首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
{{@ convertAbstractHtml(article.abstractinfoCn, "cn")}}    相似文献   

2.
从犬细小病毒/犬瘟热二联苗中提取CPV基因组,根据GenBank发表的CPV-VP2基因序列设计一对引物,对VP2基因进行PCR扩增,并克隆至TA Cloning(R) Kit Dual Promoter( pCRⅡ),获得克隆栽体pCRⅡ-VP2.将重组质粒亚克隆到枯草芽孢杆菌表达载体pHT43上,获得重组表达栽体pHT43-VP2.经双酶切鉴定及序列比对分析后,将pHT43-VP2载体转化入枯草芽孢杆菌WB600中进行诱导表达,产物使用PAGE胶蛋白回收法纯化.结果表明,在69 kD处存在目的蛋白,ELISA检测发现,纯化后的目的蛋白与阳性血清存在特异性反应.  相似文献   

3.
孙静  陈建华 《生物技术》2007,17(3):79-83
枯草芽孢杆菌是典型的模式微生物,其芽孢形成过程一直是细胞分化领域研究的热点,近年来取得了重大进展。其形成芽孢时,细胞进行不对称分裂而产生两个子细胞:前芽孢(forespore)和母细胞(mother cell),它们的基因表达程序是完全不同的,但又相互影响。枯草芽孢杆菌被广泛应用于各种酶的生产,这些酶主要是在母细胞中合成。该文综述了母细胞中基因表达的调控机制。母细胞中基因表达的变化是由母细胞特异性转录因子Spo0A、σE和σK调控的。  相似文献   

4.
杀虫防病基因工程枯草芽孢杆菌的构建   总被引:21,自引:0,他引:21  
分别以枯草芽孢杆菌大肠杆菌穿梭质粒pHB201和pRP22为载体,通过感受态转化方法,将Bt-HD-1杀虫蛋白基因cry1Ac导入了水稻纹枯病生防菌株枯草芽孢杆菌B916。工程菌株质粒酶切电泳分析、Southern印迹分析和杀虫生物活性测定结果证实了cry1Ac基因的导入及其在B916中的有效表达。抑菌测定证明工程菌株保持了原野生型菌株良好的抑菌活性。质粒稳定性分析表明以载体pRP22构建的工程菌株Bs2249具有良好的稳定性,而以载体pBH201构建的工程菌株Bs2014则不稳定。此外,实验还证实Bt基因的导入与表达对B916的生长没有不良影响。  相似文献   

5.
枯草芽孢杆菌感受态细胞的制备及质粒转化方法研究   总被引:1,自引:0,他引:1  
为便于枯草芽孢杆菌工业化生产应用,对Spizizen创立的枯草芽孢杆菌DNA转化方法进行改进.用GMI和GMII溶液处理枯草芽孢杆菌野生型菌株BS501a、营养缺陷型突变株DBl342和非营养缺陷型突变株WB800,用改进的方法制备感受态细胞,用7.5kb质粒pSBPTQ进行转化,并研究RNA、酵母粉、水解酪蛋白、培养方法对枯草芽孢杆菌质粒转化的影响.结果表明,该方法适用于不同基因型枯草芽孢杆菌的质粒转化,营养缺陷型突变株DBl342的转化率为750 CFU/μg/DNA,非营养缺陷型突变株WB800转化率为1 070 CFU/xg DNA,野生型菌株BS501a转化率为270 CFU/μg/DNA.根据影响转化效率的因素,推测在该方法中,枯草芽孢杆菌质粒转化原理:一定生物量的枯草芽孢杆菌在外界营养条件和钙、镁离子作用下,细胞壁和细胞膜形成缺陷,使外源DNA转入枯草芽孢杆菌细胞内.  相似文献   

6.
作为一种食品安全级的典型工业模式微生物,枯草芽孢杆菌Bacillus subtilis由于具有非致病性、胞外分泌蛋白能力强以及无明显的密码子偏爱性等特点,现已被广泛应用于代谢工程领域。近年来,随着分子生物学和基因工程技术等的迅速发展,多种研究策略和工具被用于构建枯草芽孢杆菌底盘细胞进行生物制品的高效合成。文中从启动子工程、基因编辑、基因回路、辅因子工程以及途径酶组装等方面介绍枯草芽孢杆菌在代谢工程领域的研究历程,并总结其在生物制品生产中的相关应用,最后对其未来的研究方向进行展望。  相似文献   

7.
大蒜汁对枯草芽孢杆菌抑制作用的研究   总被引:2,自引:0,他引:2  
通过测定菌体浓度、抑菌圈直径和2,6-吡啶二羧酸(DPA)含量,研究大蒜汁对枯草芽孢杆菌(BS)的营养体及芽孢生长、发芽的影响,并采用响应面分析法优化确定大蒜汁抑菌适宜处理条件.结果表明:(1)大蒜汁对BS的最低抑菌浓度(MIC)和最低杀菌浓度(MBC)分别为0.4%和1%;(2)大蒜汁抑制作用主要是延长了BS的生长延缓期,0.3%的大蒜汁可使BS延缓期增加12 h;(3)大蒜汁对BS的芽孢和DPA形成有明显的抑制作用,但对芽孢的发芽无抑制作用;(4)加热温度超过35℃、时间大于5 h时处理的大蒜汁,对BS的抑制作用明显降低.在pH 3~8范围的大蒜汁都有很好的抑菌活性,但pH>8.5时抑菌活性急剧下降;(5)响应面试验分析法优化确立了大蒜汁对BS抑制的二次回归方程和适宜处理条件,即在pH 4.5、温度45℃加热处理5 h的大蒜汁抑菌效果最好.  相似文献   

8.
9.
为揭示草鱼(Ctenopharyngodon idellus)树突状细胞(Dendritic cells)的生物学特性及益生芽孢杆菌对其免疫功能的影响,研究通过草鱼体外细胞培养技术分离获得草鱼DCs,对其形态学特征、生物学功能及膜表面标记分子的表达进行了分析鉴定; RT-PCR检测了益生芽孢杆菌对草鱼DCs免疫相关细胞因子表达的影响。结果表明草鱼DCs具有典型的树突状形态,可有效地激活T淋巴细胞的增殖并具有迁移能力。LPS刺激可促进其成熟过程,显著提升膜表面标记分子CD80/86、CD83的表达。这表明草鱼DCs和哺乳动物DCs在形态和功能上具有高度相似性。RT-PCR结果显示,在体外条件下使用紫外照射灭活的益生枯草芽孢杆菌对草鱼DCs进行刺激后,抗炎性因子IL-4, IL-10的表达水平显著提升(P<0.05),并在12h时达到峰值。这表明枯草芽孢杆菌可通过促进树突状细胞分泌抗炎性因子来影响其免疫功能。以上结果为进一步研究鱼类树突状细胞的生物学特性及益生芽孢杆菌对其免疫功能的影响提供了重要的依据。  相似文献   

10.
枯草杆菌全名枯草芽孢杆菌(Bacillus subtilis),因其优秀的益生特性及芽孢良好的抗逆性而备受研究者青睐,由于芽孢的特殊结构及独特的生理特性,是酶和免疫原等外源蛋白的理想锚定点。采用枯草杆菌进行芽孢表面展示被认为是表达高活性和高稳定性的外源蛋白的方法之一。本文主要对枯草杆菌芽孢表面展示抗原蛋白以生产黏膜疫苗的策略和应用前景进行综述。  相似文献   

11.
The protective efficacy of oral administration of VP28 using Bacillus subtilis as vehicles (rVP28-bs) in shrimp, Fenneropenaeus chinensis, upon challenge with white spot syndrome virus (WSSV) was investigated. The calculated relative percent survival (RPS) value of rVP28-bs fed shrimp was 83.3% when challenged on the 14th day post-administration, which is significantly higher (p < 0.001) than that of the group administered recombinant Escherichia coli over-expressing rVP28 (rVP28-e21). After immunization, activities of phenoloxidase (PO), superoxide dismutase (SOD) and inducible nitric oxide synthase (iNOS) in hemolymph were analyzed. It was found that the supplementation of rVP28-bs into shrimp food pellets resulted in the most pronounced increase of iNOS activity (p < 0.001), but had the least influence on activities of PO and SOD. Besides, in the shrimp orally administered with rVP28-bs, the caspase-3 activity was one-fifth that of the control, though the signs of apoptosis (chromatin margination, nuclear fragmentation and apoptotic bodies) could not be observed by transmission electron microscope (TEM). These results suggest that by oral delivery of rVP28-bs, shrimp showed significant resistance to WSSV and an effect on the innate immune system of shrimp. The remarkably enhanced level of iNOS after rVP28-bs administration might be responsible for antiviral defense in shrimp.  相似文献   

12.
13.
Aims: To achieve high‐level expression and secretion of active VP28 directed by a processing‐efficient signal peptide in Bacillus subtilis WB600 and exploit the possibility of obtaining an oral vaccine against white spot syndrome virus (WSSV) using vegetative cells or spores as delivery vehicles. Methods and Results: The polymerase chain reaction (PCR)‐amplified vp28 gene was inserted into a shuttle expression vector with a novel signal peptide sequence. After electro‐transformation, time‐courses for recombinant VP28 (rVP28) secretion level in B. subtilis WB600 were analysed. Crayfish were divided into three groups subsequently challenged by 7‐h immersion at different time points after vaccination. Subgroups including 20 inter‐moult crayfish with an average weight of 15 g in triplicate were vaccinated by feeding coated food pellets with vegetative cells or spores for 20 days. Vaccination trials showed that rVP28 by spore delivery induced a higher resistance than using vegetative cells. Challenged at 14 days postvaccination, the relative per cent survival (RPS) values of groups of rVP28‐bv and rVP28‐bs was 51·7% and 78·3%, respectively. Conclusions: The recombinant B. subtilis strain with the ability of high‐level secretion of rVP28 can evoke protection of crayfish against WSSV by oral delivery. Significance and Impact of the Study: Oral vaccination by the B. subtilis vehicle containing VP28 opens a new way for designing practical vaccines to control WSSV.  相似文献   

14.
An experimental protocol based on a mathematical epidemiology model was developed to study the transmission, virulence, and recovery rates of White Spot Syndrome Virus (WSSV). Two modes of transmission were compared for WSSV in Litopenaeus vannamei. We compared transmission by ingestion of infected cadavers to transmission by cohabitation with infected animals. In addition, we compared the ingestion transmission of WSSV in L. vannamei and in L. setiferus. Finally, we compared the virulence and recovery rates of WSSV in L. vannamei and L. setiferus. The transmission rate of WSSV to L. vannamei by cohabitation was 0.01. The transmission rate by ingestion of infected cadavers was over an order of magnitude larger at 0.46, suggesting that cohabitation is a much less important mode of transmission for WSSV. A statistically significant difference was detected between the estimates of ingestion transmission of L. vannamei (0.46) and those of L. setiferus (0.84), yet no differences in the virulence or recovery rates were detected between hosts. The overall estimated virulence rate was 0.34, and the overall estimated recovery rate from a WSSV infection was 0.007 for both species. According to epidemiological theory the threshold density of hosts necessary for an epidemic to occur is directly related to the virulence and recovery rates and inversely related to the transmission rate. Therefore, the epidemic threshold density may be lower for ingestion transmission than cohabitation transmission and lower for L. setiferus than for L. vannamei.  相似文献   

15.
Syed MS  Kwang J 《PloS one》2011,6(11):e26428
White Spot Syndrome Virus (WSSV) is an infectious pathogen of shrimp and other crustaceans, and neither effective vaccines nor adequate treatments are currently available. WSSV is an enveloped dsDNA virus, and one of its major envelope proteins, VP28, plays a pivotal role in WSSV infection. In an attempt to develop a vaccine against WSSV, we inserted the VP28 gene into a baculovirus vector tailored to express VP28 on the baculovirus surface under the WSSV ie1 promoter (Bac-VP28). The Bac-VP28 incorporated abundant quantity (65.3 μg/ml) of VP28. Shrimp were treated by oral and immersion vaccination with either Bac-VP28 or wild-type baculovirus (Bac-wt). The treatment was followed by challenge with WSSV after 3 and 15 days. Bac-VP28 vaccinated shrimp showed significantly higher survival rates (oral: 81.7% and 76.7%; immersion: 75% and 68.4%) than Bac-wt or non-treated shrimp (100% mortality). To verify the protective effects of Bac-VP28, we examined in vivo expression of VP28 by immunohistochemistry and quantified the WSSV copy number by qPCR. In addition to that, we quantified the expression levels shrimp genes LGBP and STAT by real-time RT-PCR from the samples obtained from Bac-VP28 vaccinated shrimp at different duration of vaccine regime. Our findings indicate that oral vaccination of shrimp with Bac-VP28 is an attractive preventative measure against WSSV infection that can be used in the field.  相似文献   

16.
17.
An in vivo expression system to produce large amounts of virus-derived dsRNAs in bacteria to provide a practical control of white spot syndrome virus (WSSV) in shrimp was developed. The bacterially synthesized dsRNA specific to VP28 gene of WSSV promoted gene-specific interference with the WSSV infection in shrimp. Virus infectivity was significantly reduced in WSSV-challenged shrimp injected with VP28-dsRNA and 100% survival was recorded. The inhibition of the expression of WSSV VP28 gene in experimentally challenged animals by VP28-dsRNA was confirmed by RT-PCR and Western blot analyses. Furthermore, we have demonstrated the efficacy of bacterially expressed VP28-dsRNA to silence VP28 gene expression in SISK cell line transfected with eukaryotic expression vector (pcDNA3.1) inserted with VP28 gene of WSSV. The expression level of VP28 gene in SISK cells was determined by fluorescent microscopy and ELISA. The results showed that the expression was significantly reduced in cells transfected with VP28dsRNA, whereas the cells transected with pcDNA-VP28 alone showed higher expression. The in vivo production of dsRNA using prokaryotic expression system could be an alternative to in vitro method for large-scale production of dsRNA corresponding to VP28 gene of WSSV for practical application to control the WSSV in shrimp farming.  相似文献   

18.
BALB/c mice were immunized with purified White spot syndrome virus (WSSV). Six monoclonal antibody cell lines were selected by ELISA with VP28 protein expressed in E. coli. in vitro neutralization experiments showed that 4 of them could inhibit the virus infection in crayfish. Western-blot suggested that all these monoclonal antibodies were against the conformational structure of VP28. The monoclonal antibody 7B4 was labeled with colloidal gold particles and used to locate the VP28 on virus envelope by immunogold labeling. These monoclonal antibodies could be used to develop immun-ological diagnosis methods for WSSV infection.  相似文献   

19.
20.
The gene encoding the VP28 envelope protein of White spot syndrome virus (WSSV) was cloned into expression vector pET-30a and transformed into the Escherichia coli strain BL21.After induction,the recombinant VP28 (rVP28) protein was purified and then used to immunize Balb/c mice for monoclonal antibody (MAb) production.It was observed by immuno-electron microscopy the MAbs specific to rVP28 could recognize native VP28 target epitopes of WSSV and dot-blot analysis was used to detect natural WSSV infection.Co...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号