首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To date, many regulatory genes and signalling events coordinating mammalian development from blastocyst to gastrulation stages have been identified by mutational analyses and reverse-genetic approaches, typically on a gene-by-gene basis. More recent studies have applied bioinformatic approaches to generate regulatory network models of gene interactions on a genome-wide scale. Such models have provided insights into the gene networks regulating pluripotency in embryonic and epiblast stem cells, as well as cell-lineage determination in vivo. Here, we review how regulatory networks constructed for different stem cell types relate to corresponding networks in vivo and provide insights into understanding the molecular regulation of the blastocyst–gastrula transition.  相似文献   

2.
Cell fate is programmed through gene regulatory networks that perform several calculations to take the appropriate decision. In silico evolutionary optimization mimics the way Nature has designed such gene regulatory networks. In this review we discuss the basic principles of these evolutionary approaches and how they can be applied to engineer synthetic networks. We summarize the basic guidelines to implement an in silico evolutionary design method, the operators for mutation and selection that iteratively drive the network architecture towards a specified dynamical behavior. Interestingly, as it happens in natural evolution, we show the existence of patterns of punctuated evolution. In addition, we highlight several examples of models that have been designed using automated procedures, together with different objective functions to select for the proper behavior. Finally, we briefly discuss the modular designability of gene regulatory networks and its potential application in biotechnology.  相似文献   

3.
4.
The early embryo of Drosophila melanogaster provides a powerful model system to study the role of genes in pattern formation. The gap gene network constitutes the first zygotic regulatory tier in the hierarchy of the segmentation genes involved in specifying the position of body segments. Here, we use an integrative, systems-level approach to investigate the regulatory effect of the terminal gap gene huckebein (hkb) on gap gene expression. We present quantitative expression data for the Hkb protein, which enable us to include hkb in gap gene circuit models. Gap gene circuits are mathematical models of gene networks used as computational tools to extract regulatory information from spatial expression data. This is achieved by fitting the model to gap gene expression patterns, in order to obtain estimates for regulatory parameters which predict a specific network topology. We show how considering variability in the data combined with analysis of parameter determinability significantly improves the biological relevance and consistency of the approach. Our models are in agreement with earlier results, which they extend in two important respects: First, we show that Hkb is involved in the regulation of the posterior hunchback (hb) domain, but does not have any other essential function. Specifically, Hkb is required for the anterior shift in the posterior border of this domain, which is now reproduced correctly in our models. Second, gap gene circuits presented here are able to reproduce mutants of terminal gap genes, while previously published models were unable to reproduce any null mutants correctly. As a consequence, our models now capture the expression dynamics of all posterior gap genes and some variational properties of the system correctly. This is an important step towards a better, quantitative understanding of the developmental and evolutionary dynamics of the gap gene network.  相似文献   

5.
6.
7.
8.
9.

Background

Gene expression as governed by the interplay of the components of regulatory networks is indeed one of the most complex fundamental processes in biological systems. Although several methods have been published to unravel the hierarchical structure of regulatory networks, weaknesses such as the incorrect or inconsistent assignment of elements to their hierarchical levels, the incapability to cope with cyclic dependencies within the networks or the need for a manual curation to retrieve non-overlapping levels remain unsolved.

Methodology/Results

We developed HiNO as a significant improvement of the so-called breadth-first-search (BFS) method. While BFS is capable of determining the overall hierarchical structures from gene regulatory networks, it especially has problems solving feed-forward type of loops leading to conflicts within the level assignments. We resolved these problems by adding a recursive correction approach consisting of two steps. First each vertex is placed on the lowest level that this vertex and its regulating vertices are assigned to (downgrade procedure). Second, vertices are assigned to the next higher level (upgrade procedure) if they have successors with the same level assignment and have themselves no regulators. We evaluated HiNO by comparing it with the BFS method by applying them to the regulatory networks from Saccharomyces cerevisiae and Escherichia coli, respectively. The comparison shows clearly how conflicts in level assignment are resolved in HiNO in order to produce correct hierarchical structures even on the local levels in an automated fashion.

Conclusions

We showed that the resolution of conflicting assignments clearly improves the BFS-method. While we restricted our analysis to gene regulatory networks, our approach is suitable to deal with any directed hierarchical networks structure such as the interaction of microRNAs or the action of non-coding RNAs in general. Furthermore we provide a user-friendly web-interface for HiNO that enables the extraction of the hierarchical structure of any directed regulatory network.

Availability

HiNO is freely accessible at http://mips.helmholtz-muenchen.de/hino/.  相似文献   

10.
11.
12.
13.
To analyze gene regulatory networks active during embryonic development and organogenesis it is essential to precisely define how the different genes are expressed in spatial relation to each other in situ. Multi-target chromogenic whole-mount in situ hybridization (MC-WISH) greatly facilitates the instant comparison of gene expression patterns, as it allows distinctive visualization of different mRNA species in contrasting colors in the same sample specimen. This provides the possibility to relate gene expression domains topographically to each other with high accuracy and to define unique and overlapping expression sites. In the presented protocol, we describe a MC-WISH procedure for comparing mRNA expression patterns of different genes in Drosophila embryos. Up to three RNA probes, each specific for another gene and labeled by a different hapten, are simultaneously hybridized to the embryo samples and subsequently detected by alkaline phosphatase-based colorimetric immunohistochemistry. The described procedure is detailed here for Drosophila, but works equally well with zebrafish embryos.  相似文献   

14.
15.
16.
17.
18.
Gene regulatory networks for animal development are the underlying mechanisms controlling cell fate specification and differentiation. The architecture of gene regulatory circuits determines their information processing properties and their developmental function. It is a major task to derive realistic network models from exceedingly advanced high throughput experimental data. Here we use mathematical modeling to study the dynamics of gene regulatory circuits to advance the ability to infer regulatory connections and logic function from experimental data. This study is guided by experimental methodologies that are commonly used to study gene regulatory networks that control cell fate specification. We study the effect of a perturbation of an input on the level of its downstream genes and compare between the cis-regulatory execution of OR and AND logics. Circuits that initiate gene activation and circuits that lock on the expression of genes are analyzed. The model improves our ability to analyze experimental data and construct from it the network topology. The model also illuminates information processing properties of gene regulatory circuits for animal development.  相似文献   

19.
Building on the linear matrix inequality (LMI) formulation developed recently by Zavlanos et al. (Automatica: Special Issue Syst Biol 47(6):1113–1122, 2011), we present a theoretical framework and algorithms to derive a class of ordinary differential equation (ODE) models of gene regulatory networks using literature curated data and microarray data. The solution proposed by Zavlanos et al. (Automatica: Special Issue Syst Biol 47(6):1113–1122, 2011) requires that the microarray data be obtained as the outcome of a series of controlled experiments in which the network is perturbed by over-expressing one gene at a time. We note that this constraint may be relaxed for some applications and, in addition, demonstrate how the conservatism in these algorithms may be reduced by using the Perron–Frobenius diagonal dominance conditions as the stability constraints. Due to the LMI formulation, it follows that the bounded real lemma may easily be used to make use of additional information. We present case studies that illustrate how these algorithms can be used on datasets to derive ODE models of the underlying regulatory networks.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号