首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Previous work in terrestrial and aquatic ecosystems has suggested that the relationship between breakdown rates of leaf litter and plant species richness may change unpredictability due to non‐additive effects mediated by the presence of key‐species. By using single‐ and mixed‐species leaf bags (7 possible combinations of three litter species differing in toughness; common alder [Alnus glutinosa ], sweet chestnut [Castanea sativa ], and Spanish oak [Quercus ilex ilex ]), I tested whether leaf species diversity, measured as richness and composition, affects breakdown dynamics and macroinvertebrate colonization (abundance, richness and composition) during 90 days incubation in a stream. Decomposition rates were additive, i.e., observed decomposition rates were not different from expected ones. However, decomposition rates of individual leaf species were affected by the mixture, i.e., there were species‐specific responses to mixing litter. The invertebrate communities colonizing the mixtures were not richer and more diverse in mixtures than in single‐species leaf bags. On the opposite, mixing leaf species had a negative, non‐additive effect on rates of shredder and taxa colonization and on macroinvertebrate diversity. (© 2009 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

2.
1. Interest in the effects of biodiversity on ecosystem processes is increasing, stimulated by the global species decline. Different hypotheses about the biodiversity‐ecosystem functioning (BEF) relationship have been put forward and various underlying mechanisms proposed for different ecosystems. 2. We investigated BEF relationships and the role of species interactions in laboratory experiments focussing on aquatic decomposition. Species richness at three different trophic levels (leaf detritus, detritus‐colonising fungi and invertebrate detritivores) was manipulated, and its effects on leaf mass loss and fungal growth were assessed in two experiments. In the first, monocultures and mixtures of reed (Phragmites australis), alder (Alnus glutinosa) and oak (Quercus cerris) leaf disks were incubated with zero, one or eight fungal species. Leaf mixtures were also incubated with combinations of three and five fungal species. In the second experiment, reed leaf disks were incubated with all eight fungal species and offered to combinations of one, two, three, four or five macroinvertebrate detritivores with different feeding modes. 3. Results from the first experiment showed that leaf mass loss was directly related to fungal mass and varied unimodally with the number of fungi, with a maximum rate attained at intermediate diversity in oak and reed and at maximum diversity in alder (the fastest decomposing leaf). 4. Mixing litter species stimulated fungal growth but interactions between species of fungi slowed down decomposition. In contrast, mixtures of macroinvertebrate detritivores reduced fungal mass and accelerated leaf decomposition. Possible explanations of the positive relationship between detritivore diversity and decomposition are a reduction in fungal dominance and a differentiation in the use of different resource patches promoted by higher fungal diversity. 5. In conclusion, the results show a general increase in decomposition rate with increasing biodiversity that is controlled by within‐ and between‐trophic level interactions, and support the hypothesis of both bottom‐up and top‐down effects of diversity on this process.  相似文献   

3.
Fazi  Stefano  Rossi  Loreto 《Hydrobiologia》2000,435(1-3):127-134
The effect of macroinvertebrate detritivore density on the mass loss rates of leaf litter of Alnus glutinosa (alder) was assessed. Experimental freshwater macrocosms, with increasing densities of four species of macroinvertebrate detritivores belonging to two functional groups (shredders and scrapers), were set up outdoors. The litter bag technique was used to assess decomposition rates of alder leaves. Indirect effects of increasing density of macroinvertebrates on phytoplankton standing crop in the water column were investigated by analysing Chlorophyll a concentration. Decomposition rate increased as animal density increased, although a continuous increase in detritivores density resulted in a discrete, step-wise increase of the decomposition rates. Animal colonisation followed an exponential pattern in low-medium density treatments versus a typical `bell-shape' curve in high density treatments; animals started to leave the consumed patches when about 60% of the initial leaf mass was lost (35th day in high-density treatments). Diversity (Hs) of the simplified detritivore community decreased as decomposition proceeded, with a dominance of shredders during the last phase of decomposition. Faster decomposition rate of detritus in the benthic compartment lead to a higher microalgae standing crop in the water column emphasising the role of allochthonous detritus as a source of nutrients for algae primary production in coastal freshwater ecotones.  相似文献   

4.
Plant litter decomposition is an essential ecosystem function that contributes to carbon and nutrient cycling in streams. Aquatic shredders, mainly macroinvertebrates, can affect this process in various ways; they consume leaf litter, breaking it down into fragments and creating suitable habitats or resources for other organisms through the production of fine particulate organic matter (FPOM). However, measures of litter‐feeding traits across a wide range of aquatic macroinvertebrates are still rare. Here, we assessed the contributions of 11 species of freshwater macroinvertebrates to litter decomposition, by measuring consumption rate, FPOM production, and assimilation rate of highly decomposable (Alnus glutinosa) or poorly decomposable (Quercus robur) leaf litter types. In general, an increase in the quality of litter improved the litter consumption rate, and fungal conditioning of the leaf litter increased both the litter consumption rate and FPOM production. Macroinvertebrates specializing in leaf litter consumption also appeared to be the most sensitive to shifts in litter quality and the conditioning process. Contrary to expectations, the conditioning process did not increase the assimilation of low‐quality litter. There was a strong correlation between the relative consumption rate (RCR) of the two litter types, and the relative FPOM production (RFP) was strongly correlated to the RCR. These findings suggest a consistent relationship between RCR and macroinvertebrate identity that is not affected by litter quality, and that the RFP could be inferred from the RCR. The varying responses of the macroinvertebrate feeding traits to litter quality and the conditioning process suggest that the replacement of a shredder invertebrate species by another species could have major consequences for the decomposition process and the detritus‐based food web in streams. Further studies onto the importance of invertebrate identity and the effects of litter quality in a variety of freshwater ecosystems are needed to understand the whole ecosystem functioning and to predict its response to environmental changes.  相似文献   

5.
1. To evaluate the effect of habitat patch heterogeneity on abundance and growth of macroinvertebrates in arctic lakes, macroinvertebrate abundance, individual biomass, and potential food resources were studied in three patch types in two arctic lakes on the Alaskan North Slope near the Toolik Lake Field Station. An experiment was conducted to determine which sediment patch type supported higher growth rates for Chironomus sp., a commonly occurring macroinvertebrate. 2. Potential organic matter (OM) resources were significantly higher in both rock and macrophyte patches than in open‐mud patches. Total macroinvertebrate densities in both lakes were highest in rock patches, intermediate in macrophytes and lowest in open‐mud. The open‐mud patches also had lower species richness compared with other patch types. Additionally, individual biomass for one clam species and two chironomid species was significantly greater in rock patches than in open‐mud. 3. In a laboratory experiment, Chironomus showed two to three times greater mass increase in sediments from macrophyte and rock patches than from open‐mud patches. Rock and macrophyte experimental sediments had at least 1.5 × the percentage OM as open‐mud sediments. 4. Chlorophyll a appeared to be the best predictor for invertebrate abundances across all patch types measured, whereas OM content appeared to be the variable most closely associated with Chironomus growth. 5. Our results combined with previous studies show that the relationships between macroinvertebrate community structure, individual growth, and habitat heterogeneity are complex, reflecting the interaction of multiple resources, and biotic interactions, such as the presence or absence of a selective vertebrate predator (lake trout, Salvelinus namaycush).  相似文献   

6.
One of the most important sources of energy in aquatic ecosystems is the allochthonous input of detritus. Replacement of native tree species by exotic ones affects the quality of detritus entering freshwater ecosystems. This replacement can alter nutrient cycles and community structure in aquatic ecosystems. The aims of our study were (1) to compare leaf litter decomposition of two widely distributed exotic species (Ailanthus altissima and Robinia pseudoacacia) with the native species they coexist with (Ulmus minor and Fraxinus angustifolia), and (2) to compare macroinvertebrate colonization among litters of the invasive and native species. Litter bags of the four tree species were placed in the water and collected every 2, 25, 39, 71, and 95 days in a lentic ecosystem. Additionally, the macroinvertebrate community on litter bags was monitored after 25, 39, and 95 days. Several leaf chemistry traits were measured at the beginning (% lignin; lignin:N, C:N, LMA) and during the study (leaf total nitrogen). We detected variable rates of decomposition among species (k values of 0.009, 0.008, 0.008, and 0.005 for F. angustifolia, U. minor, A. altissima and R. pseudoacacia, respectively), but we did not detect an effect of litter source (from native/exotic). In spite of its low decay, the highest leaf nitrogen was found in R. pseudoacacia litter. Macroinvertebrate communities colonizing litter bags were similar across species. Most of them were collectors (i.e., they feed on fine particulate organic matter), suggesting that leaf material of either invasive or native trees was used as substrate both for the animals and for the organic matter they feed on. Our results suggest that the replacement of the native Fraxinus by Robinia would imply a reduction in the rate of leaf processing and also a slower release of leaf nitrogen to water.  相似文献   

7.
The aims of this study were to investigate the structure and composition of the invertebrate community during the detritus decomposition (colonization features) of the two most abundant aquatic macrophytes Typha domingensis Pers. and Nymphaea ampla in Jurubatiba Lagoon and verify if the chemical composition of the substratum has any influence on invertebrate colonization and which are the functional groups possibly affected by these compounds. The substratum T. domingensis had higher percentages of cell wall fraction (F= 108.33; p < 0.0001) and organic matter (F= 225.77; p < 0.0001), while nitrogen (F= 408.61; p < 0.0001) and phosphorus (F= 224.59; p < 0.0001) contents were higher in N. ampla. These differences in the chemical composition of the substrata influenced the decomposition rate, and the detritus of N. ampla(4.37% DW day–1) decomposed approximately 26 times faster than the T. domingensis(0.17% DW day–1) detritus. The main groups of invertebrates that colonized both substrate were Chironomidae, with more than 50% of the total, followed by Oligochaeta, Nematoda, Copepoda and Cladocera. The results showed that the slow breakdown rate of T. domingensis detritus provided a higher probability for colonization and that the main driving force structuring the invertebrates' community was degradative ecological succession (DES).  相似文献   

8.
An oscillating steady state is described of phytoplankton, dominated by Prochlorothrix hollandica and Oscillatoria limnetica, and sestonic detritus in shallow, eutrophic Lake Loosdrecht (The Netherlands). A steady-state model for the coupling of the phytoplankton and detritus is discussed in relation to field and experimental data on phytoplankton growth and decomposition. According to model predictions, the phytoplankton to detritus ratio decreases hyperbolically at increasing phytoplankton growth rate and is independent of a lake's trophic state. The seston in L. Loosdrecht contains more detritus than phytoplankton as will apply to many other lakes. The model provides a basis for estimating the loss rate of the detritus, including decomposition, sedimentation and hydraulic loss. In a shallow lake like L. Loosdrecht detritus will continue to influence the water quality for years.  相似文献   

9.
The objectives of this study were to investigate leaf breakdown in two reaches of different magnitudes, one of a 3rd (closed riparian vegetation) order and the other of a 4th (open riparian vegetation) order, in a tropical stream and to assess the colonization of invertebrates and microorganisms during the processing of detritus. We observed that the detritus in a reach of 4th order decomposed 2.4 times faster than the detritus in a reach of 3rd order, in which, we observed that nitrate concentration and water velocity were greater. This study showed that the chemical composition of detritus does not appear to be important in evaluating leaf breakdown. However, it was shown to be important to biological colonization. The invertebrate community appeared not to have been structured by the decomposition process, but instead by the degradative ecological succession process. With regards to biological colonization, we observed that the density of bacteria in the initial stages was more important while fungi appeared more in the intermediate and final stages. (© 2006 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

10.
Litter decomposition, a fundamental process of nutrient cycling and energy flow in freshwater ecosystems, is driven by a diverse array of decomposers. As an important component of the heterotrophic food web, meiofauna can provide a trophic link between leaf‐associated microbes (i.e., bacteria and fungi)/plant detritus and macroinvertebrates, though their contribution to litter decomposition is not well understood. To investigate the role of different decomposer communities in litter decomposition, especially meiofauna, we compared the litter decomposition of three leaf species with different lignin to nitrogen ratios in litter bags with different mesh sizes (0.05, 0.25, and 2 mm) in a forested stream, in China for 78 days. The meiofauna significantly enhanced the decomposition of leaves of high‐and medium‐ quality, while decreasing (negative effect) or increasing (positive effect) the fungal biomass and diversity. Macrofauna and meiofauna together contributed to the decomposition of low‐quality leaf species. The presence of meiofauna and macrofauna triggered different aspects of the microbial community, with their effects on litter decomposition varying as a function of leaf quality. This study reveals that the meiofauna increased the trophic complexity and modulated their interactions with microbes, highlighting the important yet underestimated role of meiofauna in detritus‐based ecosystems.  相似文献   

11.
Japanese knotweed (Fallopia japonica Houtt. Ronse Decrane ) is a highly invasive exotic plant that forms monocultures in riparian areas, effectively reducing plant diversity. This change in riparian plant composition alters the allocthonous input of leaf litter into adjacent streams. A field experiment was completed to understand how leaf decomposition and macroinvertebrate colonisation associated with the incorporation of exotic leaf litter. Leaf packs of Japanese knotweed, native alder (Alnus incana L.), native cottonwood (Populus trichocarpa Torr . and Gray ), and two additional mixed pack types (alder and cottonwood; alder, cottonwood, and Japanese knotweed) were placed into a 50 m stream reach in Clear Creek, Idaho, and removed over a three‐month period. Leaf decomposition and macroinvertebrate assemblages were similar between leaf types, despite differences in nitrogen and phosphorus content. The diversity of leaf types within a given leaf pack also had no effect on leaf decomposition or macroinvertebrate dynamics. These findings suggest that allochthonous inputs of Japanese knotweed fulfill a detrital function similar to that of native leaf litter. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

12.
Elevated atmospheric CO2 generally enhances plant growth, but the magnitude of the effects depend, in part, on nutrient availability and plant photosynthetic pathway. Due to their pivotal role in nutrient cycling, changes in abundance of detritivores could influence the effects of elevated atmospheric CO2 on essential ecosystem processes, such as decomposition and primary production. We conducted a field survey and a microcosm experiment to test the influence of changes in detritus‐based food chains on litter mass loss and plant growth response to elevated atmospheric CO2 using two wetland plants: a C3 sedge (Scirpus olneyi) and a C4 grass (Spartina patens). Our field study revealed that organism's sensitivity to climate increased with trophic level resulting in strong inter‐annual variation in detritus‐based food chain length. Our microcosm experiment demonstrated that increased detritivore abundance could not only enhance decomposition rates, but also enhance plant growth of S. olneyi in elevated atmospheric CO2 conditions. In contrast, we found no evidence that changes in the detritus‐based food chains influenced the growth of S. patens. Considered together, these results emphasize the importance of approaches that unite traditionally subdivided food web compartments and plant physiological processes to understand inter‐annual variation in plant production response to elevated atmospheric CO2.  相似文献   

13.
A study on the colonisation of leaf detritus patches by vagile macroinvertebrates in a brackish lagoon is presented in the framework of a conceptual model where a body size-related constraint on patch use behaviour is explicitly considered. Abundance patterns of dominant macroinvertebrate taxa were characterised by short-term, non-random fluctuations, showing significant site-dependent variations. Yet, a site-independent covariation was observed between patterns’ fractal dimension and the average body mass of each taxon, indicating that, while the temporal scales characterising the colonisation patterns may be highly species-specific, cross-species generalisations are possible based on body size. The generality of these results was supported by literature data on temporal patterns of carcass colonisation by bathyal fish. The importance of size-related mechanisms in regulating the aggregation of vagile consumers on resource patches and, ultimately, their coexistence at both an inter- and intra-specific level, is discussed.  相似文献   

14.
We conducted a decomposition experiment using green and senescent maple and alder leaves in a coastal headwater stream in Hokkaido, northern Japan, during June and July 2000. We estimated whether shredder colonization on the leaves and leaf breakdown differed between green and senescent leaves during the experimental period. Late-instar Lepidostoma complicatum (Trichoptera) and Sternomoera rhyaca (Amphipoda) were the predominant shredder taxa among the macroinvertebrates that colonized litterbags. There was no significant difference in shredder colonization between green and senescent leaves although we found a significant difference between maple and alder leaves. The colonization patterns of large individuals of L. complicatum and S. rhyaca differed from those of small individuals. All decomposition coefficients of green and senescent leaves were high. During the experiment, decomposition was significantly faster in maple than in alder leaves, although no significant difference was found between green and senescent leaves. However, the fragmented nitrogen portion was higher in green leaves than in senescent leaves during the experiment. Higher nitrogen release (2–2.5 times more) as particulate organic matter in green than in senescent leaves indicates that green leaves may be a potentially valuable food resource for other macroinvertebrate collector–gatherer species.  相似文献   

15.
Priority effects are an important ecological force shaping biotic communities and ecosystem processes, in which the establishment of early colonists alters the colonization success of later‐arriving organisms via competitive exclusion and habitat modification. However, we do not understand which biotic and abiotic conditions lead to strong priority effects and lasting historical contingencies. Using saprotrophic fungi in a model leaf decomposition system, we investigated whether compositional and functional consequences of initial colonization were dependent on initial colonizer traits, resource availability or a combination thereof. To test these ideas, we factorially manipulated leaf litter biochemistry and initial fungal colonist identity, quantifying subsequent community composition, using neutral genetic markers, and community functional characteristics, including enzyme potential and leaf decay rates. During the first 3 months, initial colonist respiration rate and physiological capacity to degrade plant detritus were significant determinants of fungal community composition and leaf decay, indicating that rapid growth and lignolytic potential of early colonists contributed to altered trajectories of community assembly. Further, initial colonization on oak leaves generated increasingly divergent trajectories of fungal community composition and enzyme potential, indicating stronger initial colonizer effects on energy‐poor substrates. Together, these observations provide evidence that initial colonization effects, and subsequent consequences on litter decay, are dependent upon substrate biochemistry and physiological traits within a regional species pool. Because microbial decay of plant detritus is important to global C storage, our results demonstrate that understanding the mechanisms by which initial conditions alter priority effects during community assembly may be key to understanding the drivers of ecosystem‐level processes.  相似文献   

16.
We studied headwater streams in 4 watersheds of Washington's Coastal Mountain region from June to August 1998 to establish macroinvertebrate reference conditions and describe variation in macroinvertebrate assemblage structure among stream orders and among substrates. Macroinvertebrates were sampled with mesh baskets (30 × 30 cm) filled with equal volumes of wood (1.5 l) and cobble (1.5 l) that were installed into fifteen 1st-order, six 2nd-order, and three 3rd-order streams. Low taxa richness and low macroinvertebrate densities were found in all streams. Crayfish dominated (92.7%) biomass estimates, with shredders dominating the non-crayfish component of the biomass. The importance of shredders declined from 1st- to 3rd-order streams. An abundance of wood and a lack of algae and non-wood based detritus in the 1st-order streams led us to suspect that food webs were wood based. We tested this hypothesis by comparing macroinvertebrate assemblages in substrate baskets filled with equal volumes (3 l) of naturally conditioned (1) wood, (2) cobble, or (3) wood and cobble (1.5 l of each). Macroinvertebrate richness was higher in wood-only and mixed baskets than the cobble-only baskets (p = 0.0118), and macroinvertebrate biomass was higher in mixed than cobble-only baskets (p = 0.044).  相似文献   

17.
  • 1 Large amounts of terrestrial detritus enter many low‐order forested streams, and this organic material is often the major basal resource in the metazoan food webs of such systems. However, despite their apparently low biomass, algae are the dominant food of organisms in a number of aquatic communities which conventionally would have been presumed to be dependent on allochthonous detritus, particularly those in the tropics and also in lowland intermittent streams in arid Australia.
  • 2 The dual stable isotope signatures (δ13C and δ15N) of potential primary food sources were compared with the isotopic signatures of common aquatic animals in lowland intermittent streams in south‐eastern Australia, in both spring and summer, to determine whether allochthonous detritus was an important nutritional resource in these systems. The isotopic signatures of the major potential allochthonous plant food sources (Eucalyptus, Phalaris and Juncus) overlapped, but were distinct from algae and the dominant macrophytes growing in the study reaches. The isotopic signatures of biofilm were more spatially and temporally variable than those of the other basal resources.
  • 3 Despite allochthonous detritus having relatively high C : N ratios compared to other potential basal resources, results from isosource mixing model calculations demonstrated that this detritus, and the associated biofilm, were the major energy sources assimilated by macroinvertebrate primary consumers in both spring and summer. The importance of these energy sources was also reflected in animals higher in the food web, including predatory macroinvertebrates and fish. These resources were supplemented by autochthonous sources of higher nutritional value (i.e. filamentous algae and macrophytes, which had relatively low C : N ratios) when they became more prolific as the streams dried to disconnected pools in summer.
  • 4 The results highlight the importance of allochthonous detritus (particularly from Eucalyptus) as a dependable energy source for benthic macroinvertebrates and fish in lowland intermittent streams of south‐eastern Australia. This contrasts with previous stable isotope studies conducted in lowland intermittent streams in arid Australia, which have reported that the fauna are primarily dependent on autochthonous algae.
  相似文献   

18.
Decomposition of plant debris is an important process in determining the structure and function of aquatic ecosystems. The aims were to find a mathematic model fitting the decomposition process of Schoenoplectus californicus shoots containing different Zn concentrations; compare the decomposition rates; and assess metal accumulation/mobilization during decomposition. A litterbag technique was applied with shoots containing three levels of Zn: collected from an unpolluted river (RIV) and from experimental populations at low (LoZn) and high (HiZn) Zn supply. The double exponential model explained S. californicus shoot decomposition, at first, higher initial proportion of refractory fraction in RIV detritus determined a lower decay rate and until 68 days, RIV and LoZn detritus behaved like a source of metal, releasing soluble/weakly bound zinc into the water; after 68 days, they became like a sink. However, HiZn detritus showed rapid release into the water during the first 8 days, changing to the sink condition up to 68 days, and then returning to the source condition up to 369 days. The knowledge of the role of detritus (sink/source) will allow defining a correct management of the vegetation used for zinc removal and providing a valuable tool for environmental remediation and rehabilitation planning.  相似文献   

19.
1. Understanding relationships between resource and consumer diversity is essential to predicting how changes in resource diversity might affect several trophic levels and overall ecosystem functioning. 2. We tested for the effects of leaf litter species diversity (i.e. litter mixing) on litter mass remaining and macroinvertebrate communities (taxon diversity, abundance and biomass) during breakdown in a detritus‐based headwater stream (North Carolina, U.S.A.). We used full‐factorial analyses of single‐ and mixed‐species litter from dominant riparian tree species with distinct leaf chemistries [red maple (Acer rubrum), tulip poplar (Liriodendron tulipifera), chestnut oak (Quercus prinus) and rhododendron (Rhododendron maximum)] to test for additivity (single‐species litter presence/absence effects) and non‐additivity (emergent effects of litter species interactions). 3. Significant non‐additive effects of litter mixing on litter mass remaining were explained by species composition, but not richness, and litter‐mixing effects were variable throughout breakdown. Specifically, small differences in observed versus expected litter mass remaining were measured on day 14; whereas observed litter mass remaining in mixed‐species leaf packs was significantly higher on day 70 and lower on day 118 than expected from data for single‐species leaf packs. 4. Litter mixing had non‐additive effects on macroinvertebrate community structure. The number of species in litter mixtures (two to four), but not litter species composition, was a significant predictor of the dominance of particular macroinvertebrates (i.e. indicator taxa) within mixed‐species packs. 5. In addition, the presence/absence of high‐ (L. tulipifera) and low‐quality (R. maximum) litter had additive effects on macroinvertebrate taxon richness, abundance and biomass. The presence of L. tulipifera litter had both positive (synergistic) and negative (antagonistic) effects on invertebrate taxon richness, that varied during breakdown but were not related to litter chemistry. In contrast, the presence/absence of L. tulipifera had a negative relationship with total macroinvertebrate biomass (due to low leaf mass remaining when L. tulipifera was present and higher condensed and hydrolysable tannins associated with leaf packs lacking L. tulipifera). Macroinvertebrate abundance was consistently lower when R. maximum was present, which was partially explained by litter chemistry [e.g., high concentrations of lignin, condensed tannins, hydrolysable tannins and total phenolics and high carbon to nutrient (N and P) ratios]. 6. The bottom‐up effects of litter species diversity on stream macroinvertebrates and litter breakdown are different, which suggests that structural attributes of macroinvertebrate communities may only partially explain the effects of litter‐mixing on organic matter processing in streams. In addition, stream macroinvertebrates colonising decomposing litter are influenced by resource diversity as well as resource availability. Broad‐scale shifts in riparian tree species composition will alter litter inputs to streams, and our results suggest that changes in the diversity and availability of terrestrial litter may alter stream food webs and organic matter processing.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号