共查询到20条相似文献,搜索用时 15 毫秒
1.
Characterization of an immortalizing N-terminal domain of polyomavirus large T antigen. 总被引:3,自引:5,他引:3 下载免费PDF全文
Polyomavirus large T antigen has an N-terminal domain of approximately 260 amino acids which can immortalize primary cells but lacks sequences known to be required for DNA binding and replication. Treatment of full-length large T with either V8 protease or chymotrypsin yields an N-terminal fragment of 36 to 40 kDa and a C-terminal fragment of approximately 60 kDa. This finding suggests a division of the protein into two domains. Proteolysis experiments show that the N-terminal domain does not have strong physical association with the rest of the protein. It also does not self-associate. A construct expressing only the N-terminal 259 amino acids is sufficient for immortalization. The independently expressed N-terminal domain is multiply phosphorylated, although at a lower level than the same region in full-length large T. The 259-residue protein binds to both pRb and p107 with somewhat lower efficiency than the full-length protein. 相似文献
2.
Lowery TJ Pelton JG Chandonia JM Kim R Yokota H Wemmer DE 《Journal of structural and functional genomics》2007,8(1):11-17
DnaA is an essential component in the initiation of bacterial chromosomal replication. DnaA binds to a series of 9 base pair repeats leading to oligomerization, recruitment of the DnaBC helicase, and the assembly of the replication fork machinery. The structure of the N-terminal domain (residues 1-100) of DnaA from Mycoplasma genitalium was determined by NMR spectroscopy. The backbone r.m.s.d. for the first 86 residues was 0.6 +/- 0.2 A based on 742 NOE, 50 hydrogen bond, 46 backbone angle, and 88 residual dipolar coupling restraints. Ultracentrifugation studies revealed that the domain is monomeric in solution. Features on the protein surface include a hydrophobic cleft flanked by several negative residues on one side, and positive residues on the other. A negatively charged ridge is present on the opposite face of the protein. These surfaces may be important sites of interaction with other proteins involved in the replication process. Together, the structure and NMR assignments should facilitate the design of new experiments to probe the protein-protein interactions essential for the initiation of DNA replication. 相似文献
3.
4.
5.
The backbone dynamics of the J domain from polyomavirus T antigens have been investigated using 15N NMR relaxation and molecular dynamics simulation. Model-free relaxation analysis revealed picosecond to nanosecond motions in the N terminus, the I-II loop, the C-terminal end of helix II through the HPD loop to the beginning of helix III, and the C-terminal end of helix III to the C terminus. The backbone dynamics of the HPD loop and termini are dominated by motions with moderately large amplitudes and correlation times of the order of a nanosecond or longer. Conformational exchange on the microsecond to millisecond timescale was identified in the HPD loop, the N and C termini, and the I-II loop. A 9.7ns MD trajectory manifested concerted swings of the HPD loop. Transitions between major and minor conformations of the HPD loop featured distinct patterns of change in backbone dihedral angles and hydrogen bonds. Fraying of the C-terminal end of helix II and the N-terminal end of helix III correlated with displacements of the HPD loop. Correlation of crankshaft motions of Gly46 and Gly47 with the collective motions of the HPD loop suggested an important role of the two glycine residues in the mobility of the loop. Fluctuations of the HPD loop correlated with relative reorientation of side-chains of Lys35 and Asp44 that interact with Hsc70. 相似文献
6.
Konstantin Knoblich Sara Whittaker Christian Ludwig Paul Michiels Tao Jiang Brian Schaffhausen Ulrich Günther 《Biomolecular NMR assignments》2009,3(1):119-123
Polyoma Large T antigen (PyLT) is a viral oncoprotein that targets cell proteins important for growth regulation. PyLT has
two functional domains. Here we report 1H, 15N, 13C backbone and 13C beta assignments of 76% of the residues of the polyomavirus large T antigen N-terminal domain (PyLTNT) that is sufficient
to regulate cell phenotype. PyLTNT is substantially unfolded even in regions known to be critical for its biological function.
The protein also includes a previously characterised J domain that although conformationally influenced by the residue extension,
retains its folded state unlike the majority of the protein sequence. 相似文献
7.
J Weigelt S E Brown C S Miles N E Dixon G Otting 《Structure (London, England : 1993)》1999,7(6):681-690
BACKGROUND: DnaB is the primary replicative helicase in Escherichia coli. Native DnaB is a hexamer of identical subunits, each consisting of a larger C-terminal domain and a smaller N-terminal domain. Electron-microscopy data show hexamers with C6 or C3 symmetry, indicating large domain movements and reversible pairwise association. RESULTS: The three-dimensional structure of the N-terminal domain of E. coli DnaB was determined by nuclear magnetic resonance (NMR) spectroscopy. Structural similarity was found with the primary dimerisation domain of a topoisomerase, the gyrase A subunit from E. coli. A monomer-dimer equilibrium was observed for the isolated N-terminal domain of DnaB. A dimer model with C2 symmetry was derived from intermolecular nuclear Overhauser effects, which is consistent with all available NMR data. CONCLUSIONS: The monomer-dimer equilibrium observed for the N-terminal domain of DnaB is likely to be of functional significance for helicase activity, by participating in the switch between C6 and C3 symmetry of the helicase hexamer. 相似文献
8.
Wang Y Boudreaux DM Estrada DF Egan CW St Jeor SC De Guzman RN 《The Journal of biological chemistry》2008,283(42):28297-28304
The hantaviruses are emerging infectious viruses that in humans can cause a cardiopulmonary syndrome or a hemorrhagic fever with renal syndrome. The nucleocapsid (N) is the most abundant viral protein, and during viral assembly, the N protein forms trimers and packages the viral RNA genome. Here, we report the NMR structure of the N-terminal domain (residues 1-74, called N1-74) of the Andes hantavirus N protein. N1-74 forms two long helices (alpha1 and alpha2) that intertwine into a coiled coil domain. The conserved hydrophobic residues at the helix alpha1-alpha2 interface stabilize the coiled coil; however, there are many conserved surface residues whose function is not known. Site-directed mutagenesis, CD spectroscopy, and immunocytochemistry reveal that a point mutation in the conserved basic surface formed by Arg22 or Lys26 lead to antibody recognition based on the subcellular localization of the N protein. Thus, Arg22 and Lys26 are likely involved in a conformational change or molecular recognition when the N protein is trafficked from the cytoplasm to the Golgi, the site of viral assembly and maturation. 相似文献
9.
Common and unique features of T antigens encoded by the polyomavirus group. 总被引:14,自引:11,他引:14 下载免费PDF全文
J M Pipas 《Journal of virology》1992,66(7):3979-3985
10.
Functions of T antigens of SV40 and polyomavirus 总被引:8,自引:0,他引:8
R Hand 《Biochimica et biophysica acta》1981,651(1):1-24
11.
To map the DNA-binding domain of polyomavirus large T antigen, we constructed a set of plasmids coding for unidirectional carboxy- or amino-terminal deletion mutations in the large T antigen. Analysis of origin-specific DNA binding by mutant proteins expressed in Cos-1 cells revealed that the C-terminal boundary of the DNA-binding domain is at or near Glu-398. Fusion proteins of large T antigen lacking the first 200 N-terminal amino acids bound specifically to polyomavirus origin DNA; however, deletions beyond this site resulted in unstable proteins which could not be tested for DNA binding. Testing of point mutants and internal deletions by others suggested that the N-terminal boundary of the DNA-binding domain lies between amino acids 282 and 286. Taken together, these results locate the DNA-binding domain of polyomavirus large T antigen to the 116-amino-acid region between residues 282 and 398. 相似文献
12.
Cellular proteins that associate with the middle and small T antigens of polyomavirus. 总被引:12,自引:14,他引:12 下载免费PDF全文
D C Pallas V Cherington W Morgan J DeAnda D Kaplan B Schaffhausen T M Roberts 《Journal of virology》1988,62(11):3934-3940
We have used two-dimensional gel electrophoresis to analyze in more detail the cellular proteins which associate with the middle and small tumor antigens (MT and ST, respectively) of polyomavirus. Proteins with molecular masses of 27, 29, 36, 51, 61, 63, and 85 kilodaltons (kDa) that specifically coimmunoprecipitated with MT were identified on these gels. The 36-, 51-, 61-, 63-, and 85-kDa proteins are probably the same as the proteins of similar sizes previously reported by a number of groups, whereas the 27- and 29-kDa proteins represent proteins that are heretofore undescribed. The 27- and 29-kDa proteins were abundant cellular proteins, whereas the others were minor cellular constituents. The association of each of these proteins with MT was sensitive to one or more mutations in MT that rendered it transformation defective. The association of the 85-kDa protein was the most sensitive indicator of the transformation competence of MT mutants. In addition, the 85-kDa protein was the only associated protein whose association with MT changed consistently in parallel with MT-associated phosphatidylinositol kinase activity. Furthermore, the fraction of the 85-kDa protein which was found associated with the MT complex contained 15 to 20% of its phosphate content on tyrosine. The 36- and 63-kDa proteins complexed with both polyomavirus MT and ST and comigrated on two-dimensional gels with two simian virus 40 ST-associated proteins originally described by Rundell and coworkers (K. Rundell, E. O. Major, and M. Lampert, J. Virol. 37:1090-1093, 1981). None of the other MT-associated proteins associated significantly with ST. 相似文献
13.
In addition to the conserved and well-defined RNase H domain, eukaryotic RNases HI possess either one or two copies of a small N-terminal domain. The solution structure of one of the N-terminal domains from Saccharomyces cerevisiae RNase HI, determined using NMR spectroscopy, is presented. The 46 residue motif comprises a three-stranded antiparallel beta-sheet and two short alpha-helices which pack onto opposite faces of the beta-sheet. Conserved residues involved in packing the alpha-helices onto the beta-sheet form the hydrophobic core of the domain. Three highly conserved and solvent exposed residues are implicated in RNA binding, W22, K38 and K39. The beta-beta-alpha-beta-alpha topology of the domain differs from the structures of known RNA binding domains such as the double-stranded RNA binding domain (dsRBD), the hnRNP K homology (KH) domain and the RNP motif. However, structural similarities exist between this domain and the N-terminal domain of ribosomal protein L9 which binds to 23 S ribosomal RNA. 相似文献
14.
Small and middle T antigens contribute to lytic and abortive polyomavirus infection. 总被引:3,自引:7,他引:3 下载免费PDF全文
Using three different polyomavirus hr-t mutants and two polyomavirus mlT mutants, we studied induction of S-phase by mutants and wild-type virus in quiescent mouse kidney cells, mouse 3T6 cells, and FR 3T3 cells. At different times after infection, we measured the proportion of T-antigen-positive cells, the incorporation of [3H]thymidine, the proportion of DNA-synthesizing cells, and the increase in total DNA, RNA, and protein content of the cultures. In permissive mouse cells, we also determined the amount of viral DNA and the proportion of viral capsid-producing cells. In polyomavirus hr-t mutant-infected cultures, onset of host DNA replication was delayed by several hours, and a smaller proportion of T-antigen-positive cells entered S-phase than in wild-type-infected cultures. Of the two polyomavirus mlT mutants studied, dl-23 behaved similarly to wild-type virus in many, but not all, parameters tested. The poorly replicating but well-transforming mutant dl-8 was able to induce S-phase, and (in permissive cells) progeny virus production, in only about one-third of the T-antigen-positive cells. From our experiments, we conclude that mutations affecting small and middle T-antigen cause a reduction in the proportion of cells responding to virus infection and a prolongation of the early phase, i.e., the period before cells enter S-phase. In hr-t mutant-infected mouse 3T6 cells, production of viral DNA was less than 10% of that in wild-type-infected cultures; low hr-t progeny production in 3T6 cells was therefore largely due to poor viral DNA replication. 相似文献
15.
16.
Large T antigens of simian virus 40 and polyomavirus efficiently establish primary fibroblasts. 总被引:13,自引:10,他引:13 下载免费PDF全文
Recombinant retroviruses that transduce the simian virus 40 (SV40) large T antigen or the polyomavirus large T antigen as well as encoding resistance to antibiotic G418 were used to investigate whether these genes alone were sufficient for immortalization of primary cells. The results provided definitive evidence that either viral gene can efficiently establish primary fibroblasts. The capability of the SV40 large T antigen to establish primary fibroblasts was undiminished by a mutation that alters its binding to sequences within the origin of replication. Surprisingly, most of the primary cells established by the expression of the SV40 large T antigen did not have a transformed phenotype. This suggests that transformation by SV40 is not simply due to a high level of expression of the SV40 large T antigen and stabilization of cellular p53. 相似文献
17.
Analysis of the levels of conservation of the J domain among the various types of DnaJ-like proteins 下载免费PDF全文
DnaJ-like proteins are defined by the presence of an approximately 73 amino acid region termed the J domain. This region bears similarity to the initial 73 amino acids of the Escherichia coli protein DnaJ. Although the structures of the J domains of E coli DnaJ and human heat shock protein 40 have been solved using nuclear magnetic resonance, no detailed analysis of the amino acid conservation among the J domains of the various DnaJ-like proteins has yet been attempted. A multiple alignment of 223 J domain sequences was performed, and the levels of amino acid conservation at each position were established. It was found that the levels of sequence conservation were particularly high in 'true' DnaJ homologues (ie, those that share full domain conservation with DnaJ) and decreased substantially in those J domains in DnaJ-like proteins that contained no additional similarity to DnaJ outside their J domain. Residues were also identified that could be important for stabilizing the J domain and for mediating the interaction with heat shock protein 70. 相似文献
18.
Recombinant retroviruses encoding simian virus 40 large T antigen and polyomavirus large and middle T antigens. 总被引:32,自引:8,他引:32 下载免费PDF全文
We used a murine retrovirus shuttle vector system to construct recombinants capable of constitutively expressing the simian virus 40 (SV40) large T antigen and the polyomavirus large and middle T antigens as well as resistance to G418. Subsequently, these recombinants were used to generate cell lines that produced defective helper-free retroviruses carrying each of the viral oncogenes. These recombinant retroviruses were used to analyze the role of the viral genes in transformation of rat F111 cells. Expression of the polyomavirus middle T antigen alone resulted in cell lines that were highly tumorigenic, whereas expression of the polyomavirus large T resulted in cell lines that were highly tumorigenic, whereas expression of the polyomavirus large T resulted in cell lines that were unaltered by the criteria of morphology, anchorage-independent growth, and tumorigenicity. More surprisingly, SV40 large T-expressing cell lines were not tumorigenic despite the fact that they contained elevated levels of cellular p53 and had a high plating efficiency in soft agar. These results suggest that the SV40 large T antigen is not an acute transforming gene like the polyomavirus middle T antigen but is similar to the establishment genes such as myc and adenovirus EIa. 相似文献
19.
COMMD1 is the prototype of a new protein family that plays a role in several important cellular processes, including NF-kappaB signaling, sodium transport, and copper metabolism. The COMMD proteins interact with one another via a conserved C-terminal domain, whereas distinct functions are predicted to result from a variable N-terminal domain. The COMMD proteins have not been characterized biochemically or structurally. Here, we present the solution structure of the N-terminal domain of COMMD1 (N-COMMD1, residues 1-108). This domain adopts an alpha-helical structure that bears little resemblance to any other helical protein. The compact nature of N-COMMD1 suggests that full-length COMMD proteins are modular, consistent with specific functional properties for each domain. Interactions between N-COMMD1 and partner proteins may occur via complementary electrostatic surfaces. These data provide a new foundation for biochemical characterization of COMMD proteins and for probing COMMD1 protein-protein interactions at the molecular level. 相似文献
20.
BACKGROUND: The hexameric helicase DnaB unwinds the DNA duplex at the Escherichia coli chromosome replication fork. Although the mechanism by which DnaB both couples ATP hydrolysis to translocation along DNA and denatures the duplex is unknown, a change in the quaternary structure of the protein involving dimerization of the N-terminal domain has been observed and may occur during the enzymatic cycle. This N-terminal domain is required both for interaction with other proteins in the primosome and for DnaB helicase activity. Knowledge of the structure of this domain may contribute to an understanding of its role in DnaB function. RESULTS: We have determined the structure of the N-terminal domain of DnaB crystallographically. The structure is globular, highly helical and lacks a close structural relative in the database of known protein folds. Conserved residues and sites of dominant-negative mutations have structurally significant roles. Each asymmetric unit in the crystal contains two independent and identical copies of a dimer of the DnaB N-terminal domain. CONCLUSIONS: The large-scale domain or subunit reorientation that is seen in DnaB by electron microscopy might result from the formation of a true twofold symmetric dimer of N-terminal domains, while maintaining a head-to-tail arrangement of C-terminal domains. The N-terminal domain of DnaB is the first region of a hexameric DNA replicative helicase to be visualized at high resolution. Comparison of this structure to the analogous region of the Rho RNA/DNA helicase indicates that the N-terminal domains of these hexameric helicases are structurally dissimilar. 相似文献