首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Natural bond orbital (NBO) analyses and dissected nucleus-independent chemical shifts (NICS π z z ) were computed to evaluate the bonding (bond type, electron occupation, hybridization) and aromatic character of the three lowest-lying Si2CH2 (1-Si, 2-Si, 3-Si) and Ge2CH2 (1-Ge, 2-Ge, 3-Ge) isomers. While their carbon C3H2 analogs favor classical alkene, allene, and alkyne type bonding, these Si and Ge derivatives are more polarizable and can favor “highly electron delocalized”? and “non-classical”? structures. The lowest energy Si 2CH2 and Ge 2CH2 isomers, 1-Si and 1-Ge, exhibit two sets of 3–center 2–electron (3c-2e) bonding; a π-3c-2e bond involving the heavy atoms (C–Si–Si and C–Ge–Ge), and a σ-3c-2e bond (Si–H–Si, Ge–H–Ge). Both 3-Si and 3-Ge exhibit π and σ-3c-2e bonding involving a planar tetracoordinated carbon (ptC) center. Despite their highly electron delocalized nature, all of the Si2CH2 and Ge2CH2 isomers considered display only modest two π electron aromatic character (NICS(0) π z z =--6.2 to –8.9 ppm, computed at the heavy atom ring center) compared to the cyclic-C 3H2 (–13.3 ppm).
Graphical Abstract The three lowest Si2CH2 and Ge2CH2 isomers.
  相似文献   

2.
Density functional theory (B3LYP, B3LYP-D2 and wB97XD functionals) was used in finite models of zigzag carbon nanotubes (CNT), (n,0)×k with n?=?6–9 and k?=?2–4, to systematically investigate the effects of size on their structural and electronic properties. We found that the ratio between the length (L t) and the diameter (d t) of the pristine CNT has to be larger than 2, i.e., L t/d t?>?2, in order to provide the observed experimental trends of C=C bond distances, as well as to maintain the atomic charges nearly constant and zero around the center of the tube. Therefore, the concepts of useful length and volume were developed and tested for the encapsulation process of HCN and C2H2 into CNTs. The energies involved in these processes, as well as the changes in molecular structure and electronic properties of the dopants and the CNTs are discussed and rationalized by the amount of charge transferred between dopant and CNT.
Graphical Abstract Illustration of zigzag CNT length and diameter ratio in order to represent C=C bond experimental trend
  相似文献   

3.
One of the central assumptions when a particle moves through a window in microporous materials is that interaction of the diffusing particle with the silicon (Si) and aluminum (Al) atoms of the framework can be neglected, as the presence of bulkier oxygen in the host structure is thought to hinder close proximity of the diffusing particle to Si and Al. We examine this assumption, exploring the diffusion path and cross-checking the bottleneck associated with the diffusion process. Our study reveals that short-range interactions between the diffusing species and Si/Al of the host have a significant effect on the diffusion process. Guest–host interaction energy increases significantly if interaction between Si and Al atoms with the diffusing species is considered. The self-diffusion coefficient (D) decreases significantly in the linear regime, whereas in the anomalous regime, surprisingly, D increases. The increase in D is due to a decrease in the activation energy in the anomalous regime, whereas in the linear regime, activation energy increases, thus D decreases.
Graphical abstract a Interaction energies (E a) for different LJ potential for guest–guest interactions (σgg) along the diffusion path; b correspondingdiffusivity values
  相似文献   

4.
Differing from the weakly antiaromatic B80 buckyball, the medium-sized C 1–B28 and D 2h –B38, as well as their mono- to tetra-anions, are highly aromatic, as indicated by the negative nucleus-independent chemical shifts (NICSs) at their cage centers. The interior cavities and high aromaticity of the B28 and B38 cages render them very promising hosts to accommodate diverse metal atoms. Accordingly, we carried out systematic density functional theory (DFT) computations on the structures, stabilities and electronic properties of metalloborofullerenes MB n (M?=?Li, Na, K, Rb, Cs, Be, Mg, Ca, Sr, Ba, Sc, Y, La and Ti; n?=?28 and 38). Among them, besides the recently reported M@B38(M?=?Sc, Y and Ti) [Lu et al. (2015) Phys Chem Chem Phys 17:20897–20902], Ti@B28 and M@B38 (M?=?Ca and La) also favor endohedral structures with large binding energies, and are suggested promising targets for experimental applications. Note that Ti@B28 is the first endohedral derivative based on the new B28 fullerene, and La@B38 features the largest metal size inside a B38 cage thus far. These endohedral derivatives, as exemplified by Ca@B38, may exhibit σ and π double aromaticity over the whole cage surface, indicating their considerable stability. In contrast, the other metals prefer to reside at the exterior cage surface, due mainly to the mismatch of their sizes with the boron cages, though the size match is not the only factor to determine their doping form. Furthermore, the infrared absorption spectra and 11B nuclear magnetic resonance spectra of the three new M@B n complexes were computed to assist future experimental characterization.
Graphical Abstract Putting more metals into medium-sized boron cages!
  相似文献   

5.
The present study reports the geometries, electronic structures, growth behavior, and stabilities of neutral and ionized copper-doped germanium clusters containing 1–20 Ge atoms within the framework of linear combination of atomic orbitals density functional theory (DFT) under the spin-polarized generalized gradient approximation. It was found that Cu-capped Ge n (or Cu-substituted Ge n+1) and Cu-encapsulated Ge n clusters mostly occur in the ground state at a particular cluster size (n). In order to explain the relative stabilities of the ground-state clusters, parameters such as the average binding energy per atom (BE), the embedding energy (EE), and the fragmentation energy (FE) of the clusters were calculated, and the resulting values are discussed. To explain the chemical stabilities of the clusters, parameters such as the energy gap between the highest occupied and the lowest unoccupied molecular orbitals (the HOMO–LUMO gap), the ionization energy (IP), the electron affinity (EA), the chemical potential (μ), the chemical hardness (η), and the polarizability were calculated, and the resulting values are also discussed. Natural atomic orbital (NAO) and natural bond orbital (NBO) analyses were also used to determine the electron-counting rule that should be applied to the most stable Ge10Cu cluster. Finally, the relevance of the calculated results to the design of Ge-based superatoms is discussed.
Figure Contributions of the valance orbitals of the Ge and Cu atom(s) to the HOMO of the ground-state icosahedral Ge10Cu cluster obtained from NBO analysis. The numbers below the clusters represent the occupancies of the HOMO orbitals
  相似文献   

6.
Spin–spin coupling constants in water monomer and dimer have been calculated using several wave function and density functional-based methods. CCSD, MCSCF, and SOPPA wave functions methods yield similar results, specially when an additive approach is used with the MCSCF. Several functionals have been used to analyze their performance with the Jacob’s ladder and a set of functionals with different HF exchange were tested. Functionals with large HF exchange appropriately predict 1 J O H , 2 J H H and 2h J O O couplings, while 1h J O H is better calculated with functionals that include a reduced fraction of HF exchange. Accurate functionals for 1 J O H and 2 J H H have been tested in a tetramer water model. The hydrogen bond effects on these intramolecular couplings are additive when they are calculated by SOPPA(CCSD) wave function and DFT methods.
Graphical Abstract Evaluation of the additive effect of the hydrogen bond on spin-spin coupling constants of water using WF and DFT methods.
  相似文献   

7.
Density functional theory and its time-dependent extension (DFT, TDDFT) were employed to establish the feasibility of using a series of 4,4-difluoro-4-bora-3a,4a-diaza-s-indacenes (BODIPYs) in photodynamic therapy. Their absorption electronic spectra, singlet–triplet energy gaps, and spin–orbit matrix elements were computed and are discussed here. The effects of bromine substitution on the photophysical properties of BODIPY were elucidated. The investigated compounds were found to possess different excited triplet states that lie below the energy of the bright excited singlet state (S1 or S2), depending on the positions occupied by the bromine atoms. The computed spin–orbit matrix elements for the radiationless intersystem crossing Sn?→ ?Tm and the relative singlet–triplet energy gaps allowed the prediction of plausible nonradiative decay pathways for the production of singlet excited molecular oxygen, the key cytotoxic agent in photodynamic therapy.
Graphical Abstract The photophysical properties affected by the presence of bromine atoms in different positions of a BODIPY core have been here elucidated. In particular it has been found that SOC values strongly depend on the position of heavy atoms into the BODIPY core, suggesting positions 1 and 7 as the best ones to enhance the ISC kinetics
  相似文献   

8.
Designing and synthesizing novel electron-donor polymers with the high photovoltaic performances has remained a major challenge and hot issue in organic electronics. In this work, the exciton-dissociation (k dis ) and charge-recombination (k rec ) rates for the PC61BM-PTDPPSe system as a promising polymer-based solar cell candidate have been theoretically investigated by means of density functional theory (DFT) calculations coupled with the non-adiabatic Marcus charge transfer model. Moreover, a series of regression analysis has been carried out to explore the rational structure–property relationship. Results reveal that the PC61BM-PTDPPSe system possesses the large open-circuit voltage (0.77 V), middle-sized exiton binding energy (0.457 eV), and relatively small reorganization energies in exciton-dissociation (0.273 eV) and charge-recombination (0.530 eV) processes. With the Marcus model, the k dis , k rec , and the radiative decay rate (k s ), are estimated to be 3.167×1011 s?1, 3.767×1010 s?1, and 7.930×108 s?1 respectively in the PC61BM-PTDPPSe interface. Comparably, the k dis is as 1~3 orders of magnitude larger than the k rec and the k s , which indicates a fast and efficient photoinduced exciton-dissociation process in the PC61BM-PTDPPSe interface.
Graphical Abstract PTDPPSe is predicted to be a promising electron donor polymer, and the PC61BM-PTDPPSe system is worthy of further device research by experiments.
  相似文献   

9.
We present a theoretical study on the detailed mechanism and kinetics of the H+HCN →H+HNC process. The potential energy surface was calculated at the complete basis set quantum chemical method, CBS-QB3. The vibrational frequencies and geometries for four isomers (H2CN, cis-HCNH, trans-HCNH, CNH2), and seven saddle points (TSn where n = 1 ? 7) are very important and must be considered during the process of formation of the HNC in the reaction were calculated at the B3LYP/6-311G(2d,d,p) level, within CBS-QB3 method. Three different pathways (PW1, PW2, and PW3) were analyzed and the results from the potential energy surface calculations were used to solve the master equation. The results were employed to calculate the thermal rate constant and pathways branching ratio of the title reaction over the temperature range of 300 up to 3000 K. The rate constants for reaction H + HCN → H + HNC were fitted by the modified Arrhenius expressions. Our calculations indicate that the formation of the HNC preferentially occurs via formation of cis–HCNH, the fitted expression is k P W2(T) = 9.98 × 10?22 T 2.41 exp(?7.62 kcal.mol?1/R T) while the predicted overall rate constant k O v e r a l l (T) = 9.45 × 10?21 T 2.15 exp(?8.56 kcal.mol?1/R T) in cm 3 molecule ?1 s ?1.
Graphical Abstract (a) Potential energy surface, (b) thermal rate constants as a function of temperature and (c) the branching ratios (%) of PW1, PW2, PW3 pathways involved in rm H + HCN → H + HNC process.
  相似文献   

10.
In this work, regular convergence patterns of the structural, harmonic, and VPT2-calculated anharmonic vibrational parameters of ethylene towards the Kohn–Sham complete basis set (KS CBS) limit are demonstrated for the first time. The performance of the VPT2 scheme implemented using density functional theory (DFT-BLYP and DFT-B3LYP) in combination with two Pople basis sets (6-311++G** and 6-311++G(3df,2pd)), the polarization-consistent basis sets pc-n, aug-pc-n, and pcseg-n (n?=?0, 1, 2, 3, 4), and the correlation-consistent basis sets cc-pVXZ and aug-cc-pVXZ (X?=?D, T, Q, 5, 6) was tested.The BLYP-calculated harmonic frequencies were found to be markedly closer than the B3LYP-calculated harmonic frequencies to the experimentally derived values, while the calculated anharmonic frequencies consistently underestimated the observed wavenumbers. The different basis set families gave very similar estimated values for the CBS parameters. The anharmonic frequencies calculated with B3LYP/aug-pc-3 were consistently significantly higher than those obtained with the pc-3 basis set; applying the aug-pcseg-n basis set family alleviated this problem. Utilization of B3LYP/aug-pcseg-n basis sets instead of B3LYP/aug-cc-pVXZ, which is computationally less expensive, is suggested for medium-sized molecules. Harmonic BLYP/pc-2 calculations produced fairly accurate ethylene frequencies.
Graphical Abstract In this study, the performance of the VPT2 scheme implemented using density functional theory (DFT-BLYP and DFT-B3LYP) in combination with the polarization-consistent basis sets pc-n, aug-pc-n, and pcseg-n (n?=?0, 1, 2, 3, 4), and the correlation-consistent basis sets cc-pVXZ and aug-cc-pVXZ (X?=?D, T, Q, 5, and 6) was tested. For the first time, we demonstrated regular convergence patterns of the structural, harmonic, and VPT2-calculated anharmonic vibrational parameters of ethylene towards the Kohn–Sham complete basis set (KS CBS) limit
  相似文献   

11.
12.
A series of conjugated multi-structured fluorescent probe molecules based on a salen ligand were designed and investigated in dimethyl sulfoxide solvent using a quantum-chemical method. The results indicate that the one-photon absorption and fluorescence emission spectra (λ O and λ EM) of these molecules generally show redshifts (of 23.1–74.5 and 22.7–116.6 nm, respectively) upon the coordination of the molecules to Zn2+. Large Stokes shifts (1511.2–11744.1 cm?1) were found for the molecules, meaning that interference between λ O and λ EM can be avoided for these molecules. The two-photon absorption spectra of the molecules usually present blueshifts, but the two-photon absorption cross-section (δ) greatly increases (by 221.5–868.0 GM) upon the coordination of the molecules with Zn2+. Most of the molecules show strong two-photon absorption peaks in the range 678.2–824.4 nm, i.e., in the near-infrared region. In a word, the expanded π-conjugated frameworks of these molecules lead to redshifted λ O and λ EM and enhanced δ values. Moreover, (L-phenyl)?2 and (L-phenyl-ethynyl)2 are the most suitable of the multi-structured molecules examined in this work for use as two-photon fluorescent probes for zinc ion detection in vivo.
Graphical Abstract Scheme of the calculated transition energies (E0k and E0n) and the transition dipole moments (M0k and Mkn). NTO 109, NTO 197 and NTO 228 of Zn(L-phenyl-ethynyl), Zn2(L-phenyl-ethynyl)2 and Zn3(L-phenyl)3 for one-photon  absorption, respectively.
  相似文献   

13.
Seven models that related the features of molecular surface electrostatic potentials (ESPs) above the bond midpoints and rings, statistical parameters of ESPs to the experimental impact sensitivities h 50 of eight strained cyclic explosives with the C–NO2 bonds were theoretically predicted at the DFT-B3LYP/6-311++G** level. One of the models was used to investigate the changes of h 50 for the nitrocyclohydrocarbon frameworks in the H-bonded complexes of HF with nitrocyclopropane, nitrocyclobutane, nitrocyclopentane, and nitrocyclohexane. The results show that the correlation coefficients of the obtained models are small. When adding the effect of ring strain, the value of correlation coefficient is increased. According to the calculated h 50, the sensitivities in the frameworks are increased after hydrogen bonding. As a global feature of molecules, surface electrostatic potential is more available to judge the sensitivity change than the trigger bond dissociation energy or ring strain energy in H-bonded complex.
Graphical Abstract A theoretical prediction of the relationships between the impact sensitivity and electrostatic potential in strained cyclic explosive and application to H-bonded complex of nitrocyclohydrocarbon?
  相似文献   

14.
15.
Molecular dynamics simulations were performed to investigate the separation of trihalomethanes (THMs) from water using boron nitride nanosheets (BNNSs). The studied systems included THM molecules and a functionalized BNNS membrane immersed in an aqueous solution. An external pressure was applied to the z axis of the systems. Two functionalized BNNSs with large fluorinated-hydrogenated pore (F-H-pores) and small hydrogen-hydroxyl pore (H-OH-pores) were used. The pores of the BNNS membrane were obtained by passivating each nitrogen and boron atoms at the pore edges with fluorine and hydrogen atoms in the large pore or with hydroxyl and hydrogen atoms in the small pore. The results show that the BNNS with a small functionalized pore was impermeable to THM molecules, in contrast to the BNNS with a large functionalized pore. Using these membranes, water contaminants can be removed at lower cost.
Graphical Abstract A snapshot of the simulation system. The BNNS membrane with the large functionalized pore is located in the middle of the box. The size of the box is 3 × 3 × 5 nm3. Green chlorine, cyan carbon, red oxygen, white hydrogen
  相似文献   

16.
Density functional theory (DFT) was used to study the cobalt(I)-catalyzed enantioselective intramolecular hydroacylation of ketones and alkenes. All intermediates and transition states were fully optimized at the M06/6-31G(d,p) level (LANL2DZ(f) for Co). The results demonstrated that the ketone and alkene present different reactivities in the enantioselective hydroacylation. In ketone hydroacylation catalyzed by the cobalt(I)–(R,R)-Ph-BPE complex, reaction channel “a” to (R)-phthalide was more favorable than channel “b” to (S)-phthalide. Hydrogen migration was both the rate-determining and chirality-limiting step, and this step was endothermic. In alkene hydroacylation catalyzed by the cobalt(I)–(R,R)-BDPP complex, reaction channel “c” leading to the formation of (S)-indanone was the most favorable, both thermodynamically and kinetically. Reductive elimination was the rate-determining step, but the chirality-limiting step was hydrogen migration, which occurred easily. The results also indicated that the alkene hydroacylation leading to (S)-indanone formation was more energetically favorable than the ketone hydroacylation that gave (R)-phthalide, both thermodynamically and kinetically.
Graphical abstract A DFT study demonstrated that the ketone and alkene in the cobalt(I)-catalyzed enantioselective intramolecular hydroacylation showed different reactivities
  相似文献   

17.
Much effort has been devoted to investigating the molecular geometries, electronic structures, redox properties and nonlinear optical (NLO) properties of Ir complexes involving o-, m- or p-carborane groups by density functional theory (DFT) methods. Switchable second-order NLO properties were induced by redox processes involving these complexes, and it was found that mainly the coordination bonds of Ir complexes changed during the oxidation process. Our calculations revealed that oxidation reactions have a significant influence on the second-order NLO response owing to the change in charge transfer pattern. The β tot values of oxidized species are at least ~9 times larger for set I and ~5 times larger for set II than those of the corresponding parent complexes. Introduction of carborane groups into ppy (phenylpyridine) ligands can enhance the second-order NLO response by 1.2–?1.6 times by a metal-to-ligand charge transfer (MLCT) transition between the Ir atom and carborane. The β tot of complex 2 [(ppy)2Ir(phen)]+ (phen?=?phenanthroline) is 3.3 times larger than that of complex 1 (ppy)2Ir(acce) (acce?=?acetylacetonate), which is caused by ligand-to-ligand charge transfer (LLCT) between ppy ligands and the ancillary ligand. Therefore, it can be concluded that the second-order NLO response can be effectively enhanced by oxidation reactions.
Graphical abstract Redox-switchable second-order nonlinear optical (NLO) responses
  相似文献   

18.
The effect of alkali metal oxides M n O (M?=?Li, Na, K; n?=?2, 3, 4) on the geometric, electronic, and linear and nonlinear optical properties of the Mg12O12 nanocage was investigated by density-functional-based methods. According to the computational results, these alkali metal oxides are adsorbed on the Mg12O12 nanocage because this adsorption reduces its energy gap. The static first hyperpolarizability (β 0) of the nanocage is dramatically increased in the presence of the alkali metal oxides, with the greatest increase seen in the presence of the superalkalis (i.e., M3O; M?=?Li, Na, and K). The highest first hyperpolarizability (β 0?≈?600,000 a.u.) was calculated for K3O@Mg12O12, which was considerably more than that for Mg12O12. The thermodynamic properties and relative stabilities of these inorganic compounds are discussed.
Graphical Abstract Optimized structure and DOS spectrum of K3O(e@Mg12O12)
  相似文献   

19.
The mechanism of phenanthridines synthesis from the nitrogenation of 2-acetylbiphenyls (1) by TMSN3 in TFA has been studied by DFT calculations. Results at the B3LYP/6-311G(d) level showed that: 1) reaction of TMSN3/HN3 with the protonated form of 1 (1H+), which generates the key intermediate C x+ by removal of TMSOH/H2O, is the rate determining step, and TMSN3 as the nitrogen source is certainly preferred over HN3. 2) from C x+, the two pathways leading to 2 x H+ and 3 x H+ are both thermodynamically and kinetically feasible and competitive to each other. 3) The high barriers of the reverse reactions suggest that the ratio of the final products 2 x :3 x is determined by the branching ratio of reaction rates of C x+ to intermediates D x+ in pass_I and E x+ in pass_II.
Graphical Abstract DFT results indicate that the replacement of -OH by -N3 which generates C x+ controls the consumption rate of 1 x H+, and the ratio of C x+ transforms to D x+ and C x+ transforms to E x+ (k:k') determines the final ratio of products 2x:3x.
  相似文献   

20.
Based on a prototype sensitizer W2, we designed triarylamine-based p-type sensitizers W2-1 to W2-7 that contain modified π-spacers (π'), a π-spacer and two anchors. For W2-1 to W2-4, instead of 2,1,3-benzothiadiazole in W2, thieno[3,4-b]-1,4-dioxin, thiophene, thieno[3,4-c][1,2,5]thiadizole, thiazolo[5,4-d]thiazole are π' and thiophene as π-spacer. For W2-5 to W2-8, π' and π are same, with 2,1,3-benzothiadiazole, thieno[3,4-b]-1,4-dioxin, thieno[3,4-c][1,2,5]thiadiazo, thiazolo[5,4-d]thiazole, respectively, as the π'-spacers. Structure optimization, electronic level and absorption characters were calculated with density functional theory (DFT) and time-dependent DFT (TDDFT) at the CAM-B3LYP/6-311G (d,p). The solvent effect was involved using a polarized continuum model in chloroform. The results showed that the highest occupied molecular orbital and the lowest unoccupied molecular orbital guarantee sufficient hole injection (lower than –0.2 eV), and dye regeneration (lower than –0.2 eV). W2-4 has higher light-harvesting efficiency (LHE) (0.994) and larger overlap with the visible light from 400 nm to 600 nm. Finally, the results suggest that the driving force of hole injection, dye regeneration and charge recombination (ΔGinj, ΔGreg and ΔGCR) of W2-4 are the best, with more negative ΔGinj (–4.33), ΔGreg (–1.74) and more positive ΔGCR (1.92). Replacing 2,1,3-benzothiadiazole with thiazolo[5,4-d]thiazole as π'-spacers is a effective way to improve the performance of the dyes. An introduction of thiazolo[5,4-d]thiazole group can improve the absorption ability and hinder charge recombination.
Graphical abstract Absorption spectra of p-type D-π-A sensitizers with modified π-spacers
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号