首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 734 毫秒
1.
Summary Mutation of the ruv gene of E. coli is associated with sensitivity to radiation, and filamentous growth after transient inhibition of DNA synthesis. The filamentation of ruv strains is abolished by mutations in sfiA or sfiB that prevent SOS induced inhibition of cell division, but this does not restore resistance to UV radiation. Double mutants carrying both ruv and uvr mutations are considerably more sensitive to UV radiation than the single mutants, but there is no additive effect of ruv with recA, recF, recB, or recC mutations. ruv mutations have little effect on conjugal recombination in wild-type strains but confer recombination deficiency and extreme sensitivity to ionizing radiation in recBC sbcB strain. These results, together with the fact that ruv strains are excision proficient and mutable by UV light, are interpreted to suggest that the ruv + product is involved in recombinational repair of damaged DNA rather than in cell division as suggested by Otsuji et al. (1974).  相似文献   

2.
Genetic analysis and molecular cloning of the Escherichia coli ruv gene   总被引:22,自引:0,他引:22  
Summary The genetic organisation of the ruv gene, a component of the SOS system for DNA repair and recombination in Escherichia coli, was investigated. New point mutations as well as insertions and deletions were generated using transposon Tn10 inserted in eda as a linked marker for site specific mutagenesis, or directly as a mutagen. The mutations were ordered with respect to one another and previously isolated ruv alleles by means of transductional crosses. The direction of chromosome mobilization from ruv:: Mud(ApR lac)strains carrying F42lac + established that ruv is transcribed in a counterclockwise direction. Recombinant phages able to restore UV resistance to ruv mutants were identified, and the ruv + region was subcloned into a low copy number plasmid. The ruv + plasmid was able to correct the extreme radiation sensitivity and recombination deficiency of ruv recBC sbcB strains.  相似文献   

3.
A recN (recN1) strain of Bacillus subtilis was constructed. The effects of this and recF, recH and addAB mutations on recombination proficiency were tested. Mutations in the recN, recF recH and addAB genes, when present in an otherwise Rec+ B. subtilis strain, did not affect genetic exchange. Strains carrying different combinations of mutations in these genes were constructed and examined for their sensitivity to 4-nitroquinoline1-oxide (4NQO) and recombination proficiency. The recH mutation did not affect the 4NQO sensitivity of recN and recF cells and it only marginally affected that of addA addB cells. However, it reduced genetic recombination in these cells 102- to 104-fold. The addA addB mutations increased the 4NQO sensitivity of recF and recN cells, but completely blocked genetic recombination of recF cells and marginally affected recombination in recN cells. The recN mutation did not affect the recombinational capacity of recF cells. These data indicate that the recN gene product is required for, DNA repair and recombination and that the recF, recH and addAB genes provide overlapping activities that compensate for the effects of single mutants proficiency. We proposed that the recF, recH, recB and addA gene products define four different epistatic groups.  相似文献   

4.
Summary The recN gene which is necessary for inducible DNA repair and recombination in Escherichia coli has been cloned into the low copy plasmid vector pHSG415. Analysis of the recombinant plasmid, pSP100, revealed a 5.6 Kb HindIII insert of chromosomal DNA. Transposon inactivation of recN function and analysis of a recN::Mu(Ap lac) fusion located the coding region to a 1.4 Kb region within a 2.1 Kb BglII-AvaI DNA fragment transcribed in a clockwise direction with respect to the chromosome map. The gene product was identified in maxicells as a 60,000 dalton protein. Synthesis of this protein was increased in cells lacking LexA activity or in strains carrying recN cloned into the multicopy vector pBR322. Multiple copies of recN increase resistance to ionizing radiation in recN mutants but reduce the survival of a wild-type strain.  相似文献   

5.
Summary Uvm mutants of Escherichia coli K12 selected for defective UV reversion induction have previously been reported to differ considerably from the UV-reversion-less recA and lexA mutants with regard to survival or mutagenic response to UV, X-rays and alkylating agents. In the present study, the phenotypic characterization of uvm mutants was extended to investigate several cellular processes which also may be related to or involved in UV mutagenesis. Like recA and lexA mutations, the uvm mutations exhibit highly reduced Weigle reactivation and normal host cell reactivation of UV irradiated phage . But unlike recA and lexA, the uvm mutations do not impair genetic recombination, UV induction of prophage or R plasmid-mediated UV resistance and mutagenesis. These phenotypical characteristics and preliminary results of genetic mapping lend further support to the assumption that the uvm site may be a novel locus affecting, apart from the recA and lexA loci, the error-prone repair pathway in E. coli.  相似文献   

6.
Both ultraviolet (UV) and ionizing radiation were observed to stimulate mitotic, ectopic recombination between his3 recombinational substrates, generating reciprocal translocations in Saccharomyces cervisiae (yeast). The stimulation was greatest in diploid strains competent for sporulation and depends upon both the ploidy of the strain and heterozygosity at the MAT locus. The difference in levels of stimulation between MATa/MAT diploid and MAT haploid strains increases when cells are exposed to higher levels of UV radiation (sevenfold at 150 J/m2), whereas when cells are exposed to higher levels of ionizing radiation (23.4 krad), only a twofold difference is observed. When the MAT gene was introduced by DNA transformation into a MATa/mat::LEU2 + diploid, the levels of radiation-induced ectopic recombination approach those obtained in a strain that is heterozygous at MAT. Conversely, when the MATA gene was introduced by DNA transformation into a MAT haploid, no enhanced stimulation of ectopic recombination was observed when cells were irradiated with ionizing radiation but a threefold enhancement was observed when cells were irradiated with UV The increase in radiation-stimulated ectopic recombination resulting from heterozygosity at MAT correlated with greater spontaneous ectopic recombination and higher levels of viability after irradiation. We suggest that MAT functions that have been previously shown to control the level of mitotic, allelic recombination (homolog recombination) also control the level of mitotic, radiation-stimulated ectopic recombination between short dispersed repetitive sequences on non-homologous chromosomes.  相似文献   

7.
Summary A colicinogenic strain of Salmonella typhimurium was treated with nitrosoguanidine, and the survivors were tested for spontaneous production of colicin E1. Among about 10000 clones tested, two were found which appeared to have lost the ColE1 factor and had become sensitive to methyl methanesulphonate (MMS). These two isolates also proved to be more sensitive to ultraviolet (UV) irradiation and ionizing () radiation than their parent strain, and to be at least partly deficient in ability to host-cell reactivate bacteriophages damaged by UV-irradiation, -irradiation or MMS treatment. A third mutant with these properties has previously been described. Revertants of all three mutants selected on the basis of resistance to MMS were found to have regained wild-type resistance to UV, , or MMS treatment, suggesting that each of the original mutants carries a single mutation responsible for increased radiation sensitivity and reduced HCR capacity. All three mutants were of approximately normal fertility in transduction, and released temperate phages spontaneously at a significantly higher frequency than did their parent strain. Assays performed on crude extracts obtained by ultrasonic treatment established that the various mutants were deficient in an enzyme with DNA polymerase activity, and that their MMS-resistant derivates had regained almost 100% of the enzyme activity found in extracts of the wild-type parent strain. Preliminary mapping by conjugation indicated that the mutation conferring radiation sensitivity in one of the three strains lies between cysI and rha on the S. typhimurium chromosome, but attempts to determine its location more precisely by P22-mediated transduction were unsuccessful.  相似文献   

8.
RecF, RecO and RecR, three of the important proteins of the RecF pathway of recombination, are also needed for repair of DNA damage due to UV irradiation. recF mutants are not proficient in cleaving LexA repressor in vivo following DNA damage; therefore they show a delay of induction of the SOS response. In this communication, by measuring the in vivo levels of LexA repressor using anti-LexA antibodies, we show that recO and recR mutant strains are also not proficient in LexA cleavage reactions. In addition, we show that recO and recR mutations delay induction of -galactosidase activity expressed from a lexA-regulated promoter following exposure of cells to UV, thus further supporting the idea that recF, recO and recR gene products are needed for induction of the SOS response.  相似文献   

9.
Summary Colony forming ability of Escherichia coli strains carrying the rnh-339::cat mutant allele is strongly dependent on the recBCD and sbcB genes. A mutation inactivating either the RecBCD nuclease or exonuclease I (sbcB) is sufficient to restrict severely the efficiency of plating of strains carrying the rnh-339::cat mutation. Combining a non-lethal temperature-sensitive mutation in the RecBCD nuclease, recB270 (Ts) or recC271 (Ts), with rnh-339::cat renders strains temperature sensitive for growth, even though rnh + strains with the recB270 (Ts) or recC271 (Ts) alleles are viable at 42 C. The recombinational functions of the RecBCD nuclease can be excluded as the source of lethality on the basis of the following observations. Introduction of a recombination proficient, exonuclease defective recD1009 allele or production of the phage GamS protein (an inhibitor of the RecBCD exonuclease activity) in an rnh-339::cat strain dramatically delays or impairs the ability of such strains to form colonies. Restoration of recombination proficiency by inclusion of an sbcB15 mutation with recB21 recC22 mutations does not restore the ability of the rnh-339::cat mutant strains to plate normally. A recBCD + strain bearing the rnh-339::cat and sbcB15 mutations forms very few visible colonies after 24 h but forms colonies at normal frequencies after 48 h of incubation. Finally, plating efficiencies of strains are unaffected when the RecBCD recombination pathway is inactivated by introduction of recA56 into an rnh-339::cat strain. These results imply that the defective growth of rnh-339::cat recBCD strains is due to a defect in repair and not recombination mediated by either the RecBCD or the RecF pathway.  相似文献   

10.
Escherichia coli RecA protein plays an essential role in both genetic recombination and SOS repair; in vitro RecA needs to bind ATP to promote both activities. Residue 264 is involved in this interaction; we have therefore created two new recA alleles, recA664 (Tyr264Glu) and recA665 (Tyr264His) bearing mutations at this site. As expected both mutations affected all RecA activities in vivo. Complementation experiments between these new alleles and wild-type recA or recA441 or recA730 alleles, both of which lead to constitutively activated RecA protein, were performed to further investigate the modulatory effects of these mutants on the regulation of SOS repair/recombination pathways. Our results provide further insight into the process of polymerization of RecA protein and its regulatory functions.  相似文献   

11.
The bacterium Deinococcus radiodurans is resistant to extremely high levels of DNA-damaging agents such as UV light, ionizing radiation, and chemicals such as hydrogen peroxide and mitomycin C. The organism is able to repair large numbers of double-strand breaks caused by ionizing radiation, in spite of the lack of the RecBCD enzyme, which is essential for double-strand DNA break repair in Escherichia coli and many other bacteria. The D. radiodurans genome sequence indicates that the organism lacks recB and recC genes, but there is a gene encoding a protein with significant similarity to the RecD protein of E. coli and other bacteria. We have generated D. radiodurans strains with a disruption or deletion of the recD gene. The recD mutants are more sensitive than wild-type cells to irradiation with gamma rays and UV light and to treatment with hydrogen peroxide, but they are not sensitive to treatment with mitomycin C and methyl methanesulfonate. The recD mutants also show greater efficiency of transformation by exogenous homologous DNA. These results are the first indication that the D. radiodurans RecD protein has a role in DNA damage repair and/or homologous recombination in the organism.  相似文献   

12.
Mutants of Escherichia coli K12 deficient in exonuclease I (xon?)3 were identified by enzymic assay of randomly selected, heavily mutagenized clones. From one of the six mutants of independent origin a thermolabile variant of exonuclease I was partially purified and identified, indicating that the mutation is probably in a structural gene for the enzyme. Transduction of this mutation into a recB? recC? strain did not result in the suppression of any of the phenotypic traits of the recipient. Although the five other mutants also appear to have temperature-sensitive exonuclease I activities in crude extracts, these enzymes were not sufficiently stable to permit purification. These latter mutations were of the xonA? type; they produced a temperature-dependent suppression of the sensitivity to ultraviolet light and to mitomycin C manifested by a recB? recC? strain. None of the six mutations were of the sbcB? type; that is, they did not suppress the recombination deficiency of a recB? recC? strain.In experiments with bacteriophage Plke, the six mutations were 41 to 62% cotransducible with the his region of E. coli. Heterozygous F′-merodiploids were constructed and studied for possible complementation of exonuclease I activity. All six mutations and an sbcB? mutation were recessive to the wild-type alleles, and all were found to belong to a single complementation group. The results suggest that alterations of a structural gene for exonuclease I may result in the indirect suppression of the ultraviolet and mitomycin sensitivity manifested by recB? recC? strains.  相似文献   

13.
    
Summary The interaction of the recB21, uvrD3, lexA101, and recF143 mutations on UV radiation sensitization and genetic recombination was studied in isogenic strains containing all possible combinations of these mutations in a uvrB genetic background. The relative UV radiation sensitivities of the multiply mutant strains in the uvrB background were: recF recB lexA> recF recB uvrD lexA, recF recB uvrD>recA>recF uvrD lexA> recF recB, recF uvrD>recF lexA>recB uvrD lexA>recB uvrD> recB lexA, lexA uvrD>recB>lexA, uvrD>recF; three of these strains were more UV radiation sensitive than the uvrB recA strain. There was no correlation between the degree of radiation sensitivity and the degree of deficiency in genetic recombination. An analysis of the survival curves revealed that the recF mutation interacts synergistically with the recB, uvrD, and lexA mutations in UV radiation sensitization, while the recB, uvrD, and lexA mutations appear to interact additively with each other. We interpret these data to suggest that there are two major independent pathways for postreplication repair; one is dependent on the recF gene, and the other is dependent on the recB, uvrD, and lexA genes.  相似文献   

14.
Summary The rad6-1 and rad6-3 mutants are highly UV sensitive and show an increase in spontaneous and UV induced mitotic heteroallelic recombination in diploids. Both rad6 mutants are proficient in spontaneous and UV induced unequal sister chromatid recombination in the reiterated ribosomal DNA sequence and are deficient in UV induced mutagenesis. In contrast to the above effects where both mutants appear similar, rad6-1 mutants are deficient in sporulation and meiotic recombination whereas rad6-3 mutants are proficient. The differential effects of these mutations indicate that the RAD6 gene is multifunctional. The possible role of the RAD6 gene in error prone excision repair of UV damage during the G1 phase of the cell cycle in addition to its role in postreplication repair is discussed.  相似文献   

15.
Mutants of Bacteroides fragilis sensitive to mitomycin C were isolated after mutagenesis with ethyl methane sulphonate. One mutant (MTC25) was markedly sensitive to mitomycin C but was unaffected as regards UV sensitivity; another mutant (UVS9) was sensitive to UV radiation but was only moderately sensitive to mitomycin C. Caffeine decreased the survival after UV-irradiation of the wild-type, MTC25 and UVS9 strains by the same relative amount. Aerobic liquid holding recovery occurred in each of the three strains. The MTC25 and UVS9 mutants showed reduced host cell phage reactivation. The wild-type, MTC25 and UVS9 strains all showed UV- and H2O2-induced phage reactivation. The physiological characterization of the MTC25 and UVS9 mutants indicates that it is possible to differentiate between mechanisms for the repair of mitomycin C- and UV-induced DNA damage in B. fragilis.  相似文献   

16.
Summary Four genes concerned with the resistance of wild-type Micrococcus radiodurans to the lethal action of mitomycin-C (MTC), mtcA, mtcB, uvsA and uvsB, have been identified by isolating mutants sensitive to MTC.Two strains of M. radiodurans, 302 and 262 carrying mutations in mtcA and mtcB respectively, are between forty and sixty times as sensitive as the wild-type to MTC, only slightly more sensitive than the wild-type to ionizing () radiation and have the same resistance as the wild-type to ultraviolet (u.v.) radiation. Strain 302 can be transformed at a high frequency to wild-type resistance to MTC with DNA from strain 262, and vice versa, indicating that mtcA and mtcB have different genetic locations.Two further strains of M. radiodurans, 303 and 263 having mutations in uvsA and uvsB respectively are only from four to eight times as sensitive as the wild-type to MTC, seven to thirteen times as sensitive to -radiation but between twenty to thirty-three times as sensitive to u.v. radiation. Strain 303 can be transformed with DNA from strain 263, or vice versa, to wild-type resistance to u.v. radiation, implying that uvsA and uvsB also have different genetic locations. M. radiodurans strain 301 which is mutant in both mtcA and uvsA, and strain 261 which is mutant in mtcB and uvsB are twenty to forty times as sensitive as the wild-type to both MTC and u.v. radiation and seven to ten times as sensitive to radiation. Neither mtcA and uvsA nor mtcB and uvsB are closely linked.None of the mutant strains is deficient in recombination, as measured by transformation. The repair of MTC-induced DNA damage in M. radiodurans must be different from that described for Escherichia coli.  相似文献   

17.
Summary The recombination proficiency of three recipient strains of Escherichia coli K 12 carrying different plasmids was investigated by conjugal mating with Hfr Cavalli. Some plasmids (e.g. R1drd 19, R6K) caused a marked reduction in the yield of recombinants formed in crosses with Hfr but did not reduce the ability of host strains to accept plasmid F104. The effect of plasmids on recombination was host-dependent. In Hfr crosses with AB1157 (R1-19) used as a recipient the linkage between selected and unselected proximal markers of the donor was sharply decreased. Plasmid R1-19 also decreased the yield of recombinants formed by recF, recL, and recB recC sbcA mutants, showed no effect on the recombination proficiency of recB recC sbcB mutant, and increased the recombination proficiency of recB, recB recC sbcB recF, and recB recC sbcB recL mutants. An ATP-dependent exonuclease activity was found in all tested recB recC mutants carrying plasmid R1-19, while this plasmid did not affect the activity of exonuclease I in strain AB1157 and its rec derivatives. The same plasmid was also found to protect different rec derivatives of the strain AB1157 against the lethal action of UV light. We suppose that a new ATP-dependent exonuclease determined by R1-19 plays a role in both repair and recombination of the host through the substitution of or competition with the exoV coded for by the genes recB and recC.  相似文献   

18.
Isolation of Arabidopsis thaliana mutants hypersensitive to gamma radiation   总被引:4,自引:0,他引:4  
A screening method for mutants of Arabidopsis thaliana hypersensitive to -radiation has been devised. Plants grown from ethyl methanesulfonate (EMS)-treated seeds were irradiated at the seedling stage, which is highly radiosensitive due to extensive cell division. Severe growth inhibition of mutant plants by a -ray dose which only slightly affects wild-type plants was the selective criterion. Twelve true-breeding hyper-sensitive lines were isolated from a total of 3394 screened plants. Genetic analysis of five of the lines revealed five new genes, designated RAD1-RAD5. These Arabidopsis RAD mutants are phenotypically similar to mutants in the RAD52 epistasis group of Saccharomyces cerevisiae, which are highly sensitive to ionizing radiation but not hypersensitive to UV light. One possibility is that the Arabidopsis mutants are defective in a nonhomologous or illegitimate recombination mechanism used by plants for repair of chromosome breaks.  相似文献   

19.
Wild-type strains of Streptococcus pneumoniae were non-mutable by UV radiation and thymidine starvation. Moreover, UV-irradiated pneumococcal ω2 phages were not reactivated in an irradiated host. This suggests that, in pneumococcus, there is no efficient inducible repair process similar to the SOS repair described in detail for E. coli. We also report that mutations cannot be induced by a process thought to be linked to competence during transformation with isogenic wild-type DNA either on wild-type strains or in strains in which the hex function of excision and repair of mismatched bases in inactive.  相似文献   

20.
Two genes of Aspergillus nidulans are known to function in UV mutagenesis, but have been assigned to different epistasis groups: uvsC, which is also required for meiosis and mitotic recombination, and uvsI, which may have no other function. To clarify their role in error-prone repair and to investigate their interaction, uvsI and uvsC single and uvsI;uvsC double mutant strains were further tested for mutagen sensitivities and characterized for effects on mutation. Spontaneous and induced frequencies were compared in forward and reverse mutation assays. All results confirmed that uvsI and uvsC are members of different epistasis groups, and demonstrated that these uvs mutants have very different defects in UV mutagenesis. The uvsI strains showed wild-type frequencies in all forward mutation tests, but greatly reduced spontaneous and UV-induced reversion of some, but not other, point mutations. In contrast, uvsC had similar effects in all assay systems: namely pronounced mutator effects and greatly reduced UV mutagenesis. Interestingly, the uvsI;uvsC double mutant strains differed from both single mutants; they clearly showed synergism for all types of reversion tested: none were ever obtained spontaneously, nor after induction by UV or EMS (ethylmethane sulfonate). Based on these results, we conclude that uvsI is active in a mutation-specific, specialized error-prone repair process in Aspergillus. In contrast, uvsC, which is now known to show sequence homology to recA, has a basic function in mutagenic UV repair in addition to recombinational repair, similar to recA of Escherichia coli. Received: 23 September 1996 / Accepted: 2 December 1996  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号