首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary The boeoticum () X urartu () F1 hybrids gave small, plump and viable seeds while the reciprocal crosses with T. urartu as the female parent had long, shrivelled and non-viable seeds. Reciprocal nuclear-substitution lines comprising the nucleus of one species into the cytoplasm of the other were developed through repeated backcrossing and were crossed as female parents with respective non-recurrent parents (the cytoplasm donors). The difference between the reciprocal crosses was presumably attributable to different boeoticum urartu genomic ratios in the triploid endosperm rather than to the cytoplasmic difference between the diploid wheats. The endosperm with two doses of the boeoticum and one of the urartu genome resulted in small, plump and viable seed while the endosperm of the reciprocal crosses with two doses of the urartu and one of the boeoticum genome led to large but shrivelled and non-viable seeds irrespective of the cytoplasmic type. One dose of the paternal genome in the triploid endosperm is probably not expressed in the presence of two doses of the maternal genome thereby leading to the difference between the reciprocal crosses. The results reported here indicate that difference between reciprocal crosses may not always be attributed to cytoplasmic difference between the parental species.  相似文献   

2.
Summary Electrophoretic profiles of crude protein extracts from seed of F1 hybrids and reciprocal crosses among diploid, tetraploid and hexaploid wheats were compared with those of their respective parental species. The electrophoretic patterns within each of three pairs of reciprocal crosses, T.boeoticum X T.urartu, T.monococcun X T. urartu and T.dicoccum X T. araraticum, were different from one another but were identical with those of their respective maternal parents. Protein bands characteristic of the paternal parents were missing in F1 hybrid seed suggesting that the major seed proteins in wheat were presumably regulated by genotype of the maternal parent rather than by the seed genotype. However, in another three pairs of reciprocal crosses, T.boeoticum X T. durum, T.dicoccum X T.aestivum and T. zhukovskyi x T. aestivum, protein bands attributable to the paternal parents were present in the F1 hybrid seeds indicating that the seed proteins were not always exclusively regulated by the maternal genotype. The expression of paternal genomes is presumably determined by dosage and genetic affinity of the maternal and paternal genomes in the hybrid endosperm. The maternal regulation of seed protein content is probably accomplished through the maternal control over seed size. The seed protein quality may, however, depend upon the extent of expression of the paternal genome.  相似文献   

3.
The diploid wheats Triticum boeoticum and T. urartu are sympatric with one another throughout the geographic range of the wild tetraploids. Reciprocal crosses between ecogeographic types within each diploid species gave viable seed, but interspecific crosses consistently gave viable seed only when T. boeoticum was the female parent. Apparently urartu cytoplasm in combination with the boeoticum genome resulted in nonviable seed. The endosperm failed to develop normally despite regular endosperm fertilization. The F1 plants obtained were completely self sterile although they showed regular intergenomic pairing (7II) at meiosis. Presumably the accumulation of cryptic differences between the two closely related genomes under reproductive isolation accounts for this sterility. The same accumulated cryptic differences could largely account for the preferential diploid pairing in the tetrapolid wheats which presumably were derived from such hybrids by chromosome doubling. The behavior of reciprocal crosses between the diploids and tetraploids suggested that T. boeoticum contributed the cytoplasm to both of the wild tetraploid species.  相似文献   

4.
RFLP variation revealed by protein disulfide isomerase (PDI) coding gene sequences was assessed in 170 accessions belonging to 23 species of Triticum and Aegilops. PDI restriction fragments were highly conserved within each species and confirmed that plant PDI is encoded either by single-copy sequences or by small gene families. The wheat PDI probe hybridized to single EcoRI or HindIII fragments in different diploid species and to one or two fragments per genome in polyploids. Four Aegilops species in the Sitopsis section showed complex patterns and high levels of intraspecific variation, whereas Ae. searsii possessed single monomorphic fragments. T. urartu and Ae. squarrosa showed fragments with the same mobility as those in the A and D genomes of Triticum polyploid species, respectively, whereas differences were observed between the hybridization patterns of T. monococcum and T. boeoticum and that of the A genome. The single fragment detected in Ae. squarrosa was also conserved in most accessions of polyploid Aegilops species carrying the D genome. The five species of the Sitopsis section showed variation for the PDI hybridization fragments and differed from those of the B and G genomes of emmer and timopheevi groups of wheat, although one of the Ae. speltoides EcoRI fragments was similar to those located on the 4B and 4G chromosomes. The similarity between the EcoRI fragment located on the 1B chromosome of common and emmer wheats and one with a lower hybridization intensity in Ae. longissima, Ae. bicornis and Ae. sharonensis support the hypothesis of a polyphyletic origin of the B genome. Received: 25 June 1999 / Accepted: 14 September 1999  相似文献   

5.
The A genome of the tetraploid wheats (AABB, 2n = 28) shows 5-6 bivalents in crosses with Triticum boeoticum (2n = 14) and various Aegilops diploids (2n = 14). The B genome has never been similarly identified with any species, and is commonly thought to have been modified at the tetraploid level. Triticum boeoticum was presumably accepted as the A-genome donor because of its morphological similarity to the wild tetraploids and because it was formerly the only known wild diploid wheat. The B donor has been thought to be Ae. speltoides or another species of the Sitopsis section of Aegilops, but these diploids show pairing affinity with A rather than B. More recently, another diploid wheat, T. urartu, was found to be sympatric with T. boeoticum throughout the natural range of the tetraploids. The synthetic boeoticum-urartu amphiploid was virtually identical morphologically with the wild tetraploid wheats, whereas various boeoticum-Sitopsis amphiploids were markedly different. But the urartu genome, like those of T. boeoticum and Sitopsis, paired with A and not with B. However, cytological evidence also shows (1) that the genomes of any plausible parental combination pair with one another, (2) that the A and B genomes of the tetraploid wheats pair with one another in the absence of the gene Ph, and (3) that homoeologous chromosomes of the tetraploids have differentiated further, presumably as a result of diploidization. Consequently, chromosome pairing at Meiosis I can be expected to give ambiguous evidence regarding the identity of the tetraploid genomes with their parental prototypes. A hypothesis regarding the expected pairing affinities between tetraploid homoeologues that have differentiated from closely related parental chromosomes is advanced to explain the anomalous pairing behavior of the A and B genomes. Triticum boeoticum and T. urartu are inferred to be the parents of the tetraploid wheats.  相似文献   

6.
Summary Total proteins were extracted from degermed seeds of various species of Triticum and Aegilops with solutions containing sodium dodecyl sulfate (SDS) and mercaptoethanol. The reduced, dissociated proteins were fractionated according to molecular weight (MW) by high-resolution polyacrylamide gel electrophoresis in buffers containing SDS (SDS-PAGE). Stained SDS-PAGE patterns were measured by densitometric scanning over a suitable range of optical density. The data were normalized to equivalent total areas for each of the densitometric scans by means of a computer program that also permitted the construction of patterns of hypothetical amphiploids by averaging patterns of two or three diploid species. The grain proteins of most species examined had distinctive qualitative and quantitative aspects that were characteristic of the species even though nearly every accession or cultivar of a species exhibited at least minor differences in pattern from other accessions or cultivars. The main protein components (probably prolamins) of Triticum monococcum ssp. monococcum, T. monococcum ssp. boeoticum, T. urartu, and Aegilops squarrosa had MW's in the range 29–36 X 103 whereas the most important components of Ae. speltoides, Ae. longissima, and Ae. searsii had MW's in the range 37–55 × 103. Changes in the quantitative expression of particular genes, especially those coding for storage protein components, may have been associated with speciation. The strong predominance of proteins with MW's in the range 29–36 × 103 in some accessions of AB genome tetraploids, such as T. turgidum ssp. dicoccoides, may indicate contributions to the B genome of these tetraploids by T. monococcum ssp. boeoticum, T. urartu, or Ae. squarrosa.  相似文献   

7.
We assessed the molecular genetic diversity and relationships among some Aegilops and Triticum species using 15 start codon-targeted (SCoT) polymorphism markers. A total of 166 bands amplified, of which 164 (98.79%) were polymorphic. Analysis of molecular variance and inter-population differentiation (Gst) indicated high genetic variation within the studied populations. Our analyses revealed high genetic diversity in T. boeoticum, Ae. cylindrica, T. durum and Ae. umbellulata, low diversity in Ae. crassa, Ae. caudata and Ae. speltoides, and a close relationship among Ae. tauschii, T. aestivum, T. durum, T. urartu, and T. boeoticum. Cluster analysis indicated 180 individuals divided into 8 genome homogeneous clades and 11 sub-groups. T. aestivum and T. durum accessions were grouped together, and accessions with the C and U genomes were grouped into the same clade. Our results support the hypothesis that T. urartu and Ae. tauschii are two diploid ancestors of T. aestivum, and also that Ae. caudata and Ae. umbellulata are putative donors of C and U genomes for other Aegilops species that possess these genomes. Our results also revealed that the SCoT technique is informative and can be used to assess genetic relationships among wheat germplasm.  相似文献   

8.
Triticum urartu, Aegilops speltoides and Ae. tauschii are respectively the immediate diploid sources, or their closest relatives, of the A, B and D genomes of polyploid wheats. Here we report the construction and characterization of arrayed large-insert libraries in a bacterial artificial chromosome (BAC) vector, one for each of these diploid species. The libraries are equivalent to 3.7, 5.4 and 4.1 of the T. urartu, Ae. speltoides, Ae. tauschii genomes, respectively. The predicted levels of genome coverage were confirmed by library hybridization with single-copy genes. The libraries were used to estimate the proportion of known repeated nucleotide sequences and gene content in each genome by BAC-end sequencing. Repeated sequence families previously detected in Triticeae accounted for 57, 61 and 57% of the T. urartu, Ae. speltoides and Ae. tauschii genomes, and coding regions accounted for 5.8, 4.5 and 4.8%, respectively.  相似文献   

9.
Summary Restriction fragment patterns of DNA fragments obtained after EcoRI cleavage of chloroplastic (cp) and mitochondrial (mt) DNAs isolated from different wheat species were compared. T. aestivum, T. timopheevi, Ae. speltoides, Ae. sharonensis and T. urartu gave species specific mt DNA patterns. Consequently, the cytoplasmic genomes of wheat cannot have originated from contemporary Ae. speltoides, Ae. sharonensis and T. urartu species. It is shown that cp and mt DNAs of Ae. ventricosa, a tetraploid used to transfer eyespot resistance into T. aestivum, contains cp and mt DNAs differing from DNAs isolated from T. aestivum and other wheats. In contrast, the cytoplasmic DNAs of Ae. ventricosa and Ae. squarrosa reveal an important homology, suggesting that Ae. squarrosa was the female parent of Ae. ventricosa. Disomic addition lines (T. aestivum — Ae. ventricosa) in both Ae. ventricosa cytoplasm and T. aestivum cytoplasm contained cytoplasmic DNAs identical to those of the maternal parent. Restriction patterns of the cp and mt DNAs isolated from eight lines of Triticale differing in their cytoplasm have been compared to those of the maternal parent. A strict maternal inheritance has been observed in each case.  相似文献   

10.
Summary By using restriction endonuclease digestion patterns, the degree of intraspecific polymorphism of mitochondrial DNA in four diploid species of wheat and Aegilops, Ae. speltoides, Ae. longissima, Ae. squarrosa, and Triticum monococcum, was assessed. The outbreeding Ae. speltoides was found to possess the highest degree of variability, the mean number of nucleotide substitutions among conspecific individuals being 0.027 substitutions per nucleotide site. A very low degree of mtDNA variation was detected among Ae. longissima accessions, with most of the enzyme-probe combinations exhibiting uniform hybridization patterns. The mean number of substitutions among Ae. longissima individuals was 0.001 substitutions per nucleotide site. The domesticated diploid wheat T. monococcum var. monococcum and its conspecific variant T. monococcum var. boeoticum seem to lack mitochondrial DNA variability altogether. Thus, the restriction fragment pattern can be used as a characteristic identifier of the T. monococcum cytoplasmic genome. Similarly, Ae. squarrosa accessions were found to be genetically uniform. A higher degree of variation among accessions is observed when noncoding sequences are used as probes then when adjacent coding regions are used. Thus, while noncoding regions may contain regulatory functions, they are subject to less stringent functional constraints than protein-coding regions. Intraspecific variation in mitochondrial DNA correlates perfectly with the nuclear variability detected by using protein electrophoretic characters. This correlation indicates that both types of variation are selectively neutral and are affected only by the effective population size.  相似文献   

11.
The level of intra- and interspecific variations on nuclear DNA in five Aegilops species of the Sitopsis section were investigated using restriction fragment length polymorphism (RFLP) analysis. A total of 18 accessions, i.e. 7 of Ae. speltoides, 3 of Ae. longissima, 2 of Ae. searsii, 3 of Ae. sharonensis and 3 of Ae. bicornis, were used. One accession each of Triticum aestivum, T. durum, T. urartu and Ae. squarrosa was included as reference material. Five enzymes and 20 probes were used. Among the five Sitopsis species studied, Ae. speltoides had the largest intraspecific variation (=0.061), which was as high as the interspecific variation observed among the other four species. The section Sitopsis was divided into two distinct groups: one containing only Ae. speltoides and the other, Ae. longissima, Ae. searsii, Ae. sharonensis and Ae. bicornis. This grouping by RFLP analysis is in agreement with the taxonomical classification of the subsections.  相似文献   

12.
13.
A real-time PCR approach was adopted and optimized to estimate and compare, through a relative quantification, the copy number of WIS2-1A and BARE-1 retrotransposons. The aim of this approach was to identify and quantify the presence of these retrotransposons in Triticum and Aegilops species, and to understand better the genome organization of these retroelements. The species were selected to assess and compare the evolution of the different types of genomes between the more recent species such as the diploid Triticum monococcum, tetraploid T. dicoccon and hexaploid T. spelta, and the corresponding genome donors of the ancient diploids Aegilops (Ae. speltoides, Ae. tauschii, Ae. sharonensis and Ae. bicornis) and T. urartu. The results of this study indicated the presence of great variation in copy number both within and among species, and the existence of a non-linear relationship between retrotransposon copy number and ploidy level. For WIS2-1A, as expected, T. monococcum showed the lowest copy number which instead was similar in T. dicoccon and T. spelta; also T. urartu (AA), Ae. speltoides (BB) and Ae. tauschii (DD) showed a higher WIS2-1A copy number. Similar results were observed for BARE-1 retroelements except for Ae. tauschii which as in T. monococcum showed lower retroelements content; a similar content for T. dicoccon and T. urartu, whereas a higher number was found in T. spelta and Ae. speltoides. The results presented here are in accord with previous studies and contribute to unravelling the structure and evolution of polyploidy and repetitive genomes.  相似文献   

14.
Pollen stainability appears to be a reliable indication of the ultimate seed set in diploid interspecific hybrid and backcross populations in Triticum L. The correlation between percent pollen stained and number of seeds set is positive and highly significant (r = 0.92). Estimates of male and female fertility in the hybrids and backcrosses are interpreted to indicate that the domesticated diploid Triticum monococcum L. and wild diploid T. boeoticum Boiss. em. Schiem, are one and the same species, and that T. urartu Tum. is not a variety of monococcum or boeoticum, but rather a separate species. The F1 hybrids and backcrosses between monococcum and boeoticum are normally male and female fertile. The F1 hybrids between monococcum and urartu are completely sterile and complete to partial sterility exists in backcrosses.  相似文献   

15.
Protein inhibitors extracted with water from seeds of Triticum and genetically related species were characterized according to their apparent molecular weights, electrophoretic mobilities and their specificities in inhibiting α-amylases from human saliva and Tenebrio molitor L. larvae. No detectable amylase inhibition activity was found in extracts from diploid wheats, whereas in all tetraploid and hexaploid wheats as well as in the Aegilops species tested we found several amylase inhibitor groups of different molecular weights. In each group, several inhibitor components slightly different in their electrophoretic mobilities, but identical in their inhibition behaviour toward amylases from different origins have been shown. Both from the qualitative and quantitative standpoints, amylase protein inhibitors from hexaploid wheats were the summation of those from tetraploid wheats plus the ones from Aegilops squarrosa. Amylase inhibitors from Aegilops speltoides largely differed from those extracted from tetraploid wheats as well as from all the amylase inhibitors described in plant seeds up to now. These results indicate a relevant homology between the amylase inhibitor coding genes of the D wheat genome and those of the D Aegilops genome and confirm that Ae. squarrosa is the donor of the whole D genome to hexaploid wheats. They also suggest that Ae. speltoides is not the donor of the B genome to polyploid wheats, although a not yet identified Aegilops species might be such a donor.  相似文献   

16.
A total of 137 loci were mapped in Aegilops speltoides, the closest extant relative of the wheat B genome, using two F2 mapping populations and a set of wheat-Ae. speltoides disomic addition (DA) lines. Comparisons of Ae. speltoides genetic maps with those of Triticum monococcum indicated that Ae. speltoides conserved the gross chromosome structure observed across the tribe Triticeae. A putative inversion involving the short arm of chromosome 2 was detected in Ae. speltoides. A translocation between chromosomes 2 and 6, present in the wheat B genome, was absent. The ligustica/aucheri spike dimorphism behaved as allelic variation at a single locus, which was mapped in the centromeric region of chromosome 3. The genetic length of each chromosome arm was about 50 cM, irrespective of its physical length. Compared to T. monococcum genetic maps, recombination was virtually eliminated from the proximal 50–100 cM and was localized in short distal regions, which were often expanded compared to the T. monococcum maps. The wheat B genome and the genome of Ae. longissima, a close relative of Ae. speltoides, do not show the extreme localization of crossovers observed in Ae. speltoides.  相似文献   

17.
Summary The genes coding for the Rubisco small subunit (SSU) and for the -subunit of the Rubisco-binding protein were located to chromosome arms of common wheat. HindIII-digested total DNA from the hexaploid cultivar Chinese Spring and from ditelosomic and nullisomic-tetrasomic lines was probed with these two genes, whose chromosomal location was deduced from the disappearance of or from changes in the relative intensity of the relevant band(s). The Rubisco SSU pattern consisted of 14 bands, containing at least 21 different types of DNA fragments, which were allocated to two homoeologous groups: 15 to the short arm of group 2 chromosomes (4 to 2AS, 7 to 2BS, and 4 to 2DS) and 6 to the long arm of group 5 chromosomes (2 on each of arms 5AL, 5BL, and 5DL). The pattern of the Rubisco-binding protein consisted of three bands, each containing one type of fragment. These fragments were located to be on the short arm of group 2 chromosomes. The restriction fragment length polymorphism (RFLP) patterns of several hexaploid and tetraploid lines were highly conserved, whereas the patterns of several of their diploid progenitors were more variable. The variations found in the polyploid species were mainly confined to the B genome. The patterns of the diploids T. monococcum var. urartu and Ae. squarrosa were similar to those of the A and D genome, respectively, in polyploid wheats. The pattern of T. monococcum var. boeoticum was different from the patterns of the A genome, and the patterns of the diploids Ae. speltoides, Ae. longissima, and Ae. Searsii differed from that of the B genome.  相似文献   

18.
The genetic similarity between 150 accessions, representing 14 diploidand polyploid species of the Triticeae tribe, was investigated following the UPGMA clustering method. Seventy-three common wheat EST-derived SSR markers (EST-SSRs) that were demonstrated to be transferable across several wheat-related species were used. When diploid species only are concerned, all the accessions bearing the same genome were clustered together without ambiguity while the separation between the different sub-species of tetraploid as well as hexaploid wheats was less clear. Dendrograms reconstructed based on data of 16 EST-SSRs mapped on the A genome confirmed that Triticum aestivum and Triticum durum had closer relationships with Triticum urartu than with Triticum monococcum and Triticum boeoticum, supporting the evidence that T. urartu is the A-genome ancestor of polyploid wheats. Similarly, another tree reconstructed based on data of ten EST-SSRs mapped on the B genome showed that Aegilops speltoides had the closest relationship with T. aestivum and T. durum, suggesting that it was the main contributor of the B genome of polyploid wheats. All these results were expected and demonstrate thus that EST-SSR markers are powerful enough for phylogenetic analysis among the Triticeae tribe.Electronic Supplementary Material Supplementary material is available to authorised users in the online version of this article at .  相似文献   

19.
Inorganic cation concentrations were measured in shoots of hexaploidbread wheat (Triticum aestivum L.) and its presumed ancestorsgrown at 100 mol m–3 external NaCl. Aegilops squarrosaand T. aestivum had high K/Na ratios while T. dicoccoides andAe. speltoides had low K/Na ratios. T. monococcum although havinga high K/Na ratio, had the highest total salt load of the fivespecies tested. The effect of the D genome (from Ae. squarrosa)was further investigated in seedlings of synthetic hexaploidwheats, and was again found to improve cation selectivity. Differentresponses were obtained from root and shoot tissue in this experiment.One synthetic hexaploid and its constituent parents were grownto maturity at 100 mol m-3 NaCl and the yields recorded. Despitecomplications due to increased tillering in the stressed hexaploid,it was possible to show that the addition of the D genome enhancedyield characteristics in the hexaploid wheat. An experimentwith synthetic hexaploids derived from the tetraploid wheatvariety "Langdon" and several Ae. squarrosa accessions revealeddifferences in vegetative growth rates between the differentsynthetic hexaploids in the presence or absence of 150 or 200mol m–3 external NaCl. The possibility of transferringsalt tolerance genes from Ae. squarrosa to hexaploid wheat usingsynthetic hexaploids as bridging species is discussed. Key words: Salt stress, wheat, D genome, Aegiops squarrosa, synthetic hexaploids  相似文献   

20.
Anther morphology of various species of the genus Triticum is consistent with previous evidence that different biotypes of T. boeoticum (AA) and T. urartu (BB) contributed the respective A and B genomes to the emmer (AeAeBeBe) and timopheevi (AtAtBtBt) tetraploid complexes. Anther length of T. dicoccoides (2.8 mm) and T. araraticum (3.0 mm) is mid-way between that of T. boeoticum (3.6) and T. urartu (2.2) and the same as that of the sterile hybrid T. boeoticum X T. urartu. With respect to mode of dehiscence, post anthesis reflexion of anther lobes and twisting of the anthers, T. dicoccoides resembles T. boeoticum, whereas T. araraticum resembles T. urartu. With respect to anther apex, T. dicoccoides resembles neither T. boeoticum nor T. urartu but is identical with their F1 hybrid. Among amphiploids involving four different Aegilops species and T. boeoticum lines, none could similarly account for the length or other diagnostic attributes of the tetraploid anthers. Anther morphology is consistent with the presumed genomic composition of the cultivated tetraploid and hexaploid wheats and seems to distinguish effectively the different genomic groups of the genus Triticum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号