首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
An evaluation of the role of invertebrate (Leptodora kindtii) versus vertebrate (juvenile fish) predators in the dynamics of filtering zooplankton (Daphnia sp.) in the pelagic zone of the Sulejow Reservoir was conducted during summer from 1994 to 1996. Leptodora kindtii appeared in high densities (mid-July: 2–6 ind. l?1) in the pelagic zone. Its predation impact on the dominant filtering zooplankter population Daphnia cucullata, expressed by consumption, was significant and accounted for a reduction of 10 to 51% of Daphnia biomass. Although D. cucullata was a preferred food of juvenile pikeperch in June, due to low biomass, these fish were able to eliminate daily only 0.1–5.4% of Daphnia biomass in the pelagic zone. Thus, the role of juvenile fish in the midsummer decline of D. cucullata density in the pelagic zone seems to be much smaller than that of Leptodora kindtii.  相似文献   

2.
Over a two-year period, each of the three Daphnia species in two lakes with different pressure by fish and invertebrate predators exhibited different defensive reactions: predator avoidance in space (Daphnia hyalina), seasonal morphological changes (Daphnia cucullata), and a combination of both (Daphnia cristata). Body size and general susceptibility to predation, combined with predators' preferences were most likely responsible for the kind of defence in each of the three Daphnia.  相似文献   

3.
As part of a research programme on the food chains in Tjeukemeer, the Daphnia hyalina and Daphnia cucullata populations were studied for three successive years. To analyse the factors regulating the production of these two species, their population parameters (density, size distribution, fecundity) and population dynamics (birth rate, mortality rate) were studied and related to environmental factors. Since Daphnia in Tjeukemeer shows continuous recruitment, the population dynamics model INSTAR was developed and used to integrate field data with laboratory data on development rates and length-weight relationships. The dynamics of the Daphnia species are mainly regulated by temperature and fish predation, the latter affects both birth rate and mortality. Total annual Daphnia production was 3.1–6.9 g org. dry wt M–2, and annual P/B ratio ranged from 25 to 40 for D. cucullata and from 45 to 49 for D. hyalina.  相似文献   

4.
Piet Spaak 《Hydrobiologia》1995,307(1-3):283-289
Recent studies have shown that Daphnia hybrids are intermediate to their parental species for several life history traits, and that they combine advantageous traits of the parental species, thereby decreasing their risk of being preyed upon by planktivorous fish. In this study D. galeata, D. cucullata and their interspecific hybrid are compared with respect to cyclomorphosis and juvenile growth as a potential mechanism to avoid invertebrate predation. Helmets and tail spines are known to reduce predation risk, whereas fast juvenile growth reduces the period that Daphnia are vulnerable to predation. In laboratory cultures, I tested the hypothesis that, with regard to cyclomorphosis, juvenile hybrids are more comparable to the juveniles of D. cucullata, and with respect to growth rate, they are more comparable to D. galeata. The hybrid did not differ significantly from D. galeata in the time needed to reach 0.9 mm body length. In contrast, the relative spine and helmet length of juvenile hybrids were more comparable with those of D. cucullata, whereas in adult instars these characters were more similar to D. galeata. Thus during the first juvenile instars, the hybrids combine the relative long helmet and spine of D. cucullata, with the faster growth of D. galeata. This combination of characteristics might reduce hybrid vulnerability to invertebrate predation in field situations.  相似文献   

5.
1. Different behavioural responses of planktonic animals to their main predators, fish, have been reported from shallow lakes. In north temperate lakes, large‐bodied zooplankton may seek refuge from predation among macrophytes, whereas in subtropical lakes, avoidance of macrophytes has been observed. The prevalent behaviour probably depends on the characteristics of the fish community, which in Mediterranean lakes is typically dispersed in both the open water zone and in the littoral, as in temperate lakes, and is dominated by small size classes, as in subtropical lakes. 2. We performed ‘habitat choice’ experiments to test the response of Daphnia magna to predation cues at both the horizontal and vertical level by mimicking a ‘shallow littoral’ zone with plants and a ‘deeper pelagic’ zone with sediments. 3. Initial separate response experiments showed that natural plants, artificial plants and predation cues all repelled D. magna in the absence of other stimuli, while sediments alone did not trigger any significant response by D. magna. 4. The habitat choice experiments showed that, in the presence of predation cues and absence of plants, Daphnia moved towards areas with sediment. In the presence of both plants and sediments, Daphnia moved away from the plants towards the sediments under both shallow and deep water treatment conditions. 5. Based on these results, we suggest that Daphnia in Mediterranean shallow lakes avoid submerged macrophytes and instead prefer to hide near the sediment when exposed to predation risk, as also observed in subtropical shallow lakes. This pattern is not likely to change with water level alterations, a common feature of lakes in the region, even if the effectiveness of the refuge may be reduced.  相似文献   

6.
Wagner A  Benndorf J 《Oecologia》2007,151(2):351-364
Temperature-driven changes in interactions between populations are crucial to the estimation of the impact of global warming on aquatic food webs. We analysed inter-annual variability in two data sets from Bautzen reservoir, Germany. In a long-term data set (1981–1999) we examined the pelagic phenology of Daphnia galeata, a keystone species, the invertebrate predator Leptodora kindtii, phytoplankton and Secchi depth in relation to water temperature and the North Atlantic Oscillation index. In a short-term data set (1995–1998) we examined food web relations, particularly the consumption of D. galeata by young-of-the-year (YOY) percids and L. kindtii and rates of population change of D. galeata (abundance, recruitment pattern and non-consumptive mortality). The start of the clear-water stage (CWS) was correlated with winter temperatures. It started 5.8 days earlier per degree warming after warm winters (mean January–March temperature ≥2.5°C) compared to cold winters (mean temperature <2.5°C). However, the end of the CWS remained relatively constant. Predation by L. kindtii and YOY percids on D. galeata started distinctly earlier, i.e. by 13.0 and 6.5 days per degree warming, respectively, in years when the average May temperature was high (≥14°C) compared to years when it was low (<14°C). Significant reductions of Daphnia abundance in midsummer occurred only in years in which the mean May temperature exceeded 14°C. This temperature regime resulted in a match of over-exploitation of food resources by Daphnia during the CWS and strong predation by YOY percids and L. kindtii. Consumptive mortality increased at higher rates with a rise in temperature than net recruitment, resulting in lower Daphnia densities at the end of the CWS. Our data suggest that even low warming by 1.7°C during a short, but critical seasonal period, resulting in the coincidence of two or more factors adversely affecting a keystone species, such as Daphnia, may induce changes in whole lake food webs and thus alter entire ecosystems. Priority programme of the German Research Foundation—contribution 9.  相似文献   

7.
Dense swarms of Daphnia longispina (up to 4000 animals l–1) were recorded along the littoral zone in a lake where Chaoborus flavicans is considered the main predator. D. longispina coexisted with D. pulex, but there were no D. pulex in the littoral swarms. Swarms were less dense at night (about 1/10 the density), and D. longispina exhibited diel horizontal migrations by aggregating in the littoral during the day and spreading out at night. Laboratory experiments showed that Chaoborus capture efficiency on juvenile daphnids was higher in the light compared to darkness, and that Daphnia exhibited a behavioural response to water that had previously contained Chaoborus. We conclude that predation from Chaoborus can be an important factor affecting the distribution patterns of Daphnia observed in this lake. The behavioural experiments indicated that this influence might be partly mediated by chemical agents.  相似文献   

8.
Previous studies confirmed the presence of melatonin in Daphnia magna and demonstrated diurnal fluctuations in its concentration. It is also known that in several invertebrate species, melatonin affects locomotor activity. We tested the hypothesis that this hormone is involved in the regulation of Daphnia diel vertical migration (DVM) behaviour that is well recognized as the adaptive response to predation threat. Using ‘plankton organs’, we studied the effect of three concentrations of exogenous melatonin (10−5, 10−7, 10−9 M) on DVM of both female and male D. magna in the presence or absence of chemical cue (kairomone) of planktivorous fish. Depth distribution was measured six times a day, using infrared-sensitive closed circuit television cameras. Our results showed a significant effect of melatonin on the mean depth of experimental populations, both males and females, but only when melatonin was combined with fish kairomone. Females stayed, on average, closer to the surface than males, both responding to the presence of kairomone by descending to deeper strata. In the presence of exogenous melatonin and with the threat of predation, Daphnia stayed closer to the surface and their distribution was more variable than that of individuals, which were exposed to the kairomone alone. Approaching the surface in the presence of predation threat seems to be maladaptive. We postulate the role of melatonin as a stress signal inhibitor in molecular pathways of response to predation threat in Cladocera.  相似文献   

9.
Studies on spatial avoidance behaviour of predators by prey often ignored the fact that prey typically face multiple predators which themselves interact and show a spatial pattern in abundance and predation rates (PRs). In a series of laboratory experiments, we investigated predation risk (PRI) and horizontal migration of the cladoceran Daphnia magna between open water and vegetation in response to two important invertebrate predators with a contrasting spatial distribution: pelagic Choaborus and vegetation-associated Ischnura. As expected, PRI by Chaoborus was higher in open water due to higher numbers and higher PRs of Chaoborus, while for Ischnura, PRI was highest in the vegetation due to higher densities, despite lower PRs of Ischnura. In accordance with this, Daphnia moved into the vegetation in the presence of the pelagic Chaoborus alone. In the presence of Ischnura alone, however, Daphnia showed no response. We hypothesize this may be the result of a constitutive behaviour of Daphnia to avoid pelagic fish, which impedes a response to the open water. In the combined predator treatment, Daphnia migrated to the open water zone. The increased risk of predation in the vegetation, due to a facilitating effect of Chaoborus on Ischnura PRs is believed to have caused this migration of the Daphnia. This response of Daphnia declined through time and Daphnia moved toward the vegetation. A decline in the activity of the Ischnura larvae through time may have switched the risk balance in favour of the vegetation environment.  相似文献   

10.
1. In shallow temperate lakes, submerged plants often provide refuge for pelagic zooplankton against fish predation, a mechanism with potential strong cascading effects on water transparency and on the entire ecosystem. In (sub)tropical lakes, however, the interaction between aquatic plants and predation may be more complex, particularly because fish density is high within the plant beds in such systems. 2. Using laboratory ‘habitat choice’ experiments, we determined the effects of three (sub)tropical free‐floating plants, Eichhornia crassipes, Pistia stratiotes and Salvinia auriculata and the cosmopolitan submerged Ceratophyllum demersum, on horizontal movement by the water flea Daphnia obtusa. We tested for avoidance of plants in the absence and presence of alarm signals from crushed conspecifics and chemical cues from the fish Cnesterodon decemmaculatus, the fish have been subjected to different feeding regimes. 3. In the absence of other stimuli, D. obtusa strongly avoided the plants and the crushed conspecifics, as expected. However, the response to fish was insignificant regardless of their previous feeding regime. The avoidance of free‐floating plants was more pronounced than that of the submerged plant. Contrary to predictions based on research in temperate lakes, Daphnia did not take refuge among the plants but rather swam away from them when exposed simultaneously to plants and alarm signals. 4. We hypothesise that the avoidance of plants by D. obtusa may ultimately be attributable to an expectedly higher predation risk within the plants than in the pelagic, because of a high density of associated zooplanktivorous fish in the former. In the (sub)tropics, therefore, aquatic plants and particularly the free‐floating ones, may not promote cascading effects via Daphnia grazing on phytoplankton as seen in temperate eutrophic lakes.  相似文献   

11.
Instar-specific mortalities of Daphnia hyalina and D.cucullatawere studied from May 19 to September 29, 1988 in combinationwith invertebrate predator and phytoplankton abundance. Simultaneouslife-table experiments were conducted under semi-natural conditionsin the laboratory to estimate juvenile mortality in a predator-freeenvironment. Juvenile mortality by predation was calculatedas the difference between juvenile mortality in the field andin the experiments and was the most important factor for thedifferences in abundance of the two species. For D.hyalina juvenilemortality was higher in early summer and probably caused byselective predation by Chaoborus flavicans. Predation by Leptodorakindtii was probably more important during the rest of the summer.Estimated mortality by predation adequately explained juvenilemortality, except for a 3-week period in August. Decreasingflagellate densities in July were accompanied by increased juvenilemortalities of D.hyalina and D.cucullata in the life-table experimentsin August and coincided with a Daphnia population decrease.  相似文献   

12.
We analysed the spatio-temporal distribution of zooplankton along a profile of 10 stations from the shore to the pelagic zone from April to September 1988, the period when the larvae and juveniles Rutilus rutilus, the most abundant species in the Lake, are in the littoral zone. The digestive tracts of the young roach were analysed. They fed essentially on rotifers and on cladocerans. For comparison, zooplankton was also analysed at one littoral area without fish fry. There was an increase of cladoceran density from the vegetated nearshore zone to the offshore zone. Considering the density of Bosmina longirostris, Daphnia longispina, Chydorus sphaericus and Ceriodaphnia quadrangula, we observed a different distribution pattern in the course of the year. In the nearshore zone, the relative abundance of small species, Bosmina and Chydorus, was much higher than that of the larger Daphnia. From April to September, predation pressure mainly affected the smallest species: in contrast to the inshore station without fish fry, the density of Bosmina decreased in May in the littoral with fish. Chydorus was concentrated in the littoral between February and April, then grew into the pelagic zone, where predation pressure obviously was low during the warm season. The number of Daphnia, which was eaten by the fish fry at any time, remained low in the nearshore zone, which suggests that the presence of fish may cause Daphnia to avoid this zone. Ceriodaphnia which was not affected by this predation, was scarce in the nearshore zone during mid-summer. The low density of the cladocerans in the nearshore zone is likely associated with vertebrate predation by roach fry and juveniles, the result of such a process being either a depletion in density of the prey, or an avoidance behaviour.  相似文献   

13.
  • 1 Daphnia may reach high population densities seasonally, or in patches, in lakes. To test the effects of chemicals released by high daphniid densities on their life‐history traits, nine species of Daphnia, D. magna, D. pulicaria, D. pulex, D. hyalina, D. galeata, D. laevis, D. lumholtzi, D. ambigua and D. cucullata, were grown in water from crowded Daphnia cultures in a flow‐through system in the presence of abundant food.
  • 2 Water from Daphnia at 85 L‐1 depressed growth rate, and lowered body size and clutch at first reproduction of six species of small‐bodied Daphnia (adult body length < 1.8 mm), but had no significant effects on larger species. Two clones of D. pulex differed in their growth rate in response to crowding, indicating that response patterns may vary within species.
  • 3 Chemicals released by crowded D. magna reduced tail spine length in D. lumholtzi and D. cucullata by 37% and 11%, respectively, and induced changes in carapace morphology in D. lumholtzi and D. ambigua.
  • 4 Chemicals released by crowded conspecifics may provide an additional, density‐dependent mechanism of population regulation; when large species of Daphnia coexist at a high population density with small species, these chemicals may reinforce the competitive advantage of large species.
  相似文献   

14.
1. In a laboratory batch culture experiment, a diapause response of Daphnia magna to a simulated threat of fish predation was tested at various light intensities, which under natural conditions determine potential vulnerability of Daphnia to visual planktivorous fish. 2. Under moderate light intensity (1.4 μmol m?2 s?1) that allows effective predation by fish, the proportion of females producing dormant eggs was significantly higher than under dim light conditions (0.001 μmol m?2 s?1) that are not favourable for visual detection of prey. Production of dormant eggs was not observed in complete darkness or in treatments missing fish kairomones, irrespective of tested light conditions. 3. The observed phenomenon is interpreted as a flexible response of prey to the conditional risk of predation assessed by Daphnia according to the presence of fish‐derived cues on the one hand and the presence of dark refugia on the other. Irrespective of the presence of fish kairomones, Daphnia may not produce resting eggs as long as a safe, dark, bottom zone is accessible.  相似文献   

15.
Neither Daphnia hyalina, Daphnia cristata, nor Daphnia cucullata vertically migrated in Lake Mikoajskie and Lake Majcz. We suggest that even under strong fish predation pressure there is no reason to migrate when seston is relatively homogenously distributed throughout the water column.  相似文献   

16.
The cladoceran Daphnia ambigua was exposed to both the insecticide carbaryl and the kairomone released from the predator Chaoborus simultaneously, and its morphological changes were analyzed. Daphnia developed helmets in response to the kairomone, but not in response to carbaryl at low (sublethal) concentrations (1–3 µg 1–1). However, the carbaryl enhanced the development of high helmets and prolonged the maintenance period of the helmets over instars in the presence of the kairomone. These results suggest that sublethal concentrations of the insecticide alter predator-prey interactions by inducing helmet formation in Daphnia, which may reduce vulnerability of the Daphnia to predation.  相似文献   

17.
Only recently ecologists started treating the previously separately considered benthic, littoral and pelagic zones of lake ecosystems as closely connected compartments. Here we study a link between organisms belonging to a different compartment – namely the pelagic and the littoral – through behavior in a series of laboratory experiments. Waterfleas of the genus Daphnia are inhabitants of the pelagic zone and suffer a high predation pressure from syntopic vertebrate predators (mainly fish). Presumably to escape this predation, they sometimes migrate in the day to the littoral to seek refuge within macrophytes and return to the pelagic at night. Zygopterans from the genus Ischnura do commonly co-occur in ponds with Daphnia and are known as opportunistic predators of Daphnia . In two initial experiments in microcosms in the lab we showed that Ischnura larvae are littoral predators strongly associated with macrophytes. Although we found that predation rates of individual Ischnura larvae on Daphnia are approximately 1.5 fold lower in macrophytes compared to open water, total predation from Ischnura on Daphnia per unit area is tenfold higher within macrophytes than in open water, making the open water a safer place for Daphnia with regard to Ischnura predation. In a third microcosm experiment we monitored horizontal distribution of Daphnia in the absence, presence and odor only of Ischnura larvae. After 2 hours, on average 10% less Daphnia remained within the vegetation when Ischnura larvae or only their odor were present compared to when Ischnura or their odor were absent. We interpret this as a behavioral anti-predation response of Daphnia to the presence of Ischnura larvae that seems primarily chemically mediated. The observed horizontal migration of the pelagic prey driven by the littoral predator may couple both lake compartments and may interact with the predator–prey relationships within the pelagic.  相似文献   

18.
Competition in natural populations of Daphnia   总被引:4,自引:0,他引:4  
Maarten Boersma 《Oecologia》1995,103(3):309-318
I investigated the competitive relationships between two species of Daphnia, D. galeata and D. cucullata, and their interspecific hybrid. The term hemispecific competition was introduced to describe competition between parental species and hybrids. In eutrophic Tjeukemeer both parental species were found to compete with the hybrid, whereas competition between D. galeata and D. cucullata seemed limited. Although the effect of competition on life history traits of daphnids may be profound, the influence of the competitors on the seasonal dynamics of the Daphnia species seems limited.  相似文献   

19.
1. The indirect effects of predators on lower trophic levels have been studied without much attention to phenotypically plastic traits of key food web components. Phenotypic plasticity among species creates phenotypic diversity over a changing environmental landscape. 2. We measured the indirect effects of planktivorous larval walleye (Stizostedion vitreum) on phytoplankton biomass through their effects on the dominant herbivore species, Daphnia pulicaria and D. mendotae. 3. Fish had no effect on phytoplankton biomass or overall Daphnia density. We observed a compensatory response to predation by functionally comparable species within a trophic level in the form of shifting dominance and coexistence of Daphnia species. We hypothesized that this phenotypically plastic response to predation decoupled a potential trophic cascade in this freshwater pelagic system. Daphnia pulicaria density decreased over time with fish predation, but D. mendotae density increased over time with fish predation. 4. Phenotypically plastic life history trait shifts and reproductive rates differed between species in fishless and fish enclosures, accounting for population trends. Daphnia pulicaria were also proportionally higher in walleye larvae stomachs than in the enclosures, indicating that walleye preferred to feed on D. pulcaria over D. mendotae. The resultant shift in dominance may partially explain the overall benign effect of fish on grazers and supports the hypothesis that trophic level diversity can decouple a trophic cascade.  相似文献   

20.
1. The exotic cladoceran Daphnia lumholtzi has recently invaded freshwater systems throughout the United States. Daphnia lumholtzi possesses extravagant head spines that are longer than those found on any other North American Daphnia. These spines are effective at reducing predation from many of the predators that are native to newly invaded habitats; however, they are plastic both in nature and in laboratory cultures. The purpose of this experiment was to better understand what environmental cues induce and maintain these effective predator‐deterrent spines. We conducted life‐table experiments on individual D. lumholtzi grown in water conditioned with an invertebrate insect predator, Chaoborus punctipennis, and water conditioned with a vertebrate fish predator, Lepomis macrochirus. 2. Daphnia lumholtzi exhibited morphological plasticity in response to kairomones released by both predators. However, direct exposure to predator kairomones during postembryonic development did not induce long spines in D. lumholtzi. In contrast, neonates produced from individuals exposed to Lepomis kairomones had significantly longer head and tail spines than neonates produced from control and Chaoborus individuals. These results suggest that there may be a maternal, or pre‐embryonic, effect of kairomone exposure on spine development in D. lumholtzi. 3. Independent of these morphological shifts, D. lumholtzi also exhibited plasticity in life history characteristics in response to predator kairomones. For example, D. lumholtzi exhibited delayed reproduction in response to Chaoborus kairomones, and significantly more individuals produced resting eggs, or ephippia, in the presence of Lepomis kairomones.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号