental data than those calculated at the M06-2X level. However, the calculations of 1H NMR chemical shifts were found to be better described with M06-2X than with B3LYP or with HF level of theories. In addition, a transition state between the two most stable isomers was determined through DFT/(B3LYP or M06-2X) calculations.
Graphical Abstract Scheme: Labeling structure of RuH2(CO)2(AsMe2Ph)2
  相似文献   

11.
The effects of high atmospheric CO2 concentration ([CO2]) on ecosystem processes have been explored using temporal facilities such as open-top-chambers and free-air CO2 enrichment. However, the effects of high [CO2] on soil properties takes decades and may not be captured by short-term experiments. Natural CO2 springs provide a unique opportunity to study the long-term effects of high [CO2]. In this study, we investigated soil properties at a natural CO2 spring. We found that the amounts of total carbon (C) and nitrogen (N) stored in the soil at the high [CO2] site exceeded those in the reference site by 60 and 30%, respectively. The effects of high [CO2] were large in the upper slope position where the canopy openness was high and plants grew faster, but no effects were detected in the lowest position where the canopy openness was lower (half of that at the upper slope position). In contrast, effects of high [CO2] on soil N dynamics, such as N mineralization and nitrification rates, did not exhibit a slope gradient. This suggests that effects of high [CO2] differed among soil stoichiometric characteristics and N dynamics. These complicated effects of high [CO2] imply that the future effects of high [CO2] on ecosystems could vary widely in conjunction with environmental conditions such as light availability and/or topographic conditions.  相似文献   

12.

Introduction

The rising atmospheric CO2 level is continuously driving the dissolution of more CO2 into the oceans, and some emission scenarios project that the surface waters may reach 1000 μatm by the end of the century. It is not known if fish can detect moderately elevated CO2 levels, and if they avoid areas with high CO2. If so, avoidance behaviour to water with high CO2 could affect movement patterns and migrations of fish in the future. It is also being increasingly recognized that fish behaviour can be altered by exposure to CO2. Therefore this study investigated how long-term exposure to elevated pCO2 affects predator avoidance and CO2 avoidance in juvenile Atlantic cod (Gadus morhua). The fish were exposed to control water or CO2-enriched water (1000 μatm) for six weeks before being subjected to tests of behaviour.

Results

Despite long term exposure to elevated pCO2 the cod still strongly avoided the smell of a predator. These data are surprising because several coral reef fish have demonstrated reversal of olfactory responses after CO2 exposure, turning avoidance of predator cues into preference for predator cues. Fish from both treatment groups also demonstrated strong avoidance of CO2 when presented with the choice of control or CO2-acidified water, indicating that habituation to the CO2 sensory stimuli is negligible.

Conclusions

As Atlantic cod maintained normal behavioural responses to olfactory cues, they may be tolerant to CO2-induced behavioural changes. The results also suggest that despite the long-term exposure to CO2-acidified water, the fish still preferred the control water over CO2-acidified water. Therefore, in the future, fish may alter their movements and migrations in search of waters with a lower CO2 content.
  相似文献   

13.
The aim of this study is to estimate emissions of greenhouse gases CO2, CH4 and N2O, and the effects of drainage and peat extraction on these processes, in Estonian transitional fens and ombrotrophic bogs. Closed-chamber-based sampling lasted from January to December 2009 in nine peatlands in Estonia, covering areas with different land-use practices: natural (four study sites), drained (six sites), abandoned peat mining (five sites) and active peat mining areas (five sites). Median values of soil CO2 efflux were 1,509, 1,921, 2,845 and 1,741 kg CO2-C ha?1 year?1 from natural, drained, abandoned and active mining areas, respectively. Emission of CH4-C (median values) was 85.2, 23.7, 0.07 and 0.12 kg ha?1 year?1, and N2O-N ?0.05, ?0.01, 0.18 and 0.19 kg ha?1 year?1, respectively. There were significantly higher emissions of CO2 and N2O from abandoned and active peat mining areas, whereas CH4 emissions were significantly higher in natural and drained areas. Significant Spearman rank correlation was found between soil temperature and CO2 flux at all sites, and CH4 flux with high water level at natural and drained areas. Significant increase in CH4 flux was detected for groundwater levels above 30 cm.  相似文献   

14.
It was shown that tobacco leaf treatment with 100 mM H2O2 increased their content of endogenous H2O2 and activities of catalase and hydrolases (acid phosphatase, proteases, and RNase) and also caused various changes in the cell structure. In this case, programmed cell death (PCD) occurred in some cells, which was observed as chromatin condensation, cytoplasm collapse, etc. In the meantime, many cells displayed organelle activation rather than PCD. It is suggested that cells that undergo H2O2-dependent PCD release signaling molecules inducing protective mechanisms against oxidative stress in neighboring cells not exhibiting PCD.  相似文献   

15.
Changes in tyrosine phosphorylation of soluble polypeptides of pea (Pisum sativum L.) roots were revealed under the action of exogenous hydrogen peroxide in situ and in vitro. The polypeptides whose tyrosine phosphorylation in situ was vanadate-sensitive were identified. A thiol agent dithiothreitol and the antioxidant ascorbic acid reversed the effect of hydrogen peroxide in vitro. The results indicate that tyrosine phosphorylation of pea proteins is a subject to redox regulation.  相似文献   

16.

Key message

In hulless barley, H 2 S mediated increases in H 2 O 2 induced by putrescine, and their interaction enhanced tolerance to UV-B by maintaining redox homeostasis and promoting the accumulation of UV-absorbing compounds.

Abstract

This study investigated the possible relationship between putrescence (Put), hydrogen sulfide (H2S) and hydrogen peroxide (H2O2) as well as the underlying mechanism of their interaction in reducing UV-B induced damage. UV-B radiation increased electrolyte leakage (EL) and the levels of malondialdehyde (MDA) and UV-absorbing compounds but reduced antioxidant enzyme activities and glutathione (GSH) and ascorbic acid (AsA) contents. Exogenous application of Put, H2S or H2O2 reduced some of the above-mentioned negative effects, but were enhanced by the addition of Put, H2S and H2O2 inhibitors. Moreover, the protective effect of Put against UV-B radiation-induced damage to hulless barley was diminished by dl-propargylglycine (PAG, a H2S biosynthesis inhibitor), hydroxylamine (HT, a H2S scavenger), diphenylene iodonium (DPI, a PM-NADPH oxidase inhibitor) and dimethylthiourea (DMTU, a ROS scavenger), and the effect of Put on H2O2 accumulation was abolished by HT. Taken together, as the downstream component of the Put signaling pathway, H2S mediated H2O2 accumulation, and H2O2 induced the accumulation of UV-absorbing compounds and maintained redox homeostasis under UV-B stress, thereby increasing the tolerance of hulless barley seedlings to UV-B stress.
  相似文献   

17.
In brain mitochondria succinate activates H2O2 release, concentration dependently (starting at 15 μM), and in the presence of NAD dependent substrates (glutamate, pyruvate, β-hydroxybutyrate). We report that TCA cycle metabolites (citrate, isocitrate, α-ketoglutarate, fumarate, malate) individually and quickly inhibit H2O2 release. When they are present together at physiological concentration (0.2, 0.01, 0.15, 0.12, 0.2 mM respectively) they decrease H2O2 production by over 60% at 0.1–0.2 mM succinate. The degree of inhibition depends on the concentration of each metabolite. Acetoacetate is a strong inhibitor of H2O2 release, starting at 10 μM and acting quickly. It potentiates the inhibition induced by TCA cycle metabolites. The action of acetoacetate is partially removed by β-hydroxybutyrate. Removal is minimal at 0.1 mM acetoacetate, and is higher at 0.5 mM acetoacetate. We conclude that several inhibitors of H2O2 release act jointly and concentration dependently to rapidly set the required level of H2O2 generation at each succinate concentration.  相似文献   

18.
Two-dimensional numerical simulations of a dc discharge in a CH4/H2/N2 mixture in the regime of deposition of nanostructured carbon films are carried out with account of the cathode electron beam effects. The distributions of the gas temperature and species number densities are calculated, and the main plasmachemical kinetic processes governing the distribution of methyl radicals above the substrate are analyzed. It is shown that the number density of methyl radicals above the substrate is several orders of magnitude higher than the number densities of other hydrocarbon radicals, which indicates that the former play a dominant role in the growth of nanostructured carbon films. The model is verified by comparing the measured optical emission profiles of the H(n ≡ 3), C 2 * , CH*, and CN* species and the calculated number densities of excited species, as well as the measured and calculated values of the discharge voltage and heat fluxes onto the electrodes and reactor walls. The key role of ion–electron recombination and dissociative excitation of H2, C2H2, CH4, and HCN molecules in the generation of emitting species (first of all, in the cold regions adjacent to the electrodes) is revealed.  相似文献   

19.
An experimental study to estimate the effect of clear-cutting on CO2 emission from the soil surface was performed using the chamber method. For field measurements, several experimental plots within the clear-cut with different degrees of damage of the upper organic soil layer and different amounts of litter and logging residue on the surface were selected. Soil CO2 fluxes were simultaneously measured both on the clear-cutting plots and on two plots within the spruce forest stand located close to the clear-cut area. The results show a significant seasonal and diurnal variability of soil CO2 emission. It was found that the soil respiration rate varies significantly among plots and depends on the damage to the upper soil layer and the availability of litter and logging residue on the soil surface. It was found that the rate of CO2 emission from soil surface is strongly dependent on the air and soil temperature and moisture of the upper soil layer. Different rates of soil respiration are also revealed on the plots located at different distances from tree trunks within the control forest stand.  相似文献   

20.
Spatial patterns of ecosystem processes constitute significant sources of uncertainty in greenhouse gas flux estimations partly because the patterns are temporally dynamic. The aim of this study was to describe temporal variability in the spatial patterns of grassland CO2 and N2O flux under varying environmental conditions and to assess effects of the grassland management (grazing and mowing) on flux patterns. We made spatially explicit measurements of variables including soil respiration, aboveground biomass, N2O flux, soil water content, and soil temperature during a 4-year study in the vegetation periods at grazed and mowed grasslands. Sampling was conducted in 80 × 60 m grids of 10 m resolution with 78 sampling points in both study plots. Soil respiration was monitored nine times, and N2O flux was monitored twice during the study period. Altitude, soil organic carbon, and total soil nitrogen were used as background factors at each sampling position, while aboveground biomass, soil water content, and soil temperature were considered as covariates in the spatial analysis. Data were analyzed using variography and kriging. Altitude was autocorrelated over distances of 40–50 m in both plots and influenced spatial patterns of soil organic carbon, total soil nitrogen, and the covariates. Altitude was inversely related to soil water content and aboveground biomass and positively related to soil temperature. Autocorrelation lengths for soil respiration were similar on both plots (about 30 m), whereas autocorrelation lengths of N2O flux differed between plots (39 m in the grazed plot vs. 18 m in the mowed plot). Grazing appeared to increase heterogeneity and linkage of the spatial patterns, whereas mowing had a homogenizing effect. Spatial patterns of soil water content, soil respiration, and aboveground biomass were temporally variable especially in the first 2 years of the experiment, whereas spatial patterns were more persistent (mostly significant correlation at p < 0.05 between location ranks) in the second 2 years, following a wet year. Increased persistence of spatial patterns after a wet year indicated the recovery potential of grasslands following drought and suggested that adequate water supply could have a homogenizing effect on CO2 and N2O fluxes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号